A marked point process of rectangles and segments for automatic analysis of Digital Elevation Models

Mathias Ortner 1 Xavier Descombes 1 Josiane Zerubia 1
1 ARIANA - Inverse problems in earth monitoring
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - SIS - Signal, Images et Systèmes
Abstract : This work presents a framework for automatic feature extraction from images using stochastic geometry. Features in images are modeled as realizations of a spatial point process of geometrical shapes. This framework allows the incorporation of a priori knowledge on the spatial repartition of features. More specifically, we present a model based on the superposition of a process of segments and a process of rectangles. The former is dedicated to the detection of linear networks of discontinuities, while the latter aims at segmenting homogeneous areas. An energy is defined, favoring connections of segments, alignments of rectangles, as well as a relevant interaction between both types of objects. The estimation is performed by minimizing the energy using a simulated annealing algorithm. The proposed model is applied to the analysis of Digital Elevation Models (DEMs). These images are raster data representing the altimetry of a dense urban area. We present results on real data provided by the IGN (French National Geographic Institute) consisting in low quality DEMs of various types.
Document type :
Journal articles
Complete list of metadatas

Cited literature [29 references]  Display  Hide  Download

https://hal.inria.fr/inria-00278882
Contributor : Aymen El Ghoul <>
Submitted on : Wednesday, May 14, 2008 - 10:40:11 AM
Last modification on : Monday, November 5, 2018 - 3:52:01 PM
Long-term archiving on : Friday, May 28, 2010 - 7:12:08 PM

File

ortner08.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Mathias Ortner, Xavier Descombes, Josiane Zerubia. A marked point process of rectangles and segments for automatic analysis of Digital Elevation Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2008, 30 (1), pp.105-119. ⟨10.1109/TPAMI.2007.1159.⟩. ⟨inria-00278882⟩

Share

Metrics

Record views

283

Files downloads

343