A necessary condition for dynamic equivalence

Abstract : If two control systems on manifolds of the same dimension are dynamic equivalent, we prove that either they are static equivalent --i.e. equivalent via a classical diffeomorphism-- or they are both ruled; for systems of different dimensions, the one of higher dimension must ruled. A ruled system is one whose equations define at each point in the state manifold, a ruled submanifold of the tangent space. Dynamic equivalence is also known as equivalence by endogenous dynamic feedback, or by a Lie-Bäcklund transformation when control systems are viewed as underdetermined systems of ordinary differential equations; it is very close to absolute equivalence for Pfaffian systems. It was already known that a differentially flat system must be ruled; this is a particular case of the present result, in which one of the systems is assumed to be "trivial" (or linear controllable).
Type de document :
Article dans une revue
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2009, 48 (2), pp.925-940. 〈10.1137/080723351〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00277531
Contributeur : Jean-Baptiste Pomet <>
Soumis le : lundi 24 novembre 2008 - 16:12:33
Dernière modification le : jeudi 11 janvier 2018 - 17:05:46
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 10:51:23

Fichiers

Pomet-EquivDynRegl.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jean-Baptiste Pomet. A necessary condition for dynamic equivalence. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2009, 48 (2), pp.925-940. 〈10.1137/080723351〉. 〈inria-00277531v2〉

Partager

Métriques

Consultations de la notice

253

Téléchargements de fichiers

219