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Abstract: In this paper, we present a fully decentralized algorithm for fair resource
sharing between multiple bag-of-tasks applications in a grid environment. This algo-
rithm is ingpired from related work on multi-path routing in communication network.
An interesting feature of this algorithm is that it allows the choice of wide variety
of fairness criteria and achieves both optimal path selection and flow control. In ad-
dition, this algorithm only requires local information at each slave computing tasks
and at each buffer of the network links while minimal computation is done by the
schedulers. A naive adaptation is unstable and inefficient though. Fortunately, a
simple and effective scaling mechanism is sufficient to circumvent this issue. This
scaling mechanism is motivated by a careful study of the subtle differences with
the classical multi-path routing problem. We prove its efficiency through a detailed
analysis of a simple simulation.
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Vers un algorithme totalement décentralisé
d’ordonnancement de paquets de taches sur une grille

Résumé : Dans cet article, nous présentons un algorithme totalement distribué
permettant de partager équitablement les ressources d’une grille entre plusieurs ap-
plications de type “paquet de taches”. Cet algorithme s’inspire de travaux connexes
sur le routage multi-chemin dans les réseaux de communication. Parmi les propriétés
intéressantes de cet algorithme, on peut noter sa flexibilité quant au choix du critére
d’équité et son optimalité. De plus, cet algorithme n’utilise que des informations lo-
cales a chacune des machines participant a 'ordonnancement. Une adaptation naive
des techniques de routage multi-chemin est cependant instable et inefficace. Nous
proposons une normalisation simple et efficace permettant de résoudre ces problémes.
Cette normalisation est justifiée par une étude détaillée des différences avec le prob-
léeme classique de routage multi-chemin. Nous démontrons son efficacité a l’aide de
I’analyse détaillée d’une simulation simple.

Mots-clés : Ordonnancement, calcul distribué, optimisation lagrangienne
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1 Introduction

In this article, we consider the problem of concurrently scheduling multiple applica-
tions on a heterogeneous network of computers such as grid. When multiple applica-
tions concurrently run on heterogeneous platforms, inefficiencies generally occur [I].
Hence, a form of cooperation should be induced. On the other hand, centralized
allocation schemes generally cannot be used in large systems, as they require a full
knowledge of the system at hand. This is why one should seek fully decentralized
solutions.

The work most closely related to ours is [2] where centralized and decentralized
solutions are proposed and analyzed, and some fairness is insured. However, their
analysis is limited to the notion of max-min fairness, which is known to make poor
usage of resources [3]. In addition, their decentralized solutions are heuristics that
sometimes fail to achieve the desired objective function. In contrast, the algorithm
presented in this paper allows to obtain a wide class of allocations, and in particu-
lar the a-fair one, with parameter o being a fine tuning between performance and
fairness. Finally, the algorithm has convergence guarantees.

We target at methods similar to the ones used in flow control in communica-
tion networks, which are based on a coupled source / link algorithm [4]. At each
time epoch, the links compute a virtual price based on their availability (generally
measured via the queue size or the amount of dropping packets), while the sources re-
spond by dynamically adjusting their rates so as to optimize a given utility function.
In grid computing, however, we aim at fully decentralized solutions, by allowing the
source algorithm to be executed locally at each node of the system. In this paper,
we show that only local information is required at each node and that the source
algorithm itself can be fully decentralized.

The contribution of this paper is threefold:

e We adapt an algorithm developed in the context of multi-path routing in com-
munication network [5] to take into account the specificities of grid computing
(e.g., the CPU requirements of applications or the fact that “classical” rate
adaptation proposed are unstable in this context);

e We propose a decentralized version of the source algorithm,;
e We explain the convergence difficulties raised by the differences with the clas-

sical multi-path routing problem through a detailed analysis of a simple simu-
lation.

RR n°® 6537



4 R.Bertin, A. Legrand & C. Touati

The rest of this paper is organized as follows. We describe in Section ] the
platform and application model we use in this article. We also formally state and
justify the optimization problem to be solved. Then, we present related work in
Section Bland specifically the flow control problem in multi-path network. We present
the two algorithms proposed by Wang, Palaniswami and Low [5] in this context and
their theoretical foundations. The many differences required in the adaptation of
one of the algorithms to our framework are highlighted in Section @ In particular,
a scaling mechanism to ensure stability around the optimal solution is proposed.
Section [Blis devoted to the presentation of a numerical validation through simulations
of a prototype of this algorithm. We present a detailed analysis of the behavior of
the algorithm and show that a naive adaptation of the previous technique is unstable
and inefficient. Fortunately, the simple scaling mechanism proposed in the previous
section proves effective. We finally conclude this article with prospective remarks in
Section

2 Framework and Models

We use throughout this paper similar notations to those used in [6] and [5].

2.1 Platform Model

The target architectural framework is represented by a platform graph, i.e., a node-
weighted edge-weighted graph G = (N, E, W, B), as illustrated in Figure [l Each
node P, € N represents a computing resource that can deliver W,, floating-point
operations per second. Each edge e;; : (P; — P;) is labeled by a value B;; which
represents the bandwidth between P; and P;. We assume a linear-cost communica-
tion and computation model, hence it takes X/B; ; time units to send a message of
size X from P; to P;.

We assume that all W; are positive rational numbers. W; = 0 means that P; has
no computing power but can still forward data to other processors. Similarly, we
assume that all B, ; are positive rational numbers (or equal to 0 if there is no link
between P; and P;).

The operation mode of the processors is the full overlap, multi-port model for
both incoming and outgoing communications. In this model, a processor node can
simultaneously receive data from all his neighbors, perform some (independent) com-
putation, and send data to all its neighbors at arbitrary rate while respecting the
resource constraints (i.e., the bandwidth and processing speed bounds).

INRIA
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Figure 1: A graph labeled with node (computation) and edge (communication)
weights. Two application deployments with different sources.

Altogether, the model is quite simple: linear costs for computing and communi-
cating, full computation-communication overlap, and multi-port model. Note that
this framework also comprises the bounded multi-port extension [7] where each node
has an additional specific bandwidth bound. This extension simply amounts to
slightly change the graph. However, no specific assumption is made on the inter-
connection graph, which may well include cycles and multiple paths, and contention
over communication links is taken into account.

2.2 Application Model

We consider K applications, Ag, 1 < k < K. Each application originates from a
master node P, ) that initially holds all the input data necessary for each application
A;.. Each application is composed of a set of independent, equal-sized tasks. We can
think of each Ay as a bag of tasks, where the tasks are files that require some
processing. A task of application Ay is called a task of type k. We assume one
can express the computational requirements of tasks as a number of floating-point
operations, and we let wy be the amount of computation (in floating point operations)
required to process a task of type k. Similarly, by is the size (in bytes) of (the file
associated to) a task of type k. We assume that the only communication required is
outwards from the master nodes, i.e., that the amount of data returned by the worker
is negligible. We also assume that each application Ay is deployed on the platform
as a tree. This assumption is reasonable as this kind of hierarchical deployment is
used by many grid services [8]. Therefore if an application k& wants to use a node
P, all its data will use a single path from P, to P, denoted by (Pp,x) ~ Py). If

RR n°® 6537



6 R.Bertin, A. Legrand & C. Touati

no such path exists or if application k cannot access node n (e.g., for administrative
reasons), then (P, ~ P,) is empty.

2.3 Steady-State Scheduling

As each application has an unlimited supply of tasks, each application should aim
at maximizing its average number of task processed per time-unit (the throughput).
When the number of tasks is very large, optimizing the steady-state throughput
enables to derive periodic asymptotically optimal schedules for the makespan [9]. In
our setting where each application has a very large number of tasks, we should thus
try to optimize the steady-state throughput of each application. We refer the reader
to [6] for more details on steady-state scheduling. In this article, we denote by o,
the average number of tasks of type k executed by P, per time unit. It has been
shown in [6] that feasible steady-state rates (i.e., feasible g, ;’s) could be used to
derive efficient autonomous and dynamic schedules. That is why in this article, we
only focus on determining such rates in a fully decentralized way.

2.4 Utility

The throughput of application k at the steady state can be noted o = > On.k-
Let Uy (ox) be the utility associated to application k. We aim at maximizing 3, - i Ug.-
It has been shown that different values of Uy, leads to different kind of fairness [10].
Typically, Ui(or) = log(ox) (proportional fairness) or Uy(or) = of/(1 — ) (a-
fairness).

In this article we focus on proportional fairness but the algorithm we present can
be straightforwardly adapted to a-fairness.

2.5 Optimization Problem

We aim at finding (0, x)1<k<k,1<n<n that maximizes ), log(gy) under the con-
straints:

Ok = Zgn,k (1)

vn, Z On, k Wk < Wy (2)
k

Y(P — P, Z Z on kb < B j (3)

k n such that
(Pi—P;)€ (P k)~ Pn)

INRIA
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Not that the first constraint (1) is not a real constraint of the system but is only
introduced for convenience of notations. Constraint (2] simply states that the com-
putation capacity of processor n cannot be exceeded. Similarly, constraint (B]) states
that the network capacity of link (P; — P;) cannot be exceeded.

Note that this framework is very general as it does rely neither on the assumptions
that all applications originate from the same location nor that all processors are
available to all applications (such restrictions can seamlessly be incorporated in the
previous equations).

3 Related Work

3.1 Flow Control in Multi-path Network

Typically in networking environments, the optimal flow control can be written as
max, » . Us(os) under the constraints

Ok = Z On,k (4)
V(P — Pj), Z Z Onk < Bij (5)

k routes n s.t.
(P;—Pj)en

The first constraint () is characteristic of multi-path scenarios, that is to say sys-
tems in which each packet sent can follow its own path. The second constraint ()
represents the capacity constraints. Each connection k then has nj possible routes.
Additionally, we suppose that Uy are continuous, increasing and strictly concave util-
ity functions. Wang, Palaniswami and Low [5] specifically address this problem with
the additional constraint that each flow has some minimum and maximum require-
ments: Vs, Img, My, mp < 0 < My. This kind of constraints is not really relevant in
our context so, for sake of clarity, we only present simplified versions of the equations
and algorithms proposed by [5].

Such a problem can be solved using the Lagrange method. A Lagrangian multi-
plier 4 is introduced for each constraint (B]). The Lagrangian can thus be written:

ng
Lio,p) =Y Uy (Z Qn,k) + Y mig | B> Y onw
n=1

keK (P;—Pj) k routes n s.t.
P;—Pj)en

RR n°® 6537



8 R.Bertin, A. Legrand & C. Touati

The constraint set is convex and the U are strictly concave. Hence, the original
problem is equivalent to solve:

in L . 6

max min L(g, 1) (6)

Using Slater’s conditions, we know that at the optimum, we have ank'ang = 0.
Hence for any (n, k), we have

Ui(ok) = Z i j if and only if g, 1 > 0. (7)

(P — Pj) € route n

14i,; is generally called shadow price for resource (F; — P;) and thus 3= p, P;)eroute n Mi.j

can be seen as the price for flow k to use route n. Let us denote it pi. Computing the

shadow prices is generally done by applying a gradient method to solve problem ({@l).
Equation ([7]) shows that, at optimum, all routes have identical cost p; and thus

* * __rr/i—1 EISRN ¢
Ok = Z Onp =U (H}zlnpk)'
n

The problem is that this approach leads to an expression of the global throughput
ox only, but not the throughputs per path it results from (i.e., the values of g, ;).
Additionally, the min function is not twice differentiable and a gradient algorithm
based on this approach may oscillate and exhibit convergence problems. This is due
to the fact that the original optimization problem is strictly convex in any of the g
“variables,” but not with respect to the g,, 1, where it is only convex.

In [5], two alternative algorithms are proposed. We briefly present and comment
on these in the remaining of this section.

3.1.1 First Algorithm

The idea of the first algorithm is to modify the objective function so as to make it
strictly concave in each of the g, ;. Consider the alternative modified objective:

ny
1 ~
g;%%éoz U;ﬁil (; ka) - ; ; g(Qn,k - Qn,k)Qa

where 9, j, is an augmented variable.
This is a very elegant trick. Indeed, at the optimum, 9,5 = 0, and hence
the solution of this optimization problem (subject to the former constraints) is the

INRIA
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same as the original one. Yet, this optimization problem is strictly concave in all
the variables g, and g, and hence classical gradient methods do converge. A
distributed gradient with a fixed step size v both for the primal (¢ and p) and the
dual (u) variables leads to Algorithm [l for the sources and Algorithm I for the links.

forall source k do

Receive the path prices pj.

3 forallne1...n;, do

§n,k(t + 1) = (1 - ’Y)gn,k(t) + VQn,k(t)

Onk(t + 1) = [(1 =) onk(t) + v0nr(t) +7(Up(ek(t)) — pp(t)]*
4 Qk(t + 1) — szzl Qn,k(t + 1)

5 Send g, x(t + 1) to all links in path n.

N =

Algorithm 1: Flow control algorithm for source k

1 forall Link (P; — P;) do

2 Receive g, , for all route n of connection £, such that (P; — P;) € n and
aggregate these rates in g; ; :

8 | pig(t+1) « [ui;(t) +v(0i;(t) — Bij)l™

4 Send p; ;(t + 1) to all sources k using (P; — P;).

Algorithm 2: Flow control algorithm for link (P; — P;)

3.1.2 Second Algorithm

The second proposed algorithm in [5] is based on a sub-gradient method, on the
original optimization problem. The source algorithm is split into a flow control
problem that computes the total flow g for each connection k and a routing problem
that, given g, determines how to split the traffic between the different routes.

The flow control at source k computes

op, = U~ (p}),where pj(t) = min p}(t)

routes n

The routing algorithm works as follows:

RR n°® 6537



10 R.Bertin, A. Legrand & C. Touati

1. Updates all rates:
1, 0, 1ot + 1) = [0, (8) — 7 (PR () — pR(E)] T (8)

2. Then, each source picks any route j that has minimum price and update its

rate to
+

oik(t+1) = |oe(t+1) =D onk(t+1) (9)
n#j

Thus, for each connection, the use of all paths that cost more than the minimum price
is gradually decreased (from Equation (§])). This insures that at the equilibrium, only
routes of minimum costs are used.
Additionally, at each time epoch, when a connection has several routes of equal
minimum cost, the rate of one route is adjusted so that ) o, remains equal to gj.
The writing of algorithm being very similar to Algorithm 1, the details are not
given here. The interested reader would refer to [5] for a full description.

3.2 Discussion

As can be straightforwardly noted, the optimal bag-of-task application scheduling on
grid, as described in Section is very similar to the optimal flow control problem
in multi-path routing. For this reason, we study in this paper how to adapt it to
our context. The main differences between the two frameworks are developed in the
next paragraphs.

3.2.1 Routes vs Slaves

Grids are generally high-level infrastructures where security and access restrictions
are important. Thus there is generally a single way to go from a location to another.
This induces hierarchical deployment that are used by many grid services and a
unique (canonical) route from a master to a specific slave, in contrary to multi-path
routing.

3.2.2 Lagrange Multipliers

Another difference lies in the additional constraint (2) on computations. This new
constraint does not fundamentally change the problem. It only amounts to add an
other Lagrangian multiplier A similar to p. Also, in our context there is no need

INRIA
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to consider here minimal and maximal requirements (my and My respectively) as
introduced in [5]. These differences only imply simple modifications of the algorithms.

3.2.3 Topology

The topology of the systems is very different, which has a non-negligible impact on
the convergence rate. In grids, the master-slave pairs are analogous to routes in the
flow control problem, and applications are analogous to connections. Compared to
the flow control problem, there is thus a huge number of “routes” and a small number
of “sources.” This may have some important impact on the convergence rate.

3.2.4 Decision Nodes

A subsequent difference lies in the decision points. While in networking context,
sources adapt and choose their transmission rate, in grids, we would like the inter-
mediate nodes (between a master and each of its slave) to adjust the rates, so as to
prevent overloading the master. Hence the newly proposed source algorithm should
itself be decentralized.

4 Proposed Algorithm and Important Properties

The Lagrangian is written as follow:

L(g, 8, A\ p) = > _ Uy (Z 0i k) + Z Ai <Wz -> Qi,kwk> -> > %(Qz‘,k - oix)?
s

keK keK 1

—+ Z i Bi,j_z Z Qn,kbk

(P, —P;) k n such that
(Pi—Pj)€(Prry~Pn)

For sake of simplicity, we first introduce the following variables 1 and o

U Z Wi o

(Pi—Pj)€ (P k)~ Pn)

O'Z = Z On k-

n such that
(P;—P;)€(Ppy (1)~ Pn)

RR n°® 6537



12 R.Bertin, A. Legrand & C. Touati

That is, y; is the aggregate price per Mb to send data from P, to P, and oy is the
total amount of tasks by application k sent from P, to P, and all its descendants.
These variables can be computed with a simple propagation algorithm:

M =M+ i '
Ullc = Q@kbk + Z Ji
j S.t.(Pi—>Pj)

4.1 Algorithm

Using a fixed-size « step gradient (where the  value may depend on the considered
variable), we derive the simple following updates for A, u, ¢ and o:

Pi(t + 1) — benp(t) + wii(t) (10)
0ik(t +1) — (1 =5)0ik(t) + 750i k(1) (11)
0ik(t+1) —[(1 —’Vg)ezk( ) + 700 k() + 7o (Ur (0x(t)) — pj, ()] (12)

or(t+1) — oMt +1) (13)

+
At +1) — [Ait) + (Z Wi 04k — Wz)] (14)
k

pii(t+ 1) — | (t) + v (Z broj, — Bi,j)
L k

We assume that on each node ¢ there is a process for application k who is responsible
for ori, Ok,i, Mk and op;. Each link is responsible for its own p; ; and each node
is responsible for its own A;. It is easy to see from these equations that all updates

can be actually done from local variables. Therefore, the set of equations results in
Algorithm [ and @]

+
(15)

4.2 Interesting Properties

The new algorithm has many interesting following properties. First, it is fully dis-
tributed and its convergence is proved provided a correct choice of vx,y,,7,, and
75 (Indeed, it corresponds to the Lagrange optimization of a strictly convex opti-
mization function.) Second, it only requires very simple computations and small
communications and thus does waste resources. Last, but not least, this algorithm
seamlessly adapts to W; of B; ; variations and to the arrival of new applications.

INRIA
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forall Agent k on node i do

Get local price \;

Get price to receive from the father u;

Receive 77,2.

Send 7, + p; to all sons.

Receive O'i from all sons.

O}, — Ok + Zj Ué

Send o7, to the father.

Receive g and forward it to all sons.

10 Give bk(f,ig and wy; 1 to the local price manager.
ph — bl + wi

Oig = [(1 = 70)0ik + 70001 (t) +7o(Up(0x (1)) — pi (1))
11 Oik — (1 —75)0ik + V50ik

© N O ok W N =

Algorithm 3: Scheduler algorithm for application k& on node 4

[

forall Price update on node i do

2 Get bkaz; and wyp; 1, from the local scheduler of each application.
pig < [mig + v (g broy, — Big)]*
3 Ai = [N+ Qg wroik — W)t

Algorithm 4: Pricing algorithm &k on node ¢

4.3 Convergence Issues

In our test, we use Uy(or) = log(gx) and thus the update of p;j in Equation
writes as follows:

X
ourlt+1) — [(1 N e (Ql%(t) - p;;(t))} |

A small value of ¢ leads to huge updates and thus to severe oscillations. As mentioned
in [5], it is possible to use independent step sizes for the ¢ part and for the price pj,
part and to normalize this update as follows:

ol + 1) = [ = 7)okl + 1 Es(0) + 22 (1 - axt)pi0) | (16)

RR n°® 6537



14 R.Bertin, A. Legrand & C. Touati

Our experiments show that this normalization allows to avoid division by 0 that often
occurred with the previous update scheme but that it is unfortunately not sufficient
to damp oscillations. This is due to the fact that updating ¢ has an impact on the
prices A and p, which in turn impact on the o’s update. The second update of o
should have the same order of magnitude (or be smaller) as the first one to avoid
numerical instabilities that prevent convergence of the algorithm.

Let us assume that we have reached the equilibrium. Further assume that the
price \; of P; is increased by A);. From Equation (I6)), we derive that such an
increase incurs a variation Ag; ;. of g; 1

Ao = 7D wp Ao

In turn, from Equation (4], we see that such a variation incurs a variation of \;:

> nwpAgik = AN, (Z ’mﬁf)wimﬁ) -
k

k

Thus, the solution of our gradient is stable only if

> naPuior <1,
k

Therefore, Equation (I4]) should be replaced by

WEO0; k — WZ *
M+ 1) | ft) 4 9 ik (17)
Zk Wi, Ok
and Equation (I3]) should be replaced by
+
ka'i - Bz i
,U,Z‘,j(t + 1) — /L@j(f) Zk k o) . (18)

+
: Zk Z n such that szk
(P;—P;)€(Ppy (1)~ Pn)

Note that this scaling does not even require additional aggregation as all proces-

sors already receive gy to perform the update of ¢ (Equation (I6])). Such a scaling
is not really needed in the classical multi-path routing problem.

INRIA
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5 Numerical Results

In this section, we present an experimental evaluation of the previous algorithms (the
unscaled version versus the scaled one). Section (.1l details how our simulations were
conducted. The analysis of the unscaled algorithm (using Equations (I4]) and (IZ))
is presented in Section 5.2 The analysis of the scaled version (using Equations (7))
and (I8)) is presented in Section [5.3)).

5.1 Evaluation Methodology
5.1.1 Implementation

We implemented our algorithm using the SIMGRID simulator [I1]. It has been shown
in [6] that feasible steady-state rates (i.e., feasible g,, 1’s) could be used to derive effi-
cient autonomous and dynamic schedules. That is why we only focus on determining
such rates in a fully decentralized way. In the current implementation, all agents use
synchronous communications and thus, each step requires a complete traversal of the
deployment tree.

Unless otherwise stated, we use the same default step sizes and initial values in
all our experiments. These values are summarized in Table [Tl

Table 1: Step parameters

bl - ) )
variable | 75 Yo Yo A Tu
value | 0.02 | 0.02 | 100.0 |5.1072 | 5.10~%
variable | oinit | Ainit Hinit

value |6.10° [ 2.1072]2.10°2

5.1.2 Platform Generation

We performed a first set of tests on a simple platform consisting of only 5 nodes (see
Figure Bl For ease of interpretation, we assumed a homogeneous set of nodes and
links, although neither the algorithm nor our prototype requires that.

5.1.3 Application Generation

An application is mainly characterized by its communication-to-computation ra-
tio (CCR). We used three kinds of applications of respective (b, w): (1000,5000),
(2000, 800), and (1500, 1500). We considered that each application originates from

RR n°® 6537



16 R.Bertin, A. Legrand & C. Touati

B =5.108
W =5.108

Figure 2: Simple platform topology. All applications originate from different nodes.

a different master, as represented on Figure 2 Namely, application 1, 2 and 3 are
hosted by nodes D, A and C respectively.

5.1.4 Validation

Determining whether such iterative algorithms have converged is generally not easy.
In our experiments, we assess the convergence of our algorithms using SDP (Semi-
Definite Programming). SDP is a mathematical program which solves the minimiza-
tion problem of a linear combination of variables subject to the constraint of positive
semi-definiteness of some general symmetric matrix whose entries are either variables
or constants.

It has been shown that the fair allocation of resources subject to linear constraints
can be expressed in a SDP program [12]. As this program can be solved in polynomial
time, it can provide a quick and reliable, yet centralized, validation of our numerical
results.

For each of the simulations presented below, we compared the obtained solutions
to the ones provided by the free open source SDP solver called DSD.

5.2 Unscaled Version

Our simulations show that, even in this simple case study like the one presented in
this section, step sizes (for o, A and p) cannot be properly set.

! Available at http://www-unix.mcs.anl.gov/DSDP/
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0 50 100 150 200 250 300 350 400

0 | | | | | | |
0 50 100 150 200 250 300 350 400
Figure 3: Obtained values of the objective function ) logp for the unscaled ver-
sion and comparison with the optimal one. Different orders of magnitudes in the
Lagrangian multipliers lead to numerical instabilities and global inefficiencies.
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Figure 4: Obtained values of the objective function > log p for the unscaled version
and comparison with the optimal one. Smaller step sizes (yy = 5.107%, v, = 5.107°,

fyg) = 1.0) help reducing the oscillations and erratic values but incur a very slow
convergence.
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Figure 5: Throughput of each of the three applications during 400 iterations: between
two iterations, a decrease or increase of magnitude five or more can happen.

In our experiments, we considered a set of 400 iterations. We observed that the

step sizes for vz and ’yél) did not impact the convergence of the algorithm. On the

contrary, the step size 72,2) of o was of upmost importance.

We represent the influence of this parameter on Figures Bl and @l On each ones
are represented 4 horizontal lines. The upper one is the optimal value, as computed
by the SDP program while the three others represent the 99.5%, 99% and 95% of
the optimal value. For relatively large value of 'yg) (e.g., 'yéz) = 100), the algorithm
proved to be unstable, each update on the values being too large. Large updates can
be avoided by using a small step size (for instance 7@2) = 0.1, see Figure ). Yet,
although more stable, this scheme does not converge well.

This being said, let us look at the updates on the throughput of each application
(in the situation where 'yéz) = 100). We note that not only do the objective functions
fluctuate, but also the throughputs of each application, as represented in Figure [l

To understand this behavior, let us recall that the throughput of each application
is actually the sum of the rates on each of the 5 paths it follows: g, = > 0; . Figure[dl
shows how ¢ decomposes. We can note that the different g; 1 have exactly the same
shape, and only varies by the instants they are reset to zero. These time epochs
actually correspond to sudden jumps in the prices.
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Figure 6: The throughput of application seen as the sum of the rates through the
different paths.

Indeed, a closer look at the system indicates erratic values of the prices in each
node and link. Indeed, for each resource, the prices are null except for a finite number
of points, where the values can be arbitrarily large (Figure [7).

Hence, each application steadily increases it throughput while the prices of the
resources it uses are null. Then, at some point a resource becomes saturated and
its price suddenly “jumps,” leading to a null throughput of all applications that use
it. Then the process reiterates, which explains that the system cannot converge.
In equation (I4]) it is easy to see that the price update is directly proportional the
saturation of the resource. This saturation has the same order of magnitude as the
w0 whereas the price has the same order of magnitude as the inverse of the to the
or’s, which explains why such an unstable in inherent to this algorithm (regardless
of the values of vy and 7).

5.3 Scaled Version

We ran the simulations on the same platform with the scaled version of the algorithm.
The results on the objective function are presented in Figure Bl We clearly see from
these curves how quickly the oscillations vanish with each iteration and how the
algorithm converges to the optimal solution.
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Figure 7: Correlation between the throughput of an application on a given route and

the price it experiences.

45

44

43

42

41

40

39

38

37

50

37
0 50 100 150 200 250 300 350 400

Figure 8: Scaled version of the algorithm: the oscillations, due to a really badly
chosen initialisation value quickly vanish (left graph). The algorithm almost instantly
reaches a decent value (5% of the optimal value after 17 iterations), and relatively
quickly to a good value (1% of the optimal guaranteed after 83 iterations) (right

plot).
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Figure 9: Scaled version of the algorith - high number of iterations: after 498 iter-
ations, the performance remains higher than 99.5% of the optimal and still further
increase with the number of iterations (Nota: each point of the curve is obtained as
the average of 20 iterations).

We can observe from Figure [0 that the iteration number can be actually chosen
S0 as to obtain arbitrarily good performance, as opposed to what was observed with
the unscaled version.

Let us look at the throughput achieved by each application (Figure[I0). As with
the objective function, we observe than after a few tens of iterations, the values
obtained by our algorithm are fairly closed to the optimal one. Yet, the convergence
is not as quick. After 2000 iterations, an application can still be at approximately
5% of it equilibrium value. However, the system very quickly converges to rate that
make good usage of resources. More interestingly, after the “initialization phase” (the
first few tens of iterations), we do not observe oscillations or large updates, which is
a very desired feature when it comes to implementation.

Let us finally compare the prices evolution (Figure [[1]). As opposed to the un-
scaled version, where they were either null or with high values, the prices now have
small, yet strictly positive values and continuously change with the iteration num-
ber. This reflects an harmonious utilization of resources. Furthermore, we note that,
although their oscillations are synchronized during the first steps of the algorithm
(due to the synchronous arrival of the applications in the system), their curve quickly
disynchronized, as opposed to the unscaled version.
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Figure 10: Convergence of p; with ¢ = 1..3: no more oscillations occur.
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Figure 11: Ressource prices in scaled algorithm: prices evolve smoothly. As the num-
ber of iterations increase, they converge to zero while remaining positive, meaning
that the ressources they refer to is neither under utilized nor overloaded.
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6 Conclusion

In this article we have explained how to adapt an algorithm designed in the context
of multi-path routing in communication network [5] to a multiple Bag-of-tasks appli-
cation scheduling problem. As demonstrated by our simulations and our analyses, a
“naive” adaptation is ineffective and a simple novel scaling scheme has been proposed
to damp oscillations in this new context. The need for this scaling is mainly due to
the fact that the resource usage is not homogeneous (each application has its own
wy and bg). We think that the scaling scheme proposed is simple enough to be of
practical interest and will work on more complex examples than the one presented in
this article (our preliminary simulation results tend to confirm this hypothesis but a
complete study is underway). We can however think of a situation where this scaling
could be insufficient to ensure a fast convergence. When the optimal throughput of
the applications do not have the same order of magnitude, it may be necessary for
each application to have its own step size %()2). Ultimately, a scaling on 7@2) so that
each update has the same order of magnitude as the corresponding g; » would ensure
a fast convergence in all situations but we are still investigating this issue.
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