S. Arlot and P. Massart, Slope heuristics for heteroscedastic regression on a random design, 2008.

J. D. Banfield and A. E. Raftery, Model-Based Gaussian and Non-Gaussian Clustering, Biometrics, vol.49, issue.3, pp.803-821, 1993.
DOI : 10.2307/2532201

A. Barron, L. Birgé, and P. Massart, Risk bounds for model selection via penalization . Probability Theory and Related Fields, pp.301-413, 1999.

J. Baudry, Clustering through model selection criteria. Poster session at One Day Statistical Workshop in Lisieux, 2007.

C. Biernacki, G. Celeux, and G. Govaert, Assessing a mixture model for clustering with the integrated completed likelihood, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.7, pp.719-725, 2000.
DOI : 10.1109/34.865189

C. Biernacki, G. Celeux, G. Govaert, and F. Langrognet, Model-based cluster and discriminant analysis with the MIXMOD software, Computational Statistics & Data Analysis, vol.51, issue.2, pp.587-600, 2006.
DOI : 10.1016/j.csda.2005.12.015

URL : https://hal.archives-ouvertes.fr/inria-00069878

L. Birgé and P. Massart, From Model Selection to Adaptive Estimation, pp.55-87, 1997.
DOI : 10.1007/978-1-4612-1880-7_4

L. Birgé and P. Massart, Gaussian model selection, Journal of the European Mathematical Society, vol.3, issue.3, pp.203-268, 2001.
DOI : 10.1007/s100970100031

L. Birgé and P. Massart, A generalized C p criterion for Gaussian model selection. Prépublication n°647, 2001.

L. Birgé and P. Massart, Minimal penalties for Gaussian model selection. Probability Theory and Related Fields, pp.33-73, 2006.

C. Bouveyron, S. Girard, and C. Schmid, High-dimensional data clustering, Computational Statistics & Data Analysis, vol.52, issue.1, pp.502-519, 2007.
DOI : 10.1016/j.csda.2007.02.009

URL : https://hal.archives-ouvertes.fr/inria-00548591

K. P. Burnham and D. R. Anderson, Model selection and multimodel inference, 2002.
DOI : 10.1007/b97636

G. Castellan, Modified Akaike's criterion for histogram density estimation, 1999.

G. Castellan, Density estimation via exponential model selection, IEEE Transactions on Information Theory, vol.49, issue.8, pp.2052-2060, 2003.
DOI : 10.1109/TIT.2003.814485

G. Celeux and G. Govaert, Gaussian parsimonious clustering models, Pattern Recognition, vol.28, issue.5, pp.781-793, 1995.
DOI : 10.1016/0031-3203(94)00125-6

URL : https://hal.archives-ouvertes.fr/inria-00074643

A. P. Dempster, N. M. Laird, R. , and D. B. , Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society. Series B. Methodological, vol.39, issue.1, pp.1-38, 1977.

C. R. Genovese and L. Wasserman, Rates of convergence for the Gaussian mixture sieve. The Annals of Statistics, pp.1105-1127, 2000.

S. Ghosal and A. W. Van-der-vaart, Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities, The Annals of Statistics, vol.29, issue.5, pp.1233-1263, 2001.

C. Keribin, Consistent estimation of the order of mixture models. Sankhy¯ a, The Indian Journal of Statistics. Series A, vol.62, issue.1, pp.49-66, 2000.

M. H. Law, A. K. Jain, and M. A. Figueiredo, Simultaneous feature selection and clustering using mixture models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.9, pp.1154-1166, 2004.
DOI : 10.1109/TPAMI.2004.71

E. Lebarbier, Detecting multiple change-points in the mean of Gaussian process by model selection, Signal Processing, vol.85, issue.4, pp.717-736, 2005.
DOI : 10.1016/j.sigpro.2004.11.012

URL : https://hal.archives-ouvertes.fr/inria-00071847

V. Lepez, Potentiel de réserves d'un bassin pétrolier : modélisation et estimation, 2002.

P. Massart, Concentration inequalities and model selection, Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, 2003.

C. Maugis, G. Celeux, and M. Martin-magniette, Variable Selection for Clustering with Gaussian Mixture Models, Biometrics, vol.100, issue.3, 2007.
DOI : 10.1111/j.1541-0420.2008.01160.x

URL : https://hal.archives-ouvertes.fr/inria-00153057

C. Maugis and B. Michel, Slope heuristics for variable selection and clustering via Gaussian mixtures, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00284620

A. E. Raftery and N. Dean, Variable Selection for Model-Based Clustering, Journal of the American Statistical Association, vol.101, issue.473, pp.168-178, 2006.
DOI : 10.1198/016214506000000113

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

D. Serre, Matrices, volume 216 of Graduate Texts in Mathematics, Theory and applications, 2002.

M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Institut des HautesÉtudesHautes´HautesÉtudes Scientifiques. Publications Mathématiques, pp.73-205, 1995.
DOI : 10.1007/BF02699376

M. Inria-talagrand, New concentration inequalities in product spaces, Inventiones Mathematicae, vol.126, issue.3, pp.505-563, 1996.
DOI : 10.1007/s002220050108

N. Verzelen, Adaptive estimation of regular Gaussian Markov random fields, 2008.

F. Villers, Tests et sélection de modèles pour l'analyse de données protéomiques et transcriptomiques, 2007.

I. Unité-de-recherche, . Lorraine, . Loria, and . Technopôle-de-nancy, Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-lès-Nancy Cedex (France) Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe -38334 Montbonnot Saint-Ismier (France) Unité de recherche INRIA Rocquencourt, Domaine de Voluceau -Rocquencourt -BP 105 -78153 Le Chesnay Cedex (France) Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles -BP 93 -06902 Sophia Antipolis Cedex

I. De-voluceau-rocquencourt, BP 105 -78153 Le Chesnay Cedex (France) http://www.inria.fr ISSN, pp.249-6399