
HAL Id: inria-00287355
https://inria.hal.science/inria-00287355v3

Submitted on 16 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extreme Value Based Adaptive Operator Selection
Álvaro Fialho, Luis da Costa, Marc Schoenauer, Michèle Sebag

To cite this version:
Álvaro Fialho, Luis da Costa, Marc Schoenauer, Michèle Sebag. Extreme Value Based Adaptive
Operator Selection. 10th International Conference on Parallel Problem Solving From Nature (PPSN
X), Sep 2008, Dortmund, Germany. pp.175-184, �10.1007/978-3-540-87700-4_18�. �inria-00287355v3�

https://inria.hal.science/inria-00287355v3
https://hal.archives-ouvertes.fr

Extreme Value Based Adaptive Operator

Selection

Álvaro Fialho1, Lúıs Da Costa2⋆, Marc Schoenauer1,2, and Michèle Sebag1,2

1 Microsoft Research-INRIA Joint Centre, Orsay, France
2 TAO team, INRIA Saclay - Île-de-France & LRI (UMR CNRS 8623), Orsay, France

FirstName.LastName@inria.fr

Abstract. Credit Assignment is an important ingredient of several pro-
posals that have been made for Adaptive Operator Selection. Instead of
the average fitness improvement of newborn offspring, this paper pro-
poses to use some empirical order statistics of those improvements, ar-
guing that rare but highly beneficial jumps matter as much or more
than frequent but small improvements. An extreme value based Credit
Assignment is thus proposed, rewarding each operator with the best fit-
ness improvement observed in a sliding window for this operator. This
mechanism, combined with existing Adaptive Operator Selection rules,
is investigated in an EC-like setting. First results show that the proposed
method allows both the Adaptive Pursuit and the Dynamic Multi-Armed

Bandit selection rules to actually track the best operators along evolu-
tion.

1 Introduction

Evolutionary Algorithms (EAs) have demonstrated their ability to solve chal-
lenging optimization problems that resisted the standard optimization methods,
thanks to their flexibility: EAs can handle structured and mixed search spaces,
irregular, noisy, or highly constrained objective functions. However, EAs are still
a long way from being part of the standard optimization toolboxes; paradoxical
as it may seem, the main reason for that is their high flexibility. Indeed, most
EAs provide the user with quite a few levers to tackle problem difficulties; al-
though knowledgeable users can benefit from this diversity and take the most
out of the Evolutionary approach, the naive user will generally fail to appropri-
ately tune the EA in a reasonable amount of time. Therefore, a mandatory step
for EAs to “cross the chasm”and make it out of the research labs is to offer some
automatic parameter tuning capabilities.

Parameter setting was and remains one of the most active research direc-
tions in EC (see e.g. [1]). Statistical methods derived from Design Of Experi-
ments have been adapted to the off-line setting of EA parameters [2–5]; while
they are more efficient than classical ANOVA, these methods however require
extensive experiments. Online tuning seems another promising way of tackling

⋆ Lúıs Da Costa is funded by the European Project EvoTest number IST-33472.

the EA parameter control, and in particular, handling the selection of the vari-
ation operators. When addressing a new problem, the user can usually define a
variety of crossover and mutation operators, fulfilling different roles in the ex-
ploitation/exploration dilemma; how to find a strategy for their combined usage
is a prominent part of the user’s burden. This strategy however most often boils
down to a set of static user-defined probabilities, or relative weights, that depend
on the user’s experience and intuition. After [6], the only dynamic parameter set-
ting strategy widely used in practice concerns the continuous mutation step size
adaptation in Evolution Strategies (see references in [6]).

The work presented in this paper is concerned with on-line tuning of op-
erator selection in an EA. Designing an Adaptive Operator Selection (AOS)
method involves two main ingredients: the credit assignment mechanism, which
associates to each operator a reward, modelling its impact on the progress of
evolution; the selection rule, which determines the operator to be used at each
time step, depending on the operator rewards. The credit assignment mecha-
nism and the selection rule must be geared to each other to achieve some explo-
ration/exploitation tradeoff in the operator landscape; typically, if the reward
provides an instant feedback, modelling the immediate benefits of applying the
operator, then the selection rule must ensure that operators with low current
benefits can still be explored at a later stage of evolution. Section 2 will present
a brief survey of the state of the art, summarizing the credit assignment mecha-
nisms presented in the literature and detailing the selection rules. In particular,
the Probability Matching (PM) [7] and Adaptive Pursuit (AP) [8] will be de-
scribed, together with the Dynamic Multi-Armed Bandit (D-MAB) proposed in
[9]. In [9], these three AOS methods have been compared within an artificial
setting originally proposed by [8], involving pre-defined rewards whose dynamics
are independent from any fitness landscape.

The main contribution of the paper is an original credit assignment mech-
anism termed EXtreme value-based Adaptive Operator Selection (ExAOS, de-
scribed in Section 3), based on empirical order-statistics of the fitness improve-
ment. This mechanism is combined with the above mentioned selection rules and
experimentally investigated in an EC-like setting, where the operator rewards
computed by ExAOS actually follow the dynamics of the evolution trajectory
in the fitness landscape (Section 4). This setting considers the eternal OneMax
problem; such a simple setting enables to compare the experimental behavior of
the online adaptation scheme with the optimal behavior, and to understand the
interaction between the dynamics of the fitness landscape, the variance in the
operator reward, and the exploration strength in the selection rules. The paper
reports on the empirical results in Section 5, and Section 6 concludes with a
discussion of the perspectives for further research.

2 Credit Assignment and Adaptive Operator Selection

Credit Assignment. Starting back in the late 80s [10], several methods to
assign credit (or reward) to variation operators have been proposed in the lit-

erature. They differ in how they compute the credit of an operator for each
newborn offspring. Most methods only use the fitness of the new individual,
compared with a reference fitness value: that of the individual parents [11–13],
of the current best [10] or median [14] individuals. Individuals which do not im-
prove on the reference fitness result in a null credit for the operator. Admittedly,
no clear conclusive result can be gathered from those works. Some recent work
[15] proposes to use a more sophisticated statistical measure that aims at detect-
ing outliers in the fitness distribution. Reported comparative results with other
credit assignment techniques are conclusive, indicating the superiority of this ap-
proach over a set of continuous benchmark problems. Though calling to another
measure, the method proposed here borrows the idea of detecting beneficial but
rare events.

Another distinguishing feature is whether the credit assignment mechanism
rewards the operators used to generate the ancestors of the current individual,
e.g. using some bucket brigade algorithm [10, 14]; creating efficient parents is
indeed as important as creating improved offspring. Some authors however do
not consider ancestors [11, 12] and some even suggest that it sometimes degrades
the results [13]. In the rest of the paper, the genealogy of the fit individuals
will not be considered. Instant operator credit is computed for each generated
offspring, and aggregated through an operator selection rule.

Operator Selection Rules. Most Operator Selection Rules attach a probabil-
ity to each operator and use a roulette wheel-like process to select the operator
to be applied, based on these probabilities3. Two such selection rules, namely
Probability Matching (PM) and Adaptive Pursuit (AP), are detailed below.

Let K denote the number of variation operators. Both PM and AP maintain
a probability vector (si,t)i=1,K , and an estimate of the current operator reward
noted p̂i,t. At each time t:
• operator i is selected with probability si,t

• the corresponding reward rt is computed using the credit assignment at hand
• the reward estimate p̂i,t of the selected operator is updated after rt, using an
additive relaxation mechanism with learning rate α (0 < α ≤ 1). It controls the
memory of the reward estimate (forgettingness increases with α):

p̂i,t+1 = (1 − α)p̂i,t + α rt (1)

Probability Matching, a very popular AOS method [7, 11, 13], aims to mak-
ing si,t proportional to p̂i,t, while enforcing a minimal amount of Exploration.
More formally, let pmin denote the minimal probability of selection of any oper-
ator, then:

si,t+1 = pmin + (1 − K ∗ pmin)
p̂i,t+1

∑K

j=1
p̂j,t+1

(2)

3 Methods that recompute those probabilities from scratch from the most recent re-
wards [14, 12] will not be considered here.

Note that if some operator gets no reward (respectively the maximal reward)
for some time, its expected reward will go to pmin (resp. 1−K ∗pmin). However,
this convergence is very slow; experimentally, all mildly relevant operators keep
being selected, thus hindering the performance of Probability Matching [8].

This drawback is partly addressed by the Adaptive Pursuit: Originally
proposed for learning automata, this method follows a winner-take-all strategy,
selecting at each time step the operator i∗t with maximal reward, and accordingly
increasing its selection probability:







i∗ = argmax{p̂i,t , i = 1 . . .K}
si∗,t+1 = si∗,t + β (1 − (K − 1)pmin − si∗,t) , (β > 0),
si,t+1 = si,t + β (pmin − si,t) , for i 6= i∗

(3)

Both PM and AP thus involve the pmin parameter to guarantee a sufficient
exploration of the operators; AP additionally involves the learning rate β, con-
trolling the greediness of the winner-take-all strategy.

Multi-Armed Bandit Methods. Another approach is inspired from the Multi-
Armed Bandit framework, first introduced in the context of Operator Selection
by the authors [9]. Multi-Armed Bandit algorithms have been initially proposed
as decision making algorithms in uncertain environments.

The so-called Upper Confidence Bound (UCB) algorithm devised by Auer
et al. [16] achieves the optimal cumulative reward through an Exploration vs
Exploitation-based criterion: Let ni,t denote the number of times the i-th arm
has been played up to time t, and let p̂i,t denote the average corresponding
reward. UCB1 selects in each time step t the arm maximizing:

p̂j,t + C

√

log
∑

k nk,t

nj,t

(4)

where C is the Scaling factor, controlling the exploration/exploitation tradeoff:
the left term in Eq. (4) favors the option with best reward (exploitation) while
the right term ensures that each arm is selected infinitely often (exploration).
The efficiency of this rule follows from the fact that the lapse of time between
two selections of under-optimal arms increases exponentially.

Unfortunately, MABs are not suited to dynamic environments: if the cur-
rent best option becomes less efficient at some later stage, and happens to be
outperformed by another one, it will take a long time before the latter option
catches up. A Dynamic Multi-Armed Bandit algorithm (D-MAB) was thus pro-
posed in [9], that combines MAB ideas with a specific statistical test known
as Page-Hinkley (PH) [17], which is used to detect the changes in the reward
distribution, and, upon such a detection, restart the MAB.

More precisely, let r̄ℓ denote the average of r1, . . . rℓ and let eℓ denote the
difference rℓ − r̄ℓ + δ, where δ is a tolerance parameter. The PH test considers
the random variable mt =

∑t

1
ei. When the difference between Mt = maxi≤t mi

and mt is greater than some user-specified threshold γ, the PH test is triggered.

The PH test involves two parameters. Parameter γ controls the trade-off
between false alarms and un-noticed changes. Parameter δ enforces the robust-
ness of the test when dealing with slowly varying environments. Following initial
experiments in [9], δ was set to 0.15 in all experiments here.

3 EXtreme value-based Adaptive Operator Selection

This section presents a proposal for Credit Assignment, to be combined with a
selection rule to achieve an Adaptive Operator Selection. Let F , o and x respec-
tively denote the fitness function (to be maximized), a variation operator, and
an element of the current population. As discussed in Section 2, the proposed
credit assignment will only take into account the non-negative fitness differences
(F(o(x)) − F(x))+. The proposed mechanism is inspired from the following re-
mark. Let us consider an operator bringing frequent small improvements, and
compare it with an operator bringing rare large improvements. The latter one
will hardly be considered if the reward reflects the average fitness improvement,
for the average estimated after a few trials is likely to be 0, implying that very
few further trials will take place. Hence, in agreement with [15], attention should
be payed to extreme, rather than average, events. Incidentally, the role of ex-
treme events in design has long been acknowledged in numerical engineering
(e.g. taking into account rogue waves when dimensioning an oil rig); it receives
an ever growing attention in the domain of complex systems, as extreme events
govern diffusion-based processes ranging from epidemy propagation to financial
markets.

The proposed credit assignment mechanism, referred to as EXtreme value-

based Adaptive Operator Selection (ExAOS), proceeds as follows. When operator
o is selected after the selection rule under examination (PM, AP or D-MAB), o
is applied on the current individual x; the fitness of the offspring is computed
and the current improvement is added to the window (FIFO order, with window
of size W); lastly, the operator reward is set to the maximal fitness improvement
in this time window. Formally, let t be the current time step, and t1 (respectively
tk) denote the time step where operator o was used for the last time (resp., the
last time before tk−1). If δ(t) denotes the fitness improvement observed at time
t, then the expected reward for operator o is computed as:

p̂t = argmax{δ(ti), i = 1 . . .W} (5)

Hence, the EXtreme value-based Adaptive Operator Selection mechanism in-
volves a single parameter W , the window size. This parameter W is meant to
reflect the time scale of the process; if too large, operators will be applied after
their optimal epoch and the switch from the previous best operator to the next
best one will be delayed. If W is too small, operators causing large but infrequent
jumps will be ignored (as successful events will not be observed at all in the first
place) or too rapidly forgotten.

4 Experimental Setting

The artificial setting first proposed in [8] and used in [9] to compare PM, AP
(and D-MAB) involved two main simplifications. Firstly, the reward associated
to each operator is assumed to be uniform in a given interval. Secondly, the
average reward of every operator is subject to abrupt periodic modifications,
jumping from one given interval to another.

The experiments below consider a more realistic environment, embedding
the ExAOS and the adaptive operator selection rules in an actual EA; rewards
are computed after the ExAOS mechanism, and their dynamics depends on the
evolution trajectory and the fitness landscape. It involves the OneMax problem
(the “Drosophila of EC”), with N = 10, 000 bits. Only mutation operators are
considered, ranging from the standard bit-flip operator (every bit is flipped with
probability 1/N) to the b-bit mutations (flipping exactly b randomly chosen bits)
with b = 1, 3, 5. A standard (1 + λ)-EA is used (λ offspring are created from the
current parent; next parent is the best among the current offspring and parent).
One main advantage of this setting is to enable the assessment of the approach
by comparison with the known optimal behavior.

In many respects, the considered setting is still far from being realistic evo-
lutionarily speaking (applying a (1 + λ)-EA, λ > 1 with b-bit mutations is
meaningless on the OneMax problem – though it might make more sense on
multi-core architectures). It nevertheless confronts the proposed approach with
the actual difficulties of taming a dynamic system, where the decisions made
govern the expected benefits of further decisions (the selected operators deter-
mine the position of the population and hence the improvement expectation of
the operators at further stages), as opposed to [8, 9]. The considered setting is
thus meant to be a “sterile EC-like” environment.

The ExAOS mechanism is independently investigated in combination with
the three selection rules, AP, PM and D-MAB. The goal of the experiments is
to assess the relevance of ExAOS in interaction with the three selection rules.
The main criterion of performance clearly is the average time-to-solution, though
the ability of the adaptive scheme to track the best operator is also considered.
In all reported experiments, the initial individual is set to (0, . . . , 0). However,
as PM was found significantly outperformed in all pairwise tests, its results are
not presented here. Every selection rule is used with its optimal setting, deter-
mined after a preliminary DOE campaign [9]. All results are validated using 11
independent runs and followed by a one-way ANOVA with α = 0.05, eventually
followed by pairwise Scheffé tests.

5 Experimental Validation

The optimal baseline is provided by the optimal behavior of all operators (com-
puted by a Monte-Carlo simulation). Fig. 1 depicts the operator landscape from
the perspective of a (1 + 50)-EA; for each fitness we report the fitness gain for
the best out of 50 offsprings generated respectively with the 1-,3-,5-bit or bit-flip
mutation (averaged on 100 runs).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−4

−3

−2

−1

0

1

2

3

4

5

OneMax: b−bit operators vs. bit−flip. Measurements repeated 100 times

Fitness of the chromosome [0,9999]

Me
an

 of
 m

axi
mu

m
imp

rov
em

en
t o

n 1
00

 tri
es

1−bit,

3−bit,

5−bit,

1/n−bitflip,

Fig. 1. Average fitness gain with 1-bit, 3-bit, 5-bit and bit-flip mutations within (1 +
50)-EA vs fitness of parent. The best operators are: 5-bit mutation in [0, 6579]; 3-bit
mutation in [6580, 8400]; bit-flip for [8401, 8600]; and 1-bit for fitness > 8600

The trajectory of evolution involves distinct phases. In stable phases, the
optimal operator remains the same (though its performance might decrease). For
instance, while the 5-bit mutation dominates all other operators while F(x) <
6579, its performance decreases as the fitness increases after F(x) = 5300. In
transition phases, the established best operator becomes dominated by another
one; the 3-bit mutation outperforms the 5-bit after F(x) = 6579 and the 1-bit
mutation outperforms the 3-bit after F(x) = 8601. The last phase is a desert,
where hardly any operator brings any improvement.

Such an operator landscape enables to assess the basic skills of an Adaptive
Operator Selection mechanism: the ability to pick up the best operator and stick
to it in stability phases; to swiftly switch to the next best operator in transition
phases; and to remain efficient during the desert phases.

Scenario 1. The first experiment considers only the 1-bit and bit-flip mutations,
examining the operator rates adapted by ExAOS (W = 50), AP and D-MAB
selection rules, comparatively to the optimal decisions.

At the beginning of the trajectory (from (0, . . . , 0)), the 1-bit mutation brings
a constant improvement of 1 (independently of λ) whereas the average expected
reward of bit-flip increases with λ, but with a high variance. This intuition is
confirmed by simulations with λ = 1, 5, and 10. When λ = 1, bit-flip outperforms
1-bit only until fitness=7, but until fitness=4753 when λ = 5, fitness=6469 when
λ = 10, and until fitness=8722 when λ = 50. Therefore, the optimal decision in
a (1 + λ)-EA would be to always start with the bit-flip mutation, and to switch
to 1-bit afterwards (e.g. at fitness = 8722 for λ = 50).

The experimental results (Fig. 2.a) demonstrate a good agreement with the
optimal rates; the bit-flip rate is close to 1 in the early stages of evolution and
switches to pmin shortly after the transition point. In the desert phase where
rewards are extremely rare, the selection rule consistently selects the 1-bit mu-

Generations

R
at

e

0 1000 2000 3000 4000 5000 6000 7000

0

1

0.5

AP - BitFlip
AP - Fitness/N
DMAB - BitFlip
DMAB - Fitness/N

AP and DMAB with 2 operators - W=50

Generations

R
at

e

0 1000 2000 3000 4000 5000 6000

0

1

0.5

1-bit
3-bit
5-bit
BitFlip
Fitness/N

AP with 4 operators - W=50

(a) Scenario 1, bit-flip rate for Adaptive

Pursuit and D-MAB.
(b) Scenario 2. operator rates for Adap-

tive Pursuit

Fig. 2. Adaptive Operator Selection: Operator Rates for λ = W = 50 (avg. / 11 runs).

tation in the majority of cases, although a high level of exploration is still per-
formed (and would allow any beneficial operator to eventually catch up).

Principled investigations varying λ and W are reported in Table 1, using the
best naive strategy (among different fixed mixtures of operators, including using
each operator alone) as basline. Firstly. AP and D-MAB obtain comparable
performances on this scenario, not significantly better than the best of the naive
strategies: ANOVA rejects the null hypothesis, but all pairwise Scheffé tests fail,
even though the means of AP and D-MAB are slightly better than the others.

Secondly, the improvement of using memory (W = 50) is found significant
for λ ≥ 10 (with decreasing p-values for increasing λ). Indeed, the instant reward
(W = 1) gives little information on the expected fitness gain out of λ offspring
(or even λ/2 offspring during the exploration phase).

Scenario 2 presents the AOS mechanism with two additional difficulties. Firstly,
it considers all four mutation operators (1,3,5-bit and bit-flip), and thus expect-
edly requires a higher amount of exploration. Secondly, the operator landscape
involves several transition points (Fig. 1): the 5-bit mutation is the best one
until F(x) = 6579, the 3-bit mutation until F(x) = 8400, then the bit-flip until
F(x) = 8722, and finally the 1-bit dominates until the end. Qualitatively, the
experimental results of Adaptive Pursuit (Fig. 2.b) and D-MAB (not shown)
closely match the above optimal behavior for W = 50.

Again, Table 1 reports on the performances of AP and Dynamic Multi-Armed

Bandit for different values of λ and W . The results are statistically similar to
those of scenario 1: ANOVA rejects the null hypothesis, but no pair-wise differ-
ence can be found significant between AP, D-MAB and the best naive strategy,
even though AP and D-MAB have larger means for large values of λ (AP slightly
outperforming here D-MAB). Regarding the effect of memory, setting W = 50
does bring, here again, some improvements of the mean performances, but these
differences are found significant only in the case of AP with λ = 50.

Table 1. Comparative results on both scenarios for AP and D-MAB. The figures are
the mean number of generations (std. dev.) to reach the global optimum. The best

naive strategy is chosen among 1-bit alone, bit-flip alone or a uniform mixture of both.

Scenario 1 Scenario 2 Best

λ W AP D-MAB AP D-MAB naive

1 1 93720 (5158) 95296 (6224) 91221 (7738) > 100k 1-bit

50 93890 (7363) 98871 (3704) 92700 (6800) 98467 (4067) 94928 (4776)

2 1 51629 (2910) 54880 (6379) 49609 (4159) 67085 (7911) 1-bit

50 52905 (5667) 58514 (6087) 48950 (6352) 59496 (9780) 51817 (3760)

5 1 25284 (1128) 26230 (3096) 21536 (1640) 27421 (2500) 1-bit

50 24668 (1954) 25683 (1180) 21225 (1776) 24966 (5161) 25715 (1392)

10 1 16558 (980) 16437 (1174) 12769 (1035) 15068 (1230) 1-bit

50 14521 (1165) 15265 (1011) 12517 (967) 14256 (1748) 16740 (597)

25 1 10285 (326) 10343 (720) 7937 (501) 7778 (591) Uniform

50 8830 (493) 8733 (529) 7393 (614) 7728 (768) 10752 (309)

50 1 7882 (245) 7547 (318) 5715 (212) 5786 (364) Uniform

50 6619 (285) 6460 (285) 5476 (248) 5513 (431) 7329 (147)

6 Discussion and Perspectives

Compared to earlier work related to Adaptive Operator Selection [8, 9], this
paper presents two extensions. The first one is a new credit assignment method,
EXtreme value-based Adaptive Operator Selection, translating the fitness gains
brought by an operator into actionable rewards, to be exploited by selection rules
such as Adaptive Pursuit or Dynamic Multi-Armed Bandit. Along the same lines
as [15], ExAOS is driven by the extreme fitness gains brought by an operator,
as opposed to the average fitness gain. The rationale is that EC must be able to
explore “risky” operators, providing rare and large jumps, while average gain-
based rewards are strongly biased toward conservative strategies.

The second contribution of the paper is an experimental setting enabling to
investigate the AOS behavior in situ; although it is still a long way from being
evolutionarily challenging, this setting definitely improves on the one considered
in [8, 9], as it actually couples AOS with an evolutionary-driven system. Within
this setting, experiments demonstrate that the adapted operator rates satisfac-
torily match the optimal ones. However, some problems remain, regarding the
(meta-)parameter setting of those methods: The best results of PM and AP were
obtained using pmin=0, contradicting its definition; Similarly, the performances
of D-MAB using ExAOS could be improved by a better understanding of the
interaction between the scaling factor C (Eq. 4), the PH threshold γ (see Section
2, or [9]), λ and W . Hopefully, the proposed experimental setting will help us in
that respect, using other well-known benchmark functions.

Further research is concerned with assessing the respective roles of the time
window and the maximum improvement. Furthermore, it has been emphasized

that one of EC strengths is to be a rank-based optimization method [18, 19].
Accordingly, the reward associated to an operator might consider the top rank of
the last fitness gains, as opposed to, its extreme value. Another perspective is to
use the extreme value statistics to online adapt the λ parameter in (1 + λ)-EA;
exceptional offspring (wrt extreme gains) can immediately replace the parent
without waiting for all λ offspring to be generated.

References

1. Lobo, F., Lima, C., Michalewicz, Z., eds.: Parameter Setting in Evolutionary
Algorithms. Springer (2007)

2. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In William B. Langdon et al., ed.: Proc. GECCO’02,
Morgan Kaufmann (2002) 11–18

3. Yuan, B., Gallagher, M.: Statistical racing techniques for improved empirical eval-
uation of evolutionary algorithms. In Xin Yao et al., ed.: PPSN VIII, LNCS 3242,
Springer Verlag (2004) 172–181

4. Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization.
In: Proc. CEC’05, IEEE Press (2005) 773– 780

5. Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolution-
ary algorithm parameters. In: Proc. IJCAI’07, Hyderabad, India (2007) 975–980

6. De Jong, K.: Parameter Setting in EAs: a 30 Year Perspective. In [1], 1–18
7. Goldberg, D.: Probability Matching, the Magnitude of Reinforcement, and Clas-

sifier System Bidding. Machine Learning 5(4) (1990) 407–426
8. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities.

In Beyer, H.G., ed.: Proc. GECCO’05, ACM Press (2005) 1539–1546
9. Da Costa, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection

with dynamic multi-armed bandits. In M. Keijzer et al., ed.: Proc. GECCO’08,
ACM Press (2008) To appear.

10. Davis, L.: Adapting operator probabilities in genetic algorithms. In Schaffer, J.
D., ed.: Proc. ICGA’89, Morgan Kaufmann (1989) 61–69

11. Lobo, F., Goldberg, D.: Decision making in a hybrid genetic algorithm. In: Proc.
ICEC’97, IEEE Press (1997) 121–125

12. Tuson, A., Ross, P.: Adapting operator settings in genetic algorithms. Evolutionary
Computation 6(2) (1998) 161–184

13. Barbosa, H.J.C., S, A.M.: On adaptive operator probabilities in real coded genetic
algorithms. In: XX Intl. Conf. of the Chilean Computer Science Society. (2000)

14. Julstrom, B.A.: What have you done for me lately? adapting operator probabilities
in a steady-state genetic algorithm on genetic algorithms. In Eshelman, L.J., ed.:
Proc. ICGA’95, Morgan Kaufmann (1995) 81–87

15. Whitacre, J.M., Pham, T.Q., Sarker, R.A.: Use of statistical outlier detec-
tion method in adaptive evolutionary algorithms. In Cattolico, M., ed.: Proc.
GECCO’06, ACM (2006) 1345–1352

16. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47(2/3) (2002) 235–256

17. Page, E.: Continuous inspection schemes. Biometrika 41 (1954) 100–115
18. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution

strategies. Evolutionary Computation 9(2) (2001) 159–195
19. Gelly, S., Ruette, S., Teytaud, O.: Comparison-based algorithms are robust and

randomized algorithms are anytime. Evolutionary Comp. 15(4) (2007) 411–434

