M. Boman, Estimates for the L2-Projection onto Continuous Finite Element Spaces in a Weighted Lp-Norm, BIT Numerical Mathematics, vol.46, issue.2, pp.249-260, 2006.
DOI : 10.1007/s10543-006-0062-3

J. H. Bramble, J. E. Pasciak, and O. Steinbach, On the stability of the $L^2$ projection in $H^1(\Omega)$, Mathematics of Computation, vol.71, issue.237, pp.147-156, 2002.
DOI : 10.1090/S0025-5718-01-01314-X

E. Burman, A Unified Analysis for Conforming and Nonconforming Stabilized Finite Element Methods Using Interior Penalty, SIAM Journal on Numerical Analysis, vol.43, issue.5, pp.2012-2033, 2005.
DOI : 10.1137/S0036142903437374

E. Burman, M. A. Fernández, and P. Hansbo, Continuous Interior Penalty Finite Element Method for Oseen's Equations, SIAM Journal on Numerical Analysis, vol.44, issue.3, pp.1248-1274, 2006.
DOI : 10.1137/040617686

E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection???diffusion???reaction problems, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.15-16, pp.15-161437, 2004.
DOI : 10.1016/j.cma.2003.12.032

E. Burman and P. Hansbo, Edge stabilization for the generalized Stokes problem: A continuous interior penalty method, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.19-22, pp.19-222393, 2006.
DOI : 10.1016/j.cma.2005.05.009

R. Codina and J. Blasco, Analysis of a stabilized finite element approximation of the transient convection-diffusion-reaction equation using orthogonal subscales, Computing and Visualization in Science, vol.4, issue.3, pp.167-174, 2002.
DOI : 10.1007/s007910100068

J. , D. Jr, and T. Dupont, Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods, Lecture Notes in Physics, vol.58, 1976.

J. Guermond, Subgrid stabilization of Galerkin approximations of linear contraction semi-groups of classC0 in Hilbert spaces, Numerical Methods for Partial Differential Equations, vol.12, issue.1, pp.1-25, 2001.
DOI : 10.1002/1098-2426(200101)17:1<1::AID-NUM1>3.0.CO;2-1

F. Hecht, O. Pironneau, A. L. Hyaric, and K. Ohtsuka, FreeFem++ v. 2.11. User's Manual

J. G. Heywood and R. Rannacher, Finite-Element Approximation of the Nonstationary Navier???Stokes Problem. Part IV: Error Analysis for Second-Order Time Discretization, SIAM Journal on Numerical Analysis, vol.27, issue.2, pp.353-384, 1990.
DOI : 10.1137/0727022

G. Lube and D. Weiss, Stabilized finite element methods for singularly perturbed parabolic problems, Applied Numerical Mathematics, vol.17, issue.4, pp.431-459, 1995.
DOI : 10.1016/0168-9274(95)00024-O

I. Nitsche, ??ber ein Variationsprinzip zur L??sung von Dirichlet-Problemen bei Verwendung von Teilr??umen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universit??t Hamburg, vol.12, issue.1, pp.9-15, 1971.
DOI : 10.1007/BF02995904

V. Thomée, Galerkin finite element methods for parabolic problems, of Springer Series in Computational Mathematics, 1997.
DOI : 10.1007/978-3-662-03359-3

I. Unité-de-recherche and . Lorraine, Technopôle de Nancy-Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-lès-Nancy Cedex (France) Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe -38334 Montbonnot Saint-Ismier (France) Unité de recherche, 2004.

I. De-voluceau-rocquencourt, BP 105 -78153 Le Chesnay Cedex (France) http://www.inria.fr ISSN, pp.249-6399