
HAL Id: inria-00281631
https://inria.hal.science/inria-00281631

Submitted on 24 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Focusing in linear meta-logic: extended report
Vivek Nigam, Dale Miller

To cite this version:
Vivek Nigam, Dale Miller. Focusing in linear meta-logic: extended report. [Research Report] Maybe
this file need a better style. Specially the proofs., 2008. �inria-00281631�

https://inria.hal.science/inria-00281631
https://hal.archives-ouvertes.fr

in
ri

a-
00

28
16

31
, v

er
si

on
 1

 -
 2

4
M

ay
 2

00
8

Focusing in linear meta-logic: extended report

Vivek Nigam and Dale Miller

INRIA & LIX/École Polytechnique, Palaiseau, France
nigam at lix.polytechnique.fr dale.miller at inria.fr

May 24, 2008

Abstract. It is well known how to use an intuitionistic meta-logic to
specify natural deduction systems. It is also possible to use linear logic
as a meta-logic for the specification of a variety of sequent calculus proof
systems. Here, we show that if we adopt different focusing annotations
for such linear logic specifications, a range of other proof systems can
also be specified. In particular, we show that natural deduction (normal
and non-normal), sequent proofs (with and without cut), tableaux, and
proof systems using general elimination and general introduction rules
can all be derived from essentially the same linear logic specification by
altering focusing annotations. By using elementary linear logic equiva-
lences and the completeness of focused proofs, we are able to derive new
and modular proofs of the soundness and completeness of these various
proofs systems for intuitionistic and classical logics.

1 Introduction

Logics and type systems have been exploited in recent years as frameworks for
the specification of deduction in a number of logics. The most common such
meta-logics and logical frameworks have been based on intuitionistic logic (see,
for example, [FM88]) or dependent types (see [HHP93,Pfe89]). Such intuitionistic
logics can be used to directly encode natural deduction style proof systems.

In a series of papers [Mil96,MP04,MP02,PM05,Pim01], Miller & Pimentel
used classical linear logic as a meta-logic to specify and reason about a variety
of sequent calculus proof systems. Since the encodings of such logical systems
are natural and direct, the meta-theory of linear logic can be used to draw
conclusions about the object-level proof systems. More specifically, in [MP02], a
decision procedure was presented for determining if one encoded proof system is
derivable from another. In the same paper, necessary conditions were presented
(together with a decision procedure) for assuring that an encoded proof system
satisfies cut-elimination. This last result used linear logic’s dualities to formalize
the fact that if the left and right introduction rules are suitable duals of each
other then non-atomic cuts can be eliminated.

In this paper, we again use linear logic as a meta-logic but make critical
use of the completeness of focused proofs for linear logic. Roughly speaking,
focused proofs in linear logic divide sequent calculus proofs into two different
phases: the negative phase involves rules that are invertible while the positive

phase involves the focused non-invertible rules. In linear logic, it is clear to
which phase each linear logic connective appears but it is completely arbitrary
how atomic formulas can be assigned to these different phases. For example, all
atomic formulas can be assigned a negative polarity or a positive polarity or, in
fact, any mixture of these. The completeness of focused proofs then states that if
a formula B is provable in linear logic and we fix on any polarity assignment to
atomic formulas, then B will have a focused proof. (Soundness also holds.) Thus,
while polarity assignment does not affect provability, it can result in strikingly
different proofs. The earlier works of Miller & Pimentel assumed that all atoms
were given negative polarity: this resulted in an encoding of object-level sequent
calculus. As we shall show here, if we vary that polarity assignment, we can
get other object-level proof systems represented. Thus, while provability is not
affected, different, meta-level, focused proofs are built and these encode different
object-level proof systems.

Our main contribution in this paper is illustrating how a range of proof sys-
tems can be seen as different focusing disciplines on the same or (meta-logically)
equivalent sets of linear logic specifications. Soundness and relative complete-
ness are generally trivial consequences of linear logic identities. In particular, we
present examples based on sequent calculus and natural deduction [Gen69], Gen-
eralized Elimination Rules [vP01], Free Deduction [Par92], the tableaux system
KE [DM94], and Smullyan’s Analytic Cut [Smu68]. The adequacy of a given spec-
ification of inference rules requires first assigning polarity to meta-level atoms
using in the specification: then adequacy is generally an immediate consequence
of the focusing theorem of linear logic.

Finally, we attempt to point out how deep the equivalence of encoded proof
systems goes by describing three levels of encoding adequacy: one where the
provable set of formulas is the same, one where the completed proofs are in
one-to-one correspondence, and one where (open) derivations (such as inference
rules themselves) are also in one-to-one correspondence.

2 Preliminaries

2.1 Linear logic

We shall assume that the reader is familiar with linear logic. We review a few
basic points here. Literals are either atomic formulas or their negations. We
write ¬F to denote the negation normal form of the formula F : that is, formulas
computed by using de Morgan dualities and where negation has only atomic
scope. The connectives ⊗ and O and their units 1 and ⊥ are multiplicative; the
connectives ⊕ and & and their units 0 and ⊤ are additive connectives; ∀ and ∃
are (first-order) quantifiers; and ! and ? are the exponentials.

In general, we shall present theories in the linear meta-logic as appearing on
the right-hand side of sequents. Thus, if X is a set of formulas (all the result
of applying ? to existential closures), then we say that the formula B is derived
using theory X if ⊢ B,X is provable in linear logic. We shall also write B ≡ C

to denote the formula (¬B O C) & (¬C O B).

2

(⇒L) ⌊A ⇒ B⌋⊥ ⊗ (⌈A⌉ ⊗ ⌊B⌋) (⇒R) ⌈A ⇒ B⌉⊥ ⊗ (⌊A⌋ O ⌈B⌉)

(∧L) ⌊A ∧ B⌋⊥ ⊗ (⌊A⌋ ⊕ ⌊B⌋) (∧R) ⌈A ∧ B⌉⊥ ⊗ (⌈A⌉ & ⌈B⌉)
(∨L) ⌊A ∨ B⌋⊥ ⊗ (⌊A⌋ & ⌊B⌋) (∨R) ⌈A ∨ B⌉⊥ ⊗ (⌈A⌉ ⊕ ⌈B⌉)

(∀L) ⌊∀B⌋⊥ ⊗ ⌊Bx⌋ (∀R) ⌈∀B⌉⊥ ⊗ ∀x⌈Bx⌉

(∃L) ⌊∃B⌋⊥ ⊗ ∀x⌊Bx⌋ (∃R) ⌈∃B⌉⊥ ⊗ ⌈Bx⌉

(⊥L) ⌊⊥⌋⊥ (tR) ⌈t⌉⊥ ⊗⊤

Fig. 1. The theory L used to encode various proof systems for minimal, intu-
itionistic, and classical logics.

(Id1) ⌊B⌋⊥ ⊗ ⌈B⌉⊥ (Id2) ⌊B⌋ ⊗ ⌈B⌉ (WR) ⌈C⌉⊥ ⊗⊥
(StrL) ⌊B⌋⊥ ⊗ ?⌊B⌋ (StrR) ⌈B⌉⊥ ⊗ ?⌈B⌉

Fig. 2. Specification of the identity rules (cut and initial) and of the structural
rules (weakening and contraction).

2.2 Encoding object-logic formulas, sequents, and inference rules

We use linear logic as a meta-logic to encode object logics, in a similar fashion
as done in [Mil96,Pim01]. We shall assume that our meta-logic is a multi-sorted
version of linear logic: in particular, the type o denotes meta-level formulas,
the type bool denotes object-level formulas, and the type i will denote object-
level terms. Object-level formulas are encoded in the usual way: in particular,
the object-level quantifiers ∀, ∃ are given the type (i → bool) → bool and the
expressions ∀(λx.B) and ∃(λx.B) are written, respectively, as ∀x.B and ∃x.B.
To deal with quantified object-level formulas, our meta-logic will quantify over
variables of types i → · · · → i → bool (for 0 or more occurrences of i).

Encoding object-level sequents as meta-logic sequents is done by introducing
two meta-level predicates of type bool → o, written as ⌊·⌋ and ⌈·⌉, and then
writing the two-sided, object-level sequent B1, . . . , Bn ⊢ C1, . . . , Cm as the one-
sided, meta-level sequent ⊢ ⌊B1⌋, . . . , ⌊Bn⌋, ⌈C1⌉, . . . , ⌈Cm⌉. Thus formulas on
the left of the object-level sequent are marked using ⌊·⌋ and formulas on the right
of the object-level sequent are marked using ⌈·⌉. We shall assume that object-
level sequents are pairs of either sets or multisets and that meta-level sequents
are multisets of formulas. For convenience, if Γ is a (multi)set of formulas, ⌊Γ ⌋
(resp. ⌈Γ ⌉) denotes the multiset of atoms {⌊F ⌋ | F ∈ Γ} (resp. {⌈F ⌉ | F ∈ Γ}).

Inference rules generally attribute to a logical connective two sets of “dual”
inference rules: in sequent calculus, these correspond to the left-introduction
and right-introduction rules while in natural deduction, these correspond to the
introduction and elimination rules. Consider the linear logic formulas in Figure 1.
When we display formulas in this manner, we intend that the named formula is
actually the result of applying ? to existential closure of the formula. Thus, the
formula named ∧L is actually ?∃A∃B[⌊A ∧ B⌋⊥ ⊗ (⌊A⌋ ⊕ ⌈B⌉)]. The formulas
in Figure 1 help to provide the meaning of linear logic connectives in a rather
abstract and succinct fashion. For example, the conjunction connective appears
in two formulas: once in the scope of ⌊·⌋ and once in the scope of ⌈·⌉. Notice that

3

there is no explicit reference to side formulas or any side conditions for any of
these rules. We shall provide a much more in-depth analysis of the formulas in
Figure 1 in the following sections.

The formulas in Figure 2 play a central role in this paper. The Id1 and Id2

formulas can prove the duality of the ⌊·⌋ and ⌈·⌉ predicates: in particular, one
can prove in linear logic that

⊢ ∀B(⌈B⌉ ≡ ⌊B⌋⊥) & ∀B(⌊B⌋ ≡ ⌈B⌉⊥), Id1, Id2

Similarly, the formulas StrL and StrR allow us to prove the equivalences ⌊B⌋ ≡
?⌊B⌋ and ⌈B⌉ ≡ ?⌈B⌉. The last two equivalences allows the weakening and
contraction of formulas at both the meta-level and object-level. For instance, in
the encoding of minimal logics, where structural rules are only allowed in the
left-hand-side, one should include only the StrL formula; while in the encoding
of classical logics, where structural rules are allowed in both sides of a sequent,
one should include both StrL and StrR formulas. Moreover, since the presence of
these two formulas allows contracting and weakening of ⌊·⌋ and ⌈·⌉ atoms, one
can show that the specification L∪{StrL, StrR} is equivalent to the specification
obtained from it but where the “additive rules” ∧L,∧R,∨L,∨R are replaced by
the existential closure of their multiplicative versions, namely

⌈A ∧ B⌉⊥ ⊗ (⌈A⌉ ⊗ ⌈B⌉) ⌊A ∧ B⌋⊥ ⊗ (⌊A⌋ O ⌊B⌋)
⌊A ∨ B⌋⊥ ⊗ (⌈A⌉ ⊗ ⌈B⌉) ⌈A ∨ B⌉⊥ ⊗ (⌈A⌉ O ⌊B⌋).

The formula WR encodes the weakening right rule and is used to encode intu-
itionistic logics, where weakening, but not contraction, is allowed on formulas on
the right-hand-side of a sequent.

2.3 Adequacy levels for encodings

When comparing deductive systems, one can easily identify several “levels of
adequacy.” Following Girard in [Gir06, Chapter 7], we shall characterize our
theorems as being from either Level 0, Level -1, or Level -2 (Girard considers
also Level -3). Level 0 comparisons are made only by speaking of provability:
a formula has a proof in one system if it has a proof in another system. Level
-1 comparisons are made by comparing proofs object: the proofs of a given
formula are in one-to-one correspondence with proofs in another system. If one
uses the term “derivation” for incomplete proofs (proofs with open premises),
then Level -2 comparison are made by comparing derivations (such as inference
rules themselves): the derivations in one system are in one-to-one correspondence
with those in another system. Standard completeness or relative completeness
theorems are Level 0 theorems; full completeness results are Level -1 theorems.
When we state equivalences between proof systems (usually between object-level
proof systems and their meta-level encoding), we will often comment on which
level the theorem should be placed.

4

2.4 A focusing proof system for linear logic

In [And92], Andreoli proved the completeness of the focused proof system for
linear logic given in Figure 3. Focusing proof systems involve applying inference
rules in alternating polarities. In particular, formulas are negative if their top-
level connective is either O,⊥, &,⊤, ?, or ∀; formulas are positive if their top-level
connective is ⊕, 0,⊗, 1, !, or ∃. This polarity assignment is rather natural in the
sense that all right introduction rules for negative formulas are invertible while
such introduction rules for positive formulas are not necessarily invertible. The
only formulas that are not given a polarities by the above assignment are the
literals. Andreoli’s completeness theorem can be interpreted as follows: If F is a
provable linear logic formula, then for any assignment of polarities to the atomic
formulas of linear logic, the sequent ⊢ · : · ⇑ F is provable.

We point out two important aspects of this completeness theorem. First, the
focus proof system only works on “annotated formulas” and not regular formu-
las. Here, the annotation is a mapping of atoms to polarities. (In intuitionistic
and classical logics, one may also need to annotate conjunctions and disjunc-
tions [LM07].) Notice that the rules [I1] and [I2] explicitly refer to the polarity
assigned to literals. Second, an annotation does not affect provability but it may
affect greatly the structure of (focused) proofs that are possible. In papers such
as [LM07,MN07], differences in annotations allowed one to build only top-down
(goal-directed) proofs or only bottom-up (program-directed) proofs or combina-
tions of both. In this paper, we shall illustrate how it is possible to use different
polarity assignments (in the linear meta-logic) to derive different proof systems
(of an object-logic). In particular, sequent calculus and natural deduction can be
seen as two different annotations of the same linear logic specification of proof
rules for (object-level) connectives.

Our linear meta-logic will yield specifications of object-logic proof systems
only after we assign polarities to atoms of the form ⌊·⌋ and ⌈·⌉: then our adequacy
results will involve establishing relationships between focused meta-level proofs
and object-level proof systems.

3 Sequent Calculus

We first consider how to encode sequent calculus systems for minimal, intuition-
istic and classical logics. The following three sets of formulas

Llm = (L \ {⊥L,⇒L}) ∪ {Id1, Id2, StrL,⇒′
L} Llj = Llm ∪ {⊥L, WR}

Llk = L ∪ {Id1, Id2, StrL, StrR}

where ⇒′
L is the formula ?∃A∃B[⌊A ⇒ B⌋⊥ ⊗ (!⌈A⌉⊗ ⌊B⌋)], are used to encode

the LM, LJ and LK sequent calculus proof systems for minimal, intuitionistic,
and classical logic (not displayed here to save space). These sets differ in the
structural rules for ⌈·⌉, in the presence or absence of the formula ⊥L and in
the formula encoding the left introduction for implication: in the LM encoding,
no structural rule is allowed in the right-hand-side formula; in the LJ encoding,

5

⊢ Θ : Γ ⇑ L

⊢ Θ : Γ ⇑ L,⊥
[⊥]

⊢ Θ : Γ ⇑ L, F, G

⊢ Θ : Γ ⇑ L, F O G
[O]

⊢ Θ, F : Γ ⇑ L

⊢ Θ : Γ ⇑ L, ?F
[?]

⊢ Θ : Γ ⇑ L,⊤
[⊤]

⊢ Θ : Γ ⇑ L, F ⊢ Θ : Γ ⇑ L, G

⊢ Θ : Γ ⇑ L, F & G
[&]

⊢ Θ : Γ ⇑ L, F [c/x]

⊢ Θ : Γ ⇑ L,∀x F
[∀]

⊢ Θ :⇓ 1
[1]

⊢ Θ : Γ ⇓ F ⊢ Θ : Γ ′ ⇓ G

⊢ Θ : Γ, Γ ′ ⇓ F ⊗ G
[⊗]

⊢ Θ :⇑ F

⊢ Θ :⇓ ! F
[!]

⊢ Θ : Γ ⇓ F

⊢ Θ : Γ ⇓ F ⊕ G
[⊕l]

⊢ Θ : Γ ⇓ G

⊢ Θ : Γ ⇓ F ⊕ G
[⊕r]

⊢ Θ, F : Γ ⇓ F [t/x]

⊢ Θ : Γ ⇓ ∃x F
[∃]

⊢ Θ : A⊥

p ⇓ Ap

[I1]
⊢ Θ, A⊥

p :⇓ Ap

[I2]
⊢ Θ : Γ, S ⇑ L

⊢ Θ : Γ ⇑ L, S
[R ⇑]

⊢ Θ : Γ ⇓ P

⊢ Θ : Γ, P ⇑
[D1]

⊢ Θ, P : Γ ⇓ P

⊢ Θ, P : Γ ⇑
[D2]

⊢ Θ : Γ ⇑ N

⊢ Θ : Γ ⇓ N
[R ⇓]

Fig. 3. The focused proof system for linear logic [And92]. Here, L is a list of
formulas, Θ is a multiset of formulas, Γ is a multiset of literals and positive
formulas, Ap is a positive literal, N is a negative formula, P is not a negative
literal, and S is a positive formula or a negated atom.

⊢ K :⇓ ⌊A ⇒ B⌋⊥
[I2]

⊢ K : ⌈A⌉ ⇑

⊢ K :⇓ !⌈A⌉
[!, R ⇑]

⊢ K : ⌊B⌋, ⌈C⌉ ⇑

⊢ K : ⌈C⌉ ⇓ ⌊B⌋
[R ⇓, R ⇑]

⊢ K : ⌈C⌉ ⇓ !⌈A⌉ ⊗ ⌊B⌋
[⊗]

⊢ K : ⌈C⌉ ⇓ F
[2 × ∃,⊗]

⊢ K : ⌈C⌉ ⇑ ·
[D2]

Fig. 4. Here, the formula A ⇒ B ∈ Γ and K denotes the set Llm, ⌊Γ ⌋.

the right-hand formula can be weakened; and in the LK encoding, contraction
is also allowed (using the exponential ?). The ⊥L formula only appears in the
encodings of LJ and LK. In the theories for LM and LJ, the formula encoding
the left introduction rule for implication contains a !. We will comment more
about this difference later in this section.

If we fix the polarity of all meta-level atoms to be negative, then focused
proofs using Llm, Llj , and Llk yield encodings of the object-level proofs in LM,
LJ, and LK. To illustrate why focusing is relevant, consider the encoding of the
left introduction rule for ⇒: selecting this rule at the object-level corresponds
to focusing on the formula F = ∃A∃B[⌊A ⇒ B⌋⊥ ⊗ (!⌈A⌉ ⊗ ⌊B⌋)] (which is
a member of Llm). The focused derivation in Figure 4 is then forced once F

is selected for the focus: for example, the left-hand-side subproof must be an
application of initial – nothing else will work with the focusing discipline. Notice
that this meta-level derivation directly encodes the usual left introduction rule
for ⇒: the object-level sequents Γ, B ⊢ C and Γ ⊢ A yields Γ, A ⇒ B ⊢ C.

6

Γ, A ⊢sc A,∆
[Ax]

Γ, Ai ⊢sc ∆

Γ, A1 ∧ A2 ⊢sc ∆
[∧Li]

Γ ⊢sc A, ∆ Γ ⊢sc B, ∆

Γ ⊢sc A ∧ B, ∆
[∧R]

Γ, A ⊢sc ∆ Γ, B ⊢sc ∆

Γ, A ∨ B ⊢sc ∆
[∨L]

Γ ⊢sc Ai, ∆

Γ ⊢sc A1 ∨ A2, ∆
[∨Ri]

Γ,⊥ ⊢sc Θ
[⊥L]

Γ ⊢sc A, ∆ Γ, B ⊢sc ∆

ΓA ⇒ B ⊢sc ∆
[⇒ L]

Γ, A ⊢sc B, ∆

Γ ⊢sc A ⇒ B, ∆
[⇒ R]

Γ ⊢sc t, ∆
[tR]

Γ, A{t/x} ⊢sc ∆

Γ, ∀x A ⊢sc ∆
[∀L]

Γ ⊢sc A{c/x}, ∆

Γ ⊢sc ∀x A, ∆
[∀R]

Γ, A{c/x} ⊢sc ∆

Γ,∃x A ⊢sc ∆
[∃L]

Γ, A ⊢sc ∆ Γ ⊢sc A, ∆

Γ ⊢sc ∆
[Cut]

Γ ⊢sc A{t/x}, ∆

Γ ⊢sc ∃xA, ∆
[∃R]

Γ ⊢sc ·

Γ ⊢sc A
[WR]

Fig. 5. Rules for sequent calculus, where c is new in the conclusion. The rule
⊥L belongs to LJ, where Θ is the empty set ·, and LK, where Θ is a set of
formulas. The rule WR belongs only to LJ. In LM the sequents’ right hand side
contain exactly one formula and in LJ sequents’ right hand side have at most
one formula.

Proposition 1. Let Γ ∪∆∪ {C} be a set of object-level formulas. Assume that

all meta-level atomic formulas are given a negative polarity. Then

1) Γ ⊢lm C iff ⊢ Llm, ⌊Γ ⌋ : ⌈C⌉ ⇑ 2) Γ ⊢lj C iff ⊢ Llj , ⌊Γ ⌋ : ⌈C⌉ ⇑
3) Γ ⊢lk ∆ iff ⊢ Llk, ⌊Γ ⌋, ⌈∆⌉ :⇑

This proposition is proved in [MP02,Pim01]. As stated, this proposition is
a Level 0 result. It is easy to see that, for LM, LJ and LK, a level -1 holds:
that is, focusing proofs using Llm, Llj or Llk correspond directly to object-
level sequent calculus proofs in LM, LJ or LK, respectively. As is apparent from
the example above concerning the left-introduction rule for ⇒, we can actually
get a Level -2 result: inference rules in the object-level sequents are in one-to-
one correspondence with focused derivations in the meta-logic. To achieve the
Level -2 result, the ! in the encoding of the implication left-introduction rule is
important for minimal and intuitionistic logics.

If one removes the formula Id2 from the sets Llm, Llj and Llk, obtaining the

sets Lf
lm, Lf

lj and Lf
lk, respectively, one can restrict the proofs encoded to cut

free (object-level) proofs, represented by the judgments ⊢f
lm for minimal logic,

⊢f
lj for intuitionistic logic and ⊢f

lk for classical logic.

Proposition 2. Let Γ ∪∆∪ {C} be a set of object-level formulas. Assume that

all meta-level atomic formulas are given a negative polarity. Then

1) Γ ⊢f
lm C iff ⊢ Lf

lm, ⌊Γ ⌋ : ⌈C⌉ ⇑ 2) Γ ⊢f
lj C iff ⊢ Lf

lj , ⌊Γ ⌋ : ⌈C⌉ ⇑

3) Γ ⊢f
lk ∆ iff ⊢ Lf

lk, ⌊Γ ⌋, ⌈∆⌉ :⇑

As above, similar equivalences at Levels -1 and -2 can be proved.

7

4 Natural Deduction

The Figure 6 presents natural deduction using a sequent-style notation: sequents
of the form Γ ⊢nd C ↑, encoded as a meta-level sequent ⊢ Σ, ⌊Γ ⌋ : ⌈C⌉ (for some
multiset of formulas Σ), are obtained from the conclusion by a derivation (from
bottom-up) where C is not the major premise of an elimination rule; and sequents
of the form Γ ⊢nd C ↓, encoded as a sequent ⊢ Σ, ⌊Γ ⌋ : ⌊C⌋⊥, are obtained from
the set of hypotheses by a derivation (from top-down) where C is extracted from
the major premise of an elimination rule. These two types of derivations meet
either with a match rule M or with a switch rule S. These two types of sequents
are used to distinguish general natural deduction proofs from the normal form
proofs, where the switch rule is not allowed. In fact, normal proofs here coincide
with the normal proofs as in [Pra65] only in the ∀,∧ and ⇒ fragment. We use
the judgment ⊢nd to denote the existence of a natural deduction proof and the
judgment ⊢n

nd to denote the existence of a normal natural deduction proof.

Γ, A ⊢nd A ↓
[Ax]

Γ ⊢nd F ↑ Γ ⊢nd G ↑

Γ ⊢nd F ∧ G ↑
[∧I]

Γ ⊢nd F ∧ G ↓

Γ ⊢nd F ↓
[∧E]

Γ ⊢nd Ai ↑

Γ ⊢nd A1 ∨ A2 ↑
[∨I]

Γ ⊢nd A ∨ B ↓ Γ, A ⊢nd C ↑ (↓) Γ, B ⊢nd C ↑ (↓)

Γ ⊢nd C ↑ (↓)
[∨E]

Γ, A ⊢nd B ↑

Γ ⊢nd A ⇒ B ↑
[⇒ I]

Γ ⊢nd A ⇒ B ↓ Γ ⊢nd A ↑

Γ ⊢nd B ↓
[⇒ E]

Γ ⊢nd t ↑
[tI]

Γ ⊢nd A{c/x} ↑

Γ ⊢nd ∀x A ↑
[∀I]

Γ ⊢nd ∀x A ↓

Γ ⊢nd A{t/x} ↓
[∀E]

Γ ⊢nd A ↓

Γ ⊢nd A ↑
[M]

Γ ⊢nd A ↑

Γ ⊢nd A ↓
[S]

Γ ⊢nd ∃x A ↓ Γ, A{a/x} ⊢nd C ↑ (↓)

Γ ⊢nd C ↑ (↓)
[∃E]

Γ ⊢nd A{t/x} ↑

Γ ⊢nd ∃x A ↑
[∃I]

Fig. 6. Rules for minimal natural deduction - NM. In [∨I], i ∈ {1, 2}.

4.1 NM

We can account for natural deduction in minimal logic by simply changing po-
larity assignment: in particular, atoms of the form ⌊·⌋ are now positive and all
atoms of the form ⌈·⌉ have negative polarity. This change in polarity causes the
formula Id2, which behaved like the cut rule in sequent calculus, to now behave
like the switch rule, as illustrated by the following derivation.

⊢ Σ, ⌊Γ ⌋ : ⌊C⌋⊥ ⇓ ⌊C⌋
[I1]

⊢ Σ, ⌊Γ ⌋ : ⌈C⌉ ⇑

⊢ Σ, ⌊Γ ⌋ :⇓ ⌈C⌉
[R ⇓, R ⇑]

⊢ Σ, ⌊Γ ⌋ : ⌊C⌋⊥ ⇓ ⌊C⌋ ⊗ ⌈C⌉
[⊗]

⊢ Σ, ⌊Γ ⌋ : ⌊C⌋⊥ ⇑
[D2, ∃]

8

As the following proposition states, to obtain an encoding of normal form proofs,
we do not include the formula Id2.

Proposition 3. Let Γ∪{C} be a set of object-level formulas and assume that all

⌈·⌉ atomic formulas are given a negative polarity and that all ⌊·⌋ atomic formulas

are given a positive polarity. Then

1) Γ ⊢nm C↑ iff ⊢ Llm, ⌊Γ ⌋ : ⌈C⌉ ⇑ 2) Γ ⊢n
nm C↑ iff ⊢ Lf

lm, ⌊Γ ⌋ : ⌈C⌉ ⇑

3) Γ ⊢n
nm C↓ iff ⊢ Lf

lm, ⌊Γ ⌋ : ⌊C⌋⊥ ⇑

Proof The proof is by induction on the height of the proof tree. All inductive
cases can be found in Appendix 11. ⊓⊔

An equivalent Level -1 statement can also be proved.
Since the polarity assignment in a focused system does not affect provability,

we obtain for free the following (Level 0) equivalences between LM and NM.

Corollary 1. If Γ ∪ {C} be a set of object-level formulas, then

Γ ⊢lm C iff Γ ⊢nm C and Γ ⊢f
lm C iff Γ ⊢n

nm C.

4.2 NJ

The Natural Deduction system for intuitionistic logic, NJ, has the following
rule added to the minimal system shown in Figure 4, which states that any
proposition, C, is derived from ⊥.

Γ ⊢nd ⊥ ↓

Γ ⊢nd C ↑
[⊥E]

If we proceed in a similar way as before with NM, by using the corresponding
theory for intuitionistic logic Llj and assigning positive polarity to atoms ⌊·⌋
and negative polarity to atoms ⌈·⌉, we fail to obtain any level of adequacy. The
problem is that the rule above performs two steps simultaneously: the weakening
of C, what would correspond in the meta-logic to focusing on WR, and the
insertion of ⊥, what would correspond in the meta-logic to focusing on ⊥L.
Since we can’t enforce, with Llj , that these two steps are done one immediately
after the other, we are not able to ensure that all sequents encoded have only
one atom in the right hand side. The solution is to change the theory Llj in such
a way that whenever a formula to the right is weakened it is replaced by ⊥, for
this we use the following theory:

Lnj = (L \ {⊥L}) ∪ {StrL, Id1, Id2,⊥E}

where ⊥E = ?∃C[⌈C⌉⊥ ⊗ ⌊⊥⌋⊥].

Proposition 4. Let Γ∪{C} be a set of object-level formulas and assume that all

⌈·⌉ atomic formulas are given a negative polarity and that all ⌊·⌋ atomic formulas

are given a positive polarity. Then

1) Γ ⊢nj C↑ iff ⊢ Lnj , ⌊Γ ⌋ : ⌈C⌉ ⇑ 2) Γ ⊢n
nj C↑ iff ⊢ Lf

nj , ⌊Γ ⌋ : ⌈C⌉ ⇑

3) Γ ⊢n
nj C↓ iff ⊢ Lf

nj , ⌊Γ ⌋ : ⌊C⌋⊥ ⇑

9

where Lf
nj = Lnj \ {Id2}.

Proof The proof is by induction on the height of the proof tree. All inductive
cases can be found in Appendix 11. ⊓⊔

An equivalent Level -1 statement can also be proved.
We now show that Lnj also encodes the intuitionistic sequent calculus G3i

in [TS96], where structural rules are not rules of themselves but incorporated in
the remaining rules. We represent the provability in G3i by the judgment ⊢g3i,

and provability in G3i without the cut rule by the jugdment ⊢f
g3i.

Proposition 5. Let Γ ∪ {C} be a set of object-level formulas and assume that

all meta-logic atomic formulas are given a negative polarity. Then

Γ ⊢g3i C iff ⊢ Lnj , ⌊Γ ⌋ : ⌈C⌉ ⇑ and Γ ⊢f
g3i C iff ⊢ Lf

nj , ⌊Γ ⌋ : ⌈C⌉ ⇑

where Lf
nj = Lnj \ {Id2}.

Proof The proof is by induction on the height of the proof tree. All inductive
cases can be found in Appendix 11. ⊓⊔

Again since the polarity assignment in a focused system does not affect prov-
ability, we obtain for free the following (Level 0) equivalences between LM and
NM.

Corollary 2. If Γ ∪ {C} be a set of object-level formulas, then

Γ ⊢g3i C iff Γ ⊢nj C and Γ ⊢f
g3i C iff Γ ⊢n

nj C.

4.3 NK

Natural Deduction for classical logic, NK, has the following rule added to the
intuitionistic system NJ, which states that a proposition is valid if when assumed
its negation it is possible to derive ⊥. This is exactly what one does when proving
by contradiction.

Γ,¬A ⊢nd ⊥ ↑

Γ ⊢nd A ↑
[⊥c]

To encode NK, we use the theory Lnk = Lnj ∪ {Neg} that contains the for-
mula Neg = ⌈B⌉⊥ ⊗ (⌊¬B⌋ O ⌈⊥⌉) used to encode the rule above ⊥c, as illus-
trated by the derivation below.

⊢ Lnk, ⌊Γ ⌋ : ⌈C⌉ ⇓ ⌈C⌉⊥
[I1]

⊢ Lnk, ⌊Γ ⌋, ⌊¬C⌋ : ⌈⊥⌉ ⇑

⊢ Lnk, ⌊Γ ⌋ :⇓ ⌊¬C⌋ O ⌈⊥⌉
[R]

⊢ Lnk, ⌊Γ ⌋ : ⌈C⌉ ⇓ ⌈C⌉⊥ ⊗ ⌊¬C⌋ O ⌈⊥⌉
[⊗]

⊢ Lnk, ⌊Γ ⌋ : ⌈C⌉ ⇑
[D2, ∃]

where R = [R ⇓, O, R ⇑, R ⇑, StrL].

10

Proposition 6. Let Γ∪{C} be a set of object-level formulas and assume that all

⌈·⌉ atomic formulas are given a negative polarity and that all ⌊·⌋ atomic formulas

are given a positive polarity. Then

Γ ⊢nk C ↑ iff ⊢ Lnk, ⌊Γ ⌋ : ⌈C⌉ ⇑;

Proof The proof is by induction on the height of the proof tree. All inductive
cases can be found in Appendix 11. ⊓⊔

An equivalent Level -1 statement can also be proved.
We can show that Lnk can encode a sequent calculus for classical logic that

does not allow weakening and contraction on the right hand side.
[VN: Couldn’t find yet a system like this].

¬(A ∨ ¬A),¬A ⊢lk ¬A
[Ax]

¬(A ∨ ¬A),¬A ⊢lk A ∨ ¬A
[∨R2]

¬(A ∨ ¬A),¬A ⊢lk ·
[¬L]

¬(A ∨ ¬A) ⊢lk A
[¬R]

¬(A ∨ ¬A) ⊢lk A ∨ ¬A
[∨R1]

¬(A ∨ ¬A) ⊢lk ·
[¬L]

⊢lk A ∨ ¬A
[¬R]

Given the proof of Proposition 5, we show
that Lnk can encode the proof below of the
excluded middle. For this we use an instances
of Neg to encode the [¬R] rule, and instances
of ⇒L, ⌊F ⇒ G⌋⊥⊗ (⌈F ⌉ ⊗ ⌊G⌋), with F and
G as A and ⊥, to encode the [¬L] rule. The
complete proof of the encoding of the excluded
middle can be found in the Appendix 11.

5 Natural Deduction with General Elimination Rules

Γ ⊢ge [A ∨ B] Γ, A ⊢ge C Γ, B ⊢ge C

Γ ⊢ge C

Γ ⊢ge [A ∧ B] Γ, A, B ⊢ge C

Γ ⊢ge C

Γ ⊢ge [A ⇒ B] Γ ⊢ge A Γ, B ⊢ge C

Γ ⊢ge C

Γ ⊢ge [∀x A] Γ, A{t/x} ⊢ge C

Γ ⊢ge C

Fig. 7. Four general elimination rules. The major premise is marked with brack-
ets.

Schroeder-Heister proposed an extension of natural deduction in [SH84],
which we call “general natural deduction”, by using the general elimination
rules, depicted in Figure 7, that treat all elimination rules as is usually done for
disjunction elimination rule. To encode proofs in the general natural deduction,
we assign negative polarity to ⌊·⌋ and ⌈·⌉ atoms, and use the set of formulas
Lge, obtained from Llm by removing the formulas ∨L,∧L,⇒′

L, ∀L and adding
the existential closure of the following four formulas:

⌈A ⇒ B⌉ ⊗ (!⌈A⌉ ⊗ ⌊B⌋) ⌈∀B⌉ ⊗ ⌊Bx⌋
⌈A ∨ B⌉ ⊗ (⌊A⌋ & ⌊B⌋) ⌈A ∧ B⌉ ⊗ (⌊A⌋ O ⌊B⌋)

11

Proposition 7. Let Γ ∪ {C} be a set of object-level formulas. Assume that

all meta-level atomic formulas are given a negative polarity. Then Γ ⊢ge C iff

⊢ Lge, ⌊Γ ⌋ : ⌈C⌉ ⇑.

An equivalent Level -1 statement can also be proved.
Proof The proof is by induction on the height of the proof tree. We show the
inductive case for the rule containing A ⇒ B as major premise. The other cases
are similar.

⊢ K : ⌈A ⇒ B⌉ ⇑

⊢ K :⇓ ⌈A ⇒ B⌉
[R ⇓, R ⇑]

⊢ K : ⌈A⌉ ⇑

⊢ K :⇓ !⌈A⌉
[!, R ⇑]

⊢ K : ⌈C⌉, ⌊B⌋ ⇑

⊢ K : ⌈C⌉ ⇓ ⌊B⌋
[R ⇓, R ⇑]

⊢ K : ⌈C⌉ ⇓ ⌈A ⇒ B⌉ ⊗ (!⌈A⌉ ⊗ ⌊B⌋)
[2 ×⊗]

⊢ K : ⌈C⌉ ⇑
[D2, 2 × ∃]

where K = Lge ∪ ⌊Γ ⌋. ⊓⊔

Corollary 3. Let Γ ∪ {C} be a set of object-level formulas. Then Γ ⊢ge C iff

Γ ⊢lm C.

Notice that there are two differences between the formulas displayed above
and the original formulas in Llm that they replace. 1) The presence of the mul-
tiplicative version of ∧L, and 2) the replacement of literals of the form ⌊B⌋⊥ by
⌈B⌉. Moreover, notice that without the Id2 formula the equivalence ⌊B⌋⊥ ≡ ⌈B⌉

is not satisfied and, therefore, the set of formulas in Lge is not equivalent to Lf
lm.

Therefore, we relate general natural deduction to the formulation of LM that
contains the cut rule.

Negri and Plato in [NP01] propose a different notion of normal proofs in
general natural deduction: Derivations in general normal form have all major

premises of elimination rules as assumption. In other words, the major premises,
represented by the bracketed formula in the general elimination rules shown
in Figure 7, are discharged assumptions. In our framework, this amounts to
enforcing, by the use of polarity assignment to meta-level atoms, that the major
premises are present in the set of assumptions. We use the set Lf

lm and assign
negative polarity to all atoms of the form ⌊·⌋ and ⌈·⌉, to encode general normal
form proofs, represented by the judgment ⊢n

ge.

Proposition 8. Let Γ ∪ {C} be a set of object-level formulas. Assume that

all meta-level atomic formulas are given a negative polarity. Then Γ ⊢n
ge C iff

⊢ Lf
lm, ⌊Γ ⌋ : ⌈C⌉ ⇑.

Proof The proof is exactly the same as the proof for Proposition 1. ⊓⊔
An equivalent Level -1 statement can also be proved.
It is easy to see in our framework that cut-free sequent calculus proofs can

easily be obtained from general normal forms proofs, and vice-versa, since, to
encode both systems, we use exactly the same formulas, Lf

lm, and assign the
same polarity to ⌊·⌋ and ⌈·⌉ atoms.

Corollary 4. Let Γ be a set of formulas and let C be a formula. Then Γ ⊢n
ge C

iff Γ ⊢f
lm C.

12

6 Free Deduction

In [Par92], Parigot introduced the free deduction proof system for classical logic
that employed both the general elimination rules of the previous section and
general introduction rules1. The general introduction rules are depicted in Fig-
ure 8.

Γ, A ∨ B ⊢fd ∆ Γ ⊢fd ∆, A

Γ ⊢fd ∆
[∨GI]

Γ, A ⇒ B ⊢fd ∆ Γ, A ⊢fd ∆, B

Γ ⊢fd ∆
[⇒ GI]

Γ, A ∧ B ⊢fd ∆ Γ ⊢fd ∆, A Γ ⊢fd ∆, B

Γ ⊢fd ∆
[∧GI]

Γ,¬A ⊢fd ∆ Γ, A ⊢fd ∆

Γ ⊢fd ∆
[¬GI1]

Γ ⊢fd ∆,¬A Γ ⊢fd ∆, A

Γ ⊢fd ∆
[¬GI2]

Fig. 8. The general introduction rules.

To encode free deduction proofs, we proceed similarly to the treatment
of natural deduction with general eliminations rules. In particular, we replace
in all formulas of L, except the formula ⊥L, literals of the form ⌊B⌋⊥ by
⌈B⌉ and literals of the form ⌈B⌉⊥ by ⌊B⌋, and call the resulting set union
{Id1, Id2, StrL, StrR} as Lfd. For example, the formula ∧R in L is replaced by
?∃A∃B[⌊A ∧ B⌋ ⊗ (⌈A⌉ & ⌈B⌉)] in Lfd.

We assign negative polarity to the atoms ⌊·⌋ and ⌈·⌉ except the atom ⌊⊥⌋, for
which we assign positive polarity because of the different treatment of negation
in free deduction.

Proposition 9. Let Γ ∪ ∆ be a set of object-level formulas. Assume that all

meta-level atomic formulas are given a negative polarity except the atom ⌊⊥⌋,
which is given positive polarity. Then Γ ⊢fd ∆ iff ⊢ Lfd, ⌊Γ ⌋, ⌈∆⌉ :⇑.

Proof The proof is by induction on the height of the proof tree. We show the
inductive case for the rule [∧GI]. The other cases are similar.

⊢ K : ⌊A ∧ B⌋ ⇑

⊢ K :⇓ ⌊A ∧ B⌋
[R ⇓, R ⇑]

⊢ K : ⌈A⌉ ⇑ ⊢ K : ⌈B⌉ ⇑

⊢ K :⇓ ⌈A⌉ & ⌈B⌉
[&, 2 × R ⇑]

⊢ K :⇓ ⌊A ∧ B⌋ ⊗ (⌈A⌉ & ⌈B⌉)
[⊗]

⊢ K :⇑
[D2, 2 × ∃]

where K = Lfd ∪ ⌊Γ ⌋ ∪ ⌈∆⌉. ⊓⊔
An equivalent Level -2 statement can also be proved.
Since the encoding Lfd is logically equivalent to Llk, we can show that free

deduction and LK are (Level 0) equivalent.
1 It is interesting to note that later and independently, Negri and Plato also introduced

general introduction rules in [NP01, p. 214].

13

Corollary 5. Let Γ and ∆ be sets of formulas. Then Γ ⊢fd ∆ iff Γ ⊢lk ∆.

Parigot notes that if one of the premises of the general rules is “killed”, i.e.,
it is always the conclusion of an initial rule, then one can obtain either sequent
calculus or natural deduction proofs. The “killing” of a premise is accounted for
in our framework by the use of polarities to enforce the presence of a formula
in the context of the sequent. As done with the normal forms in general natural
deduction, we can use the equivalences ⌊B⌋ ≡ ⌈B⌉⊥ and ⌊B⌋⊥ ≡ ⌈B⌉ and use
either additive or multiplicative versions of the formulas in L to obtain from Lfd

the equivalent sets Llk, which encodes LK, and the set Lnk
fd obtained from Llk

by removing the formulas ⇒L,∨L,∧L and adding the existential closure of the
following three clauses:

⌈A ⇒ B⌉ ⊗
(

⌈A⌉ ⊗ ⌈B⌉⊥
)

⌈A ∧ B⌉ ⊗
(

⌈A⌉⊥ ⊕ ⌈B⌉⊥
)

⌈A ∨ B⌉ ⊗
(

⌈A⌉⊥ ⊗ ⌈B⌉⊥
)

.

The resulting set of formulas can be seen as an encoding of a multiple conclusion
natural deduction proof system.

7 System KE

In the previous sections, we dealt with systems that contained rules with more
premises than the corresponding rules in sequent calculus or natural deduction.
Now, we move to the other direction and deal with systems that contain rules
with fewer premises.

In [DM94], D’Agostino and Mondadori proposed the propositional tableaux
system KE displayed in Figure 9. Here, the only rule that has more than one
premise is the cut rule. In the original system, the cut inference rule appears
with a side condition limiting cuts to be analytical cuts. We take into account
this restriction later in the next subsection and consider the more general form
of cuts because it relates more directly to the other systems already presented.

To encode KE, we assign negative polarity to all atoms ⌊·⌋ and ⌈·⌉ and use the
set of linear logic formulas, Lke, obtained from Lp

lk (the propositional fragment
of Llk), by removing the formulas ∧R,⇒L,∨L,∨R,⊥L and adding the existential
closure of the following eight formulas:

⌊A ⇒ B⌋⊥ ⊗ (⌊A⌋⊥ ⊗ ⌊B⌋) ⌈A ∧ B⌉⊥ ⊗ (⌊A⌋⊥ ⊗ ⌈B⌉)
⌊A ⇒ B⌋⊥ ⊗ (⌈A⌉ ⊗ ⌈B⌉⊥) ⌈A ∧ B⌉⊥ ⊗ (⌈A⌉ ⊗ ⌊B⌋⊥)
⌊A ∨ B⌋⊥ ⊗ (⌈A⌉⊥ ⊗ ⌊B⌋) ⌈A ∨ B⌉⊥ ⊗ (⌈A⌉ O ⌈B⌉)
⌊A ∨ B⌋⊥ ⊗ (⌊A⌋ ⊗ ⌈B⌉⊥) ⌈⊥⌉

Proposition 10. Let Γ ∪ ∆ be a set of object-level formulas. Assume that all

meta-level atomic formulas are given a negative polarity. Then Γ ⊢ke ∆ iff ⊢
Lke, ⌊Γ ⌋, ⌈∆⌉ :⇑.

An equivalent Level -2 statement can also be proved. Proof The proof is
by induction on the height of the proof tree. We show the inductive case for the

14

Γ, A ∨ B, B ⊢ke A, ∆

Γ, A ∨ B ⊢ke A, ∆
[∨L1]

Γ, A ∨ B, A ⊢ke B, ∆

Γ, A ∨ B ⊢ke B, ∆
[∨L2]

Γ ⊢ke A,B, A ∨ B, ∆

Γ ⊢ke A ∨ B, ∆
[∨R]

Γ, A ∧ B, A, B ⊢ke ∆

Γ, A ∧ B ⊢ke ∆
[∧L]

Γ, A ⊢ke A ∧ B, B, ∆

Γ, A ⊢ke A ∧ B, ∆
[∧R1]

Γ, B ⊢ke A ∧ B, A, ∆

Γ, B ⊢ke A ∧ B, ∆
[∧R1]

Γ, A, A ⇒ B, B ⊢ke ∆

Γ, A, A ⇒ B ⊢ke ∆
[⇒L1]

Γ, A ⇒ B ⊢ke A, B, ∆

Γ, A ⇒ B ⊢ke B, ∆
[⇒L2]

Γ,¬A ⊢ke A, ∆

Γ,¬A ⊢ke ∆
[¬L]

Γ, A ⊢ke ¬A, ∆

Γ ⊢ke ¬A, ∆
[¬R]

Γ, A ⊢ke A ⇒ B, B, ∆

Γ ⊢ke A ⇒ B, ∆
[⇒R]

Γ, A ⊢ke A, ∆
[Ax]

Γ, A ⊢ke ∆ Γ ⊢ke A, ∆

Γ ⊢ke ∆
[Cut]

Fig. 9. The rules for the classical propositional logic KE.

rule [∨L1]. The other cases are similar.

⊢ K :⇓ ⌊A ∨ B⌋⊥
[I2]

⊢ K :⇓ ⌈A⌉⊥
[I2]

⊢ K : ⌊B⌋ ⇑

⊢ K :⇓ ⌊B⌋
[R ⇓, R ⇑]

⊢ K :⇓ ⌊A ∨ B⌋⊥ ⊗ (⌈A⌉⊥ ⊗ ⌊B⌋)
[2 ×⊗]

⊢ K :⇑
[D2, 2 × ∃]

where K = Lac ∪ ⌊Γ, A ∨ B⌋ ∪ ⌈∆, A⌉. ⊓⊔
The only differences between Lp

lk and Lke are the use of multiplicative con-
nectives instead of additive connectives, and that some atoms of the form ⌊·⌋
(⌈·⌉) appear in the form ⌈·⌉⊥ (⌊·⌋⊥). As before, we can show that the sets Lp

lk

and Lke are equivalent: the first difference is addressed by the presence of StrL

and StrR and the second difference is addressed by the presence of Id1 and Id2.

Corollary 6. Let Γ and ∆ be a set of formulas. Then Γ ⊢ke ∆ iff Γ ⊢p
lk ∆,

where ⊢p
lk is the judgment representing provability in the propositional fragment

of LK.

7.1 KE with Ananlytic Cuts

To obtain an encoding that only allows analytic cuts, we must first introduce new
types of meta-logic atoms: ⌊B⌋a and ⌈B⌉a, representing analytic cut formulas
and their behavior is specified by the following set of formulas A:

⌈B⌉⊥a ⊗ ⌊B⌋⊥ ⌊B⌋⊥a ⊗ ⌈B⌉⊥

⌈B⌉a ⊗ ⌊B⌋ ⌊B⌋a ⊗ ⌈B⌉

The idea is to use the atoms ⌊B⌋a and ⌈B⌉a to enforce that the formula
B is a subformula of a object-logic formula appearing at the base of a object-
logic derivation, i.e., enforce that B is analytic. If we assign negative polartiy to
all meta-logic atoms ⌊B⌋a, ⌈B⌉a, ⌊B⌋ and ⌈B⌉, the two topmost formulas in A,

15

behave as an initial rule enforcing the match between a meta-logic atom ⌊B⌋a

(resp. ⌈B⌉a) and a meta-logic atom ⌊B⌋ (resp. ⌈B⌉). If Id2 is not included in the
theory, atoms of the form ⌊B⌋ and ⌈B⌉ must have an analytic B what implies
that atoms of the form ⌊B⌋a (reps. ⌈B⌉a) also have an analytic B. The two
remaining rules in A behave like analytic cut rules by introducing in one branch
a meta-logic atom of the form ⌊B⌋a (resp. ⌈B⌉a) and on the other branch a
meta-logic atom ⌈B⌉ (resp. ⌊B⌋). From the discussion above, in a meta-logic
proof it must be the case that B is analytic, otherwise the ⌊B⌋a (resp. ⌈B⌉a)
can not be consumed.

Proposition 11. Let Γ∪∆∪Γa∪∆a be a set of object-logic formulas and let Ξ be

an arbitrary proof of ⊢ L∪{Id1, StrL, StrR}∪A, ⌊Γ ⌋, ⌈∆⌉ : ⌈Γa⌉a, ⌊∆a⌋a ⇑, where

all meta-logic atoms are assigned with negative polarity. Then, for every meta-

logic atom of the form ⌊B⌋, ⌈B⌉, ⌊B⌋a or ⌈B⌉a appearing in Ξ, B is analytic.

We now specify the theory La
ke, that encodes KE with analytic : La

ke is ob-
tained from L∪A∪{Id1, StrL, StrR} by removing the clauses ∧R,⇒L,∨L,∨,⊥L

and adding the existential closure of following six clauses:

⌈A ∧ B⌉⊥ ⊗
(

(⌊A⌋⊥ ⊕ ⌊A⌋⊥a) ⊗ ⌈B⌉
)

⌊A ⇒ B⌋⊥ ⊗
(

(⌊A⌋⊥ ⊕ ⌊A⌋⊥a) ⊗ ⌊B⌋
)

⌊A ⇒ B⌋⊥ ⊗
(

⌈A⌉ ⊗ (⌈B⌉⊥ ⊕ ⌈B⌉⊥a)
)

⌊A ∨ B⌋⊥ ⊗
(

(⌈A⌉⊥ ⊕ ⌈A⌉⊥a) ⊗ ⌊B⌋
)

⌈A ∨ B⌉⊥ ⊗ (⌈A⌉ O ⌈B⌉) ⌈⊥⌉

Proposition 12. Let Γ ∪ ∆ be a set of object-logic formulas and let. Assume

that all metal-logic atoms are assigned negative polarity. Then

Γ ⊢a
ke ∆ iff ⊢ La

ke ∪ {StrL, StrR, Id1}, ⌊Γ ⌋, ⌈∆⌉ :⇑

Proof Soundness of the encoding is proved by a straightforward induction on
the height of the tree. For completeness we use the result of completeness of the
procedure used in [DM94]. The more interesting case is when an analytic cut is
needed to proceed with proof search:

Ξ1

Γ, A ⊢a
ke A ∧ B, B, ∆

Γ, A ⊢a
ke A ∧ B, ∆

[∧R1]
Ξ2

Γ,⊢a
ke A ∧ B, A, ∆

Γ ⊢a
ke A ∧ B, ∆

[Cut]

This derivation corresponds to the following derivation in the encoded sys-
tem.

Π

Ξ ′
2

⊢ K :⇑

⊢ K :⇓ ⌈A⌉
[R, StrL]

⊢ K :⇓ ⌊A⌋a ⊗ ⌈A⌉
[⊗]

⊢ K :⇑
[D2, ∃]

16

KEa

LK

LKf

ACa

Fig. 10. Figure illustrating the provability relations obtained between classical
logic systems. The edge between LK and LKf is not proved using the encoding,
but by cut-elimination in the object logic.

where Π is the following derivation,

⊢ K :⇓ ⌈A ∧ B⌉⊥
[I1]

⊢ K : ⌊A⌋a ⇓ ⌊A⌋⊥ ⊕ ⌊A⌋⊥a
[⊕r, I2]

Ξ ′
1⋆

⊢ K, ⌈B⌉ :⇑

⊢ K :⇓ ⌈B⌉
[R, StrR]

⊢ K : ⌊A⌋a ⇓ ⌈A ∧ B⌉⊥ ⊗
(

(⌊A⌋⊥ ⊕ ⌊A⌋⊥a) ⊗ ⌈B⌉
) [2 × ⊗]

⊢ K : ⌊A⌋a ⇑
[D2, 2 × ∃]

⊢ K :⇓ ⌊A⌋a
[R]

K = La
ke ∪ ⌊Γ ⌋∪ ⌈∆, A∧B⌉ and R = [R ⇓, R ⇑]. ⋆ Since ⌊A⌋a is linear, it might

be the case that new cuts with ⌊A⌋a must be performed in Ξ ′
1. A way to avoid

these cuts is to allow contraction (but not weakening) of ⌊·⌋a and ⌈·⌉a atoms;
for instance, by adding a clause of the form ⌈B⌉⊥a ⊗ (?⌈B⌉a O ⌈B⌉a). ⊓⊔

The following proposition shows the connection between the theories La
ke,L

f
lk,

and Llk.

Proposition 13. Let Γ ∪ ∆ be a set of object logic formulas. Then

1. if ⊢ La
ke, ⌊Γ ⌋, ⌈∆⌉ :⇑ then ⊢ Llk, ⌊Γ ⌋, ⌈∆⌉ :⇑

2. if ⊢ Lf
lk, ⌊Γ ⌋, ⌈∆⌉ :⇑ then ⊢ La

ke, ⌊Γ ⌋, ⌈∆⌉ :⇑

Proof We prove the first statement by induction on the height of the proof
tree. In the case when an analytic cut rule is applied in La

ke, by using either
clause ⌊B⌋a ⊗ ⌈B⌉ or ⌈B⌉a ⊗ ⌊B⌋, can be easily simulated by a normal cut in
Llk, by using the Id2 clause.

We also prove the second statement by induction on the height of the proof
tree. The more interesting cases are for the rules ∧R,⇒L,∨L,∨R. Here we show
only the case for ∧R, since the proof for the other cases follows a similar reason-
ing.

⊢ K :⇓ ⌈A ∧ B⌉⊥
[I2]

⊢ K : ⌈A⌉ ⇑

⊢ K :⇓ ⌈A⌉
[R]

⊢ K : ⌈B⌉ ⇑

⊢ K :⇓ ⌈B⌉
[R]

⊢ K :⇓ ⌈A ∧ B⌉⊥ ⊗ (⌈A⌉ ⊗ ⌈B⌉)
[2 ×⊗]

⊢ K :⇑
[D2, 2 × ∃]

17

this derivation corresponds to the following derivation in KE’s encoding,
where ⌊·⌋a and ⌈·⌉a have positive polarity:

⊢ K′ :⇓ ⌈A ∧ B⌉⊥
[I2]

⊢ K′ : ⌊A⌋⊥a ⇓ ⌊A⌋a

[I1]
⊢ K′ : ⌈A⌉ ⇑

⊢ K′ :⇓ ⌈A⌉
[R]

⊢ K′ : ⌊A⌋⊥a ⇓ ⌊A⌋a ⊗ ⌈A⌉
[⊗]

⊢ K′ : ⌊A⌋⊥a ⇑
[D2, ∃]

⊢ K′ :⇓ ⌊A⌋⊥ ⊕ ⌊A⌋⊥a
[⊕r,R]

⊢ K : ⌈B⌉ ⇑

⊢ K :⇓ ⌈B⌉
[R]

⊢ K′ :⇓ (⌊A⌋⊥ ⊕ ⌊A⌋⊥a) ⊗ ⌈B⌉
[⊗]

⊢ K′ :⇓ ⌈A ∧ B⌉⊥ ⊗
(

(⌊A⌋⊥ ⊕ ⌊A⌋⊥a) ⊗ ⌈B⌉
) [⊗]

⊢ K′ :⇑
[D2, 2 × ∃]

where R = [R ⇓, R ⇑], K = Llk ∪{⌊Γ ⌋, ⌈A∧B⌉, ⌈∆⌉} and K′ = La
ke ∪{⌊Γ ⌋, ⌈A∧

B⌉, ⌈∆⌉}. ⊓⊔

From the graph depicted in Figure 10, we can easily derive the following
Level 0 result.

Corollary 7. Let Γ∪∆ be a set of object-logic formulas. Then Γ ⊢a
ke ∆ iff Γ ⊢f

lk

∆.

8 Smullyan’s Analytic Cut System

To illustrate how one can capture another extreme in proof systems, we consider
Smullyan’s proof system for analytic cut (AC) [Smu68], which is depicted in
Figure 11. Here, all rules except the cut rule are axioms. As the name of the
system suggests, Smullyan also assigned a side condition to the cut rule, allowing
only analytical cuts. As in the previous section, we shall postpone this restriction
to the next subsection in order to make connections to previous systems easier.

Γ, A ∨ B ⊢ac A,B, ∆
[∨L]

Γ, A ⊢ac A ∨ B, ∆
[∨R1]

Γ, B ⊢ac A ∨ B,∆
[∨R2]

Γ, A ∧ B ⊢ac A,∆
[∧L1]

Γ, A ∧ B ⊢ac B, ∆
[∧L2]

Γ, A, B ⊢ac A ∧ B, ∆
[∧R]

Γ, A, A ⇒ B ⊢ac B, ∆
[⇒L]

Γ ⊢ac A, A ⇒ B, ∆
[⇒R1]

Γ, B ⊢ac A ⇒ B, ∆
[⇒R2]

Γ,¬A,A ⊢ac ∆
[¬L]

Γ ⊢ac A,¬A, ∆
[¬R]

Γ, A ⊢ac A,∆
[Ax]

Γ, A ⊢ac ∆ Γ ⊢ac A,∆

Γ ⊢ac ∆
[Cut]

Fig. 11. Smullyan’s Analytic Cut System AC for classical propositional logic,
except that the cut rule is not restricted.

18

We again assign negative polarity to ⌊·⌋ and ⌈·⌉ atoms and use the theory
Lac that results from collecting the formulas in {Id1, Id2, StrL, StrL} with the
formula ⌈⊥⌉ and the existential closure of the following:

⌊A ∧ B⌋⊥ ⊗
(

⌈A⌉⊥ ⊕ ⌈B⌉⊥
)

⌈A ∧ B⌉⊥ ⊗
(

⌊A⌋⊥ ⊗ ⌊B⌋⊥
)

⌊A ∨ B⌋⊥ ⊗
(

⌈A⌉⊥ ⊗ ⌈B⌉⊥
)

⌈A ∨ B⌉⊥ ⊗
(

⌊A⌋⊥ ⊕ ⌊B⌋⊥
)

⌊A ⇒ B⌋⊥ ⊗
(

⌊A⌋⊥ ⊗ ⌈B⌉⊥
)

⌈A ⇒ B⌉⊥ ⊗
(

⌈A⌉⊥ ⊕ ⌊B⌋⊥
)

Proposition 14. Let Γ ∪ ∆ be a set of object-level formulas. Assume that all

meta-level atomic formulas are given a negative polarity. Then Γ ⊢ac ∆ iff ⊢
Lac, ⌊Γ ⌋, ⌈∆⌉ :⇑.

An equivalent Level -2 statement can also be proved.
The encoding above differs from Lp

lk as in ways similar to the differences
between Lp

lk and Lke. By using the same reasoning as with the encoding Lke, we
can show that AC is (Level 0) equivalent to the propositional fragment of LK.

Corollary 8. Let Γ and ∆ be a set of formulas. Then Γ ⊢ac ∆ iff Γ ⊢p
lk ∆,

where ⊢p
lk is the judgment representing provability in the propositional fragment

of LK.

8.1 Smullyan’s System with The Analytic Cut Restriction

As done in the previous section with KE, we use the meta-logic atoms ⌊·⌋a and
⌈·⌉a to represent analytic cut formulas and the set A to specify their behavior
to encode AC with the restriction that all cuts must be analytical. We use the
the theory La

ac obtained from the union of the set A∪{Id1, StrR, StrL} with the
existential closure of the following formulas:

⌊A1 ∧ A2⌋
⊥ ⊗ (⌈Ai⌉

⊥ ⊕ ⌈Ai⌉
⊥

a) ⌈A ∧ B⌉⊥ ⊗
(

(⌊A⌋⊥ ⊕ ⌊A⌋⊥a) ⊗ (⌊B⌋⊥ ⊕ ⌊B⌋⊥a)
)

⌈A1 ∨ A2⌉
⊥ ⊗ (⌊Ai⌋

⊥ ⊕ ⌊Ai⌋
⊥

a) ⌊A ∨ B⌋⊥ ⊗
(

(⌈A⌉⊥ ⊕ ⌈A⌉⊥a) ⊗ (⌈B⌉⊥ ⊕ ⌈B⌉⊥a)
)

⌈A ⇒ B⌉⊥ ⊗ (⌈A⌉⊥ ⊕ ⌈A⌉⊥a) ⌊A ⇒ B⌋⊥ ⊗
(

(⌊A⌋⊥ ⊕ ⌊A⌋⊥a) ⊗ (⌈B⌉⊥ ⊕ ⌈B⌉⊥a)
)

⌈A ⇒ B⌉⊥ ⊗ (⌊B⌋⊥ ⊕ ⌊B⌋⊥a) ⌈⊥⌉

Proposition 15. Let Γ ∪∆ be a set of formulas and assume that all meta -logic

atoms are negative. Then Γ ⊢a
ac ∆ iff ⊢ Lac, ⌊Γ ⌋, ⌈∆⌉ :⇑

Proof Soundness is straightforward, where analytic cuts and analytic atoms,
⌊·⌋a and ⌈·⌉a, are treated as normal cut rules and normal cut-formulas.

For completeness, we use a similar proof as in [Smu68], where the author
shows how to encode LK rules. Below, as an example, the behavior of LK’s right
implication rule can be obtained in AC with the following derivation:

Γ, A ⊢ac ∆, A ⇒ B, B Γ ⊢ac ∆, A, A ⇒ B, B
[⇒R1]

Γ ⊢ac ∆, A ⇒ B, B
[Cut]

Γ, B ⊢ac ∆, A ⇒ B
[⇒R2]

Γ ⊢ac ∆, A ⇒ B
[Cut]

19

This derivation can be encoded in Lac, as shows the following derivation:

⊢ K :⇓ ⌈A ⇒ B⌉⊥
[I2]

⊢ K : ⌊B⌋a ⇓ ⌊B⌋⊥a
[I1]

⊢ K : ⌊B⌋a ⇓ ⌈A ⇒ B⌉⊥ ⊗ (⌊B⌋⊥ ⊕ ⌊B⌋⊥a)
[⊗,⊕l]

⊢ K : ⌊B⌋a ⇑
[D2, 2 × ∃]

⊢ K :⇓ ⌊B⌋a
[R]

Ξ

⊢ K :⇓ ⌊B⌋a ⊗ ⌈B⌉
[⊗]

⊢ K :⇑
[D2, ∃]

where K = La
ac ∪ ⌊Γ ⌋ ∪ ⌈∆, A ⇒ B⌉, R = [R ⇓, R ⇑], and Ξ is the following

derivation:

⊢ K :⇓ ⌈A ⇒ B⌉⊥
[I2]

⊢ K : ⌈A⌉a ⇓ ⌈A⌉⊥a
[I1]

⊢ K : ⌈A⌉a ⇓ ⌈A ⇒ B⌉⊥ ⊗ (⌈A⌉⊥ ⊕ ⌈A⌉⊥a)
[⊗,⊕r]

⊢ K : ⌈A⌉a ⇑
[D2, 2 × ∃]

⊢ K :⇓ ⌈A⌉a
[R]

⊢ K : ⌈B⌉, ⌊A⌋ ⇑

⊢ K : ⌈B⌉ ⇓ ⌊A⌋
[R]

⊢ K : ⌈B⌉ ⇓ ⌈A⌉a ⊗ ⌊A⌋
[⊗]

⊢ K : ⌈B⌉ ⇑
[D2, ∃]

⊢ K :⇓ ⌈B⌉
[R]

⊓⊔

Corollary 9. Let Γ ∪ ∆ be a set of object-logic formulas. Then:

1. if ⊢ La
ac, ⌊Γ ⌋, ⌈∆⌉ :⇑ then ⊢ Llk, ⌊Γ ⌋, ⌈∆⌉ :⇑

2. if ⊢ Lf
lk, ⌊Γ ⌋, ⌈∆⌉ :⇑ then ⊢ La

ac, ⌊Γ ⌋, ⌈∆⌉ :⇑

Proof The first statement is clear by induction on the height of the derivation,
replacing ⌊B⌋a and ⌈B⌉a by ⌊B⌋ and ⌈B⌉ and using Id1, Id2 formulas instead of
the formulas in A. The second statement is a direct consequence of the proof of
Proposition 15. ⊓⊔

Again from the graph in Figure 10, we can easily see that the following
corollary holds.

Corollary 10. Let Γ∪∆ be a set of object-logic formulas. Then Γ ⊢a
ac ∆ iff Γ ⊢f

lk

∆.

9 Related Work

A number of logical frameworks have been proposed to represent object-level
proof systems. Many of these frameworks, as used in, for example, [FM88,HHP93,Pfe89],
are based on intuitionistic (minimal) logic principles. In such settings, the dual-
ities that we employ here, for example, ⌊B⌋ ≡ ⌈B⌉⊥ are not available within the
logic and this makes reasoning about Level 0 equivalence between object-level

20

proof systems harder. Also, since minimal logic sequents must have a single con-
clusion, the storage of object-level formulas is generally done on the left-hand side
of meta-level sequents (see [HM94,Pfe00]) with some kind of “marker” for the
right-hand side (such as the non-logical “refutation” marker # in [Pfe00]). The
flexibility of having the four meta-level literals ⌊B⌋, ⌈B⌉, ⌊B⌋⊥, and ⌈B⌉⊥ is not
generally available in such intuitionistic systems. While it is natural in classical
linear logic to consider having some atoms assigned negative and some positive
polarities, most intuitionistic systems consider only uniform assignments of po-
larities to meta-level atoms (usually negative in order to support goal-directed
proof search): the ability to mix polarity assignments for different meta-level
atoms can only be achieved in more indirect fashions in such settings.

The abstract logic programming presentation of linear logic called Forum
[Mil96] has been used to specify sequent calculus proof systems in a style similar
to that used here. That presentation of linear logic was, however, also limited
in that negation was not a primitive connective and that all atomic formulas
were assumed to have negative polarity. The range of encodings contained in
this paper are not directly available using Forum.

10 Conclusions and Further Remarks

We have shown that by employing different focusing annotations or using differ-
ent sets of formulas that are (meta-logically) equivalent to L a range of sound
and (relatively) complete object-level proof systems could be encoded. We have
illustrated this principle by showing how linear logic focusing and logical equiv-
alences can account for object-level proof systems based on sequent calculus,
natural deduction, generalized introduction and elimination rules, free deduc-
tion, the tableaux system KE, and Smullyan’s system employing only axioms
and the cut rule.

Logical frameworks aim at allowing proof systems to be specified using com-
pact and declarative specifications of inference rules. It now seems that a much
broader range of possible proof systems can be further specified by allowing
flexible assignment of polarity to meta-logical atoms (instead of making the
usual assignment of some fixed, a global polarity assignment). A natural next
step would be to see what insights might be carried from this setting of linear-
intuitionistic-classical logic to other, say, intermediate or sub-structural logics.

While focusing at the meta-level clearly provides a powerful normal form
of proof, we have not described how to use the techniques presented in this
paper to derive object-level focusing proof systems. Finding a means to derive
such object-level normal form proofs is an interesting challenge that we plan to
develop next.

Another interesting line of future research would be to consider differences
in the sizes of proofs in these different paradigms since now seems to be related
to the topic of comparing bottom-up and top-down deduction. Thus, it might
be possible to flexibly change polarity assignments that would result in different
and, hopefully, more compact presentations of proofs.

21

Acknowledgments This work has been supported in part by INRIA through
the “Equipes Associées” Slimmer and by the Information Society Technologies
program of the European Commission, Future and Emerging Technologies under
the IST-2005-015905 MOBIUS project.

References

And92. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic.
J. of Logic and Computation, 2(3):297–347, 1992.

DM94. Marcello D’Agostino and Marco Mondadori. The taming of the cut. Classical
refutations with analytic cut. J. Log. Comput., 4(3):285–319, 1994.

FM88. Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic
programming language. In Ninth International Conference on Automated

Deduction, pages 61–80, Argonne, IL, May 1988. Springer-Verlag.
Gen69. Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo, edi-

tor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland,
Amsterdam, 1969.

Gir06. Jean-Yves Girard. Le Point Aveugle: Cours de logique: Tome 1, Vers la per-

fection. Hermann, 2006.
HHP93. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining

logics. Journal of the ACM, 40(1):143–184, 1993.
HM94. Joshua Hodas and Dale Miller. Logic programming in a fragment of intuition-

istic linear logic. Information and Computation, 110(2):327–365, 1994.
LM07. Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic logic.

In J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer Science

Logic, volume 4646 of LNCS, pages 451–465. Springer, 2007.
Mil96. Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical

Computer Science, 165(1):201–232, September 1996.
MN07. Dale Miller and Vivek Nigam. Incorporating tables into proofs. In J. Duparc

and T. A. Henzinger, editors, CSL 2007: Computer Science Logic, volume
4646 of LNCS, pages 466–480. Springer, 2007.

MP02. Dale Miller and Elaine Pimentel. Using linear logic to reason about sequent
systems. In Uwe Egly and Christian G. Fermüller, editors, International Con-

ference on Automated Reasoning with Analytic Tableaux and Related Methods,
volume 2381 of LNCS, pages 2–23. Springer, 2002.

MP04. Dale Miller and Elaine Pimentel. Linear logic as a framework for specifying
sequent calculus. In Jan van Eijck, Vincent van Oostrom, and Albert Visser,
editors, Logic Colloquium ’99: Proceedings of the Annual European Summer

Meeting of the Association for Symbolic Logic, Lecture Notes in Logic, pages
111–135. A K Peters Ltd, 2004.

NM08. Vivek Nigam and Dale Miller. Focusing in linear meta-logic: Extended report.
Available from http://hal.inria.fr/inria-00281631.

NP01. Sara Negri and Jan Von Plato. Structural Proof Theory. Cambridge University
Press, 2001.

Par92. Michel Parigot. Free deduction: An analysis of “computations” in classical
logic. In Proceedings of the First Russian Conference on Logic Programming,
pages 361–380, London, UK, 1992. Springer-Verlag.

Pfe89. Frank Pfenning. Elf: A language for logic definition and verified metaprogram-
ming. In Fourth Annual Symposium on Logic in Computer Science, pages
313–321, Monterey, CA, June 1989.

22

Pfe00. Frank Pfenning. Structural cut elimination I. intuitionistic and classical logic.
Information and Computation, 157(1/2):84–141, March 2000.

Pim01. Elaine Gouvêa Pimentel. Lógica linear e a especificação de sistemas computa-

cionais. PhD thesis, Universidade Federal de Minas Gerais, Belo Horizonte,
M.G., Brasil, December 2001. Written in English.

PM05. Elaine Pimentel and Dale Miller. On the specification of sequent systems.
In LPAR 2005: 12th International Conference on Logic for Programming,

Artificial Intelligence and Reasoning, number 3835 in LNAI, pages 352–366,
2005.

Pra65. Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965.
SB98. Wilfried Sieg and John Byrnes. Normal natural deduction proofs (in classical

logic). Studia Logica, 60(1):67–106, 1998.
SH84. Peter Schroeder-Heister. A natural extension of natural deduction. Journal

of Symbolic Logic, 49(4):1284–1300, 1984.
Smu68. Raymond M. Smullyan. Analytic cut. J. of Symbolic Logic, 33(4):560–564,

1968.
TS96. Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cam-

bridge University Press, 1996.
vP01. Jan von Plato. Natural deduction with general elimination rules. Archive for

Mathematical Logic, 40(7):541–567, 2001.

11 Appendix

11.1 Proofs of Encodings

Proof Inductive cases for adequacy results for NM, NJ and NK.
For both directions, we proof by induction on the height of the tree.

Γ ⊢nd A ↓

Γ ⊢nd A ↑
[M]

⇐⇒

⊢ K : ⌊Γ⌋, ⌊C⌋⊥ ⇑

⊢ K :⇓ ⌊C⌋⊥
[R ⇓, R ⇑]

⊢ K : ⌈C⌉ ⇓ ⌈C⌉⊥
[I1]

⊢ K : ⌈C⌉ ⇓ ⌊C⌋⊥ ⊗ ⌈C⌉⊥
[⊗]

⊢ K : ⌈C⌉ ⇑
[D2, ∃]

Γ ⊢nd A ↑

Γ ⊢nd A ↓
[S]

⇐⇒

⊢ K : ⌊C⌋⊥ ⇓ ⌊C⌋
[I1]

⊢ K : ⌈C⌉ ⇑

⊢ K :⇓ ⌈C⌉
[R ⇓, R ⇑]

⊢ K : ⌊C⌋⊥ ⇓ ⌊C⌋ ⊗ ⌈C⌉
[⊗]

⊢ K : ⌊C⌋⊥ ⇑
[D2, ∃]

Γ,¬A ⊢nd ⊥ ↑

Γ ⊢nd A ↑
[⊥c]

⇐⇒

⊢ K : ⌈C⌉ ⇓ ⌈C⌉⊥
[I1]

⊢ K : ⌊¬C⌋, ⌈⊥⌉ ⇑

⊢ K :⇓ ⌊¬C⌋ O ⌈⊥⌉
[R]

⊢ K : ⌈C⌉ ⇓ ⌈C⌉⊥ ⊗ ⌊¬C⌋ O ⌈⊥⌉
[⊗]

⊢ K : ⌈C⌉ ⇑
[D2, ∃]

Γ ⊢nd F ↑ Γ ⊢nd G ↑

Γ ⊢nd F ∧ G ↑
[∧I]

⇐⇒

⊢ K : ⌈F ∧ G⌉ ⇓ ⌈F ∧ G⌉⊥
[I1]

⊢ K : ⌈F⌉ ⇑

⊢ K :⇓ ⌈F⌉
[R ⇓, R ⇑]

⊢ K : ⌈G⌉ ⇑

⊢ K :⇓ ⌈G⌉
[R ⇓, R ⇑]

⊢ K : ⌈F ∧ G⌉ ⇓ ⌈F ∧ G⌉⊥ ⊗ ⌈F⌉ ⊗ ⌈G⌉
[2 × ⊗]

⊢ K : ⌈F ∧ G⌉ ⇑
[D2, ∃]

23

Γ ⊢nd F ∧ G ↓

Γ ⊢nd F ↓
[∧E]

⇐⇒

⊢ K : ⌊F ∧ G⌋⊥ ⇑

⊢ K :⇓ ⌊F ∧ G⌋⊥
[R ⇓, R ⇑]

⊢ K : ⌊F⌋⊥ ⇓ ⌊F⌋
[I1]

⊢ K : ⌈F ∧ G⌉ ⇓ ⌊F ∧ G⌋⊥ ⊗ ⌊F⌋
[2 × ⊗]

⊢ K : ⌊F⌋⊥ ⇑
[D2, ∃]

Γ ⊢nd Ai ↑

Γ ⊢nd A1 ∨ A2 ↑
[∨I], i ∈ {1, 2}

⇐⇒

⊢ K : ⌈A1 ∨ A2⌉ ⇓ ⌈A1 ∨ A2⌉
⊥

[I1]
⊢ K : ⌈Ai⌉ ⇑

⊢ K :⇓ ⌊A1⌋ ⊕ ⌈A2⌉
[⊕lr, R ⇓, R ⇑]

⊢ K : ⌈A1 ∨ A2⌉ ⇓ ⌈A1 ∨ A2⌉
⊥ ⊗ (⌊A1⌋ ⊕ ⌈A2⌉)

[2 × ⊗]

⊢ K : ⌈A1 ∨ A2⌉ ⇑
[D2, ∃]

Γ ⊢nd A ∨ B ↓ Γ, A ⊢nd C ↑ Γ, A ⊢nd C ↑

Γ ⊢nd C ↑
[∨E]

⇐⇒

⊢ K : ⌊A ∨ B⌋⊥ ⇑

⊢ K :⇓ ⌊A ∨ B⌋⊥
[R ⇓, R ⇑]

⊢ K, ⌊A⌋ : ⌈C⌉ ⇑

⊢ K : ⌈C⌉ ⇑ ⌊A⌋
[R ⇑, StrL]

⊢ K, ⌊B⌋ : ⌈C⌉ ⇑

⊢ K : ⌈C⌉ ⇑ ⌊B⌋
[R ⇑, StrL]

⊢ K : ⌈C⌉ ⇓ ⌊A⌋ & ⌊B⌋
[R ⇓, &]

⊢ K : ⌈C⌉ ⇓ ⌊A ∨ B⌋⊥ ⊗ ⌊A⌋ & ⌊B⌋
[⊗]

⊢ K : ⌈C⌉ ⇑
[D2, 2 × ∃]

Γ, A ⊢nd B ↑

Γ ⊢nd A ⇒ B ↑
[⇒ I]

⇐⇒

⊢ K : ⌈A ⇒ B⌉ ⇓ ⌈A ⇒ B⌉⊥
[I1]

⊢ K, ⌊A⌋ : ⌈B⌉ ⇑

⊢ K :⇓ ?⌊A⌋ O ⌈B⌉
[R ⇓, R ⇑, O, ?]

⊢ K : ⌈A ⇒ B⌉ ⇓ ⌈A ⇒ B⌉⊥ ⊗ (?⌊A⌋ O ⌈B⌉)
[2 × ⊗]

⊢ K : ⌈A ⇒ B⌉ ⇑
[D2, ∃]

Γ ⊢nd A ⇒ B ↓ Γ ⊢nd A ↑

Γ ⊢nd B ↓
[⇒ E]

⇐⇒

⊢ K : ⌊A ⇒ B⌋⊥ ⇑

⊢ K :⇓ ⌊A ⇒ B⌋⊥
[R ⇓, R ⇑]

⊢ K : ⌈A⌉ ⇑

⊢ K :⇓ ⌈A⌉
[R ⇓, R ⇑]

⊢ K : ⌊B⌋⊥ ⇓ ⌊B⌋
[I1]

⊢ K : ⌊B⌋⊥ ⇓ ⌊A ⇒ B⌋⊥ ⊗ (⌈A⌉ ⊗ ⌊B⌋)
[2 × ⊗]

⊢ K : ⌊B⌋⊥ ⇑
[D2, ∃]

Γ ⊢nd t ↑
[tI]

⇐⇒

⊢ K : ⌈t⌉ ⇓ ⌈t⌉⊥
[I1]

⊢ K :⇓ ⊤
[R ⇓,⊤]

⊢ K : ⌈t⌉ ⇓ ⌈t⌉⊥ ⊗ ⊤
[2 × ⊗]

⊢ K : ⌈t⌉ ⇑
[D2, ∃]

Γ ⊢nd ⊥ ↓

Γ ⊢nd C ↑
[⊥E]

⇐⇒

⊢ K, ⌊Γ⌋ : ⌊⊥⌋⊥ ⇑

⊢ K, ⌊Γ⌋ :⇓ ⌊⊥⌋⊥
[R ⇓, R ⇑]

⊢ K, ⌊Γ⌋ : ⌈C⌉ ⇓ ⌈C⌉⊥
[I1]

⊢ K, ⌊Γ⌋ : ⌈C⌉ ⇓ ⌊⊥⌋⊥ ⊗ ⌈C⌉⊥
[⊗]

⊢ K, ⌊Γ⌋ : ⌈C⌉ ⇑
[D2, ∃]

Γ ⊢nd A{c/x} ↑

Γ ⊢nd ∀x A ↑
[∀I]

⇐⇒

⊢ K : ⌈∀x A⌉ ⇓ ⌈∀x A⌉⊥
[I1]

⊢ K : ⌈A{c/x}⌉ ⇑

⊢ K :⇓ ∀x ⌈A⌉
[R ⇓, ∀, R ⇑]

⊢ K : ⌈∀x A⌉ ⇓ ⌈∀x A⌉⊥ ⊗ ∀x ⌈A⌉
[⊗]

⊢ K : ⌈∀x A⌉ ⇑
[D2, ∃]

Γ ⊢nd ∀x A ↓

Γ ⊢nd A{t/x} ↓
[∀E]

⇐⇒

⊢ K : ⌊∀x A⌋⊥ ⇑

⊢ K :⇓ ⌊∀x A⌋⊥
[R ⇓, ∀, R ⇑]

⊢ K : ⌊A{t/x}⌋⊥ ⇓ ⌊A{t/x}⌋
[I1]

⊢ K : ⌊A{t/x}⌋⊥ ⇓ ⌊∀x A⌋⊥ ⊗ ⌊A{t/x}⌋
[⊗]

⊢ K : ⌊A{t/x}⌋⊥ ⇑
[D2, ∃]

24

Similar for ∃I and ∃E rules.

where K = L ∪ {StrL, Id1} ∪ ⌊Γ ⌋.
⊓⊔

The encoding of the proof of the excluded middle using Lnk.

⊢ Lnk : ⌈F⌉ ⇓ ⌈F⌉⊥
[I1]

⊢ Lnk, ⌊¬F⌋ :⇓ ⌊¬F⌋⊥
[I2]

Ξ

⊢ Lnk, ⌊¬F⌋ : ⌈⊥⌉ ⇓ ⌊¬(A ∨ ¬A)⌋⊥ ⊗ ⌈A ∨ ¬A⌉ ⊗ ⌊⊥⌋
[⊗]

⊢ Lnk, ⌊¬(A ∨ ¬A)⌋ : ⌈⊥⌉ ⇑
[D2, ∃]

⊢ Lnk : ⌈⊥⌉, ⌊¬(A ∨ ¬A)⌋ ⇑
[R2]

⊢ Lnk :⇓ (⌊¬(A ∨ ¬A)⌋ O ⌈⊥⌉)
[R1]

⊢ Lnk : ⌈A ∨ ¬A⌉ ⇓ ⌈A ∨ ¬A⌉⊥ ⊗ (⌊¬(A ∨ ¬A)⌋ O ⌈⊥⌉)
[⊗]

⊢ Lnk : ⌈A ∨ ¬A⌉ ⇑
[D2, ∃]

where Ξ is the following derivation:

⊢ Lnk, ⌊¬F⌋ : ⌈F⌉ ⇓ ⌈F⌉⊥
I1

⊢ Lnk, ⌊¬F⌋ : ⌈A⌉ ⇓ ⌈A⌉⊥
[I1]

Ξ2

⊢ Lnk, ⌊¬F⌋ : ⌊¬A⌋, ⌈⊥⌉ ⇑
[⊗]

⊢ Lnk, ⌊¬F⌋ :⇓ ⌊¬A⌋ O ⌈⊥⌉
[⊗]

⊢ Lnk, ⌊¬F⌋ : ⌈A⌉ ⇓ ⌈A⌉⊥ ⊗ ⌊¬A⌋ O ⌈⊥⌉
[⊗]

⊢ Lnk, ⌊¬F⌋ :⇓ ⌈A⌉
[R3]

⊢ Lnk, ⌊¬F⌋ : ⌈A ∨ ¬A⌉ ⇓ ⌈A ∨ ¬A⌉⊥ ⊗ ⌈A⌉
[⊗]

⊢ Lnk, ⌊¬F⌋ :⇓ ⌈A ∨ ¬A⌉
[R3]

⊢ Lnk, ⌊¬F⌋ : ⌈⊥⌉ ⇓ ⌊⊥⌋

⊢ Lnk, ⌊¬F⌋ : ⌈⊥⌉ ⇓ ⌈A ∨ ¬A⌉ ⊗ ⌊⊥⌋

where Ξ2 is the following derivation:

⊢ Lnk, ⌊¬F⌋ :⇓ ⌊¬(A ∨ ¬A)⌋⊥
[I2]

⊢ Lnk, ⌊¬F⌋ : ⌈A ∨ ¬A⌉ ⇓ ⌈A ∨ ¬A⌉⊥
[⊗]

⊢ Lnk, ⌊¬F⌋ : ⌊¬A⌋ ⇓ ⌈¬A⌉
[R4]

⊢ Lnk, ⌊¬F⌋ : ⌊¬A⌋, ⌈A ∨ ¬A⌉ ⇓ ⌈A ∨ ¬A⌉⊥ ⊗ ⌈¬A⌉
[⊗]

⊢ Lnk, ⌊¬F⌋ : ⌊¬A⌋ ⇓ ⌈A ∨ ¬A⌉
[R3]

⊢ Lnk, ⌊¬

⊢ Lnk, ⌊¬F⌋ : ⌊¬A⌋, ⌈⊥⌉ ⇓ ⌈A ∨ ¬A⌉ ⊗ ⌊⊥⌋

⊢ Lnk, ⌊¬F⌋ : ⌊¬A⌋, ⌈⊥⌉ ⇓ ⌊¬(A ∨ ¬A)⌋⊥ ⊗ ⌈A ∨ ¬A⌉ ⊗ ⌊⊥⌋
[⊗]

⊢ Lnk, ⌊¬F⌋ : ⌊¬A⌋, ⌈⊥⌉ ⇑
[D2, ∃]

where F = A∨¬A, R1 = [R ⇓, O, R ⇑, R ⇑], R2 = [StrL], R3 = [R ⇓, R ⇑, D2, ∃],
and R4 = [R ⇓, R ⇑, Id1]

25

