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Résumé : A new Data Clustering algorithm, Affinity Propagation suffers from

its quadratic complexity in function of the number of data items. Several exten-

sions of Affinity Propagation were proposed aiming at online clustering in the

data stream framework. Firstly, the case of multiply defined items, or weighted

items is handled using Weighted Affinity Propagation(WAP). Secondly, Hierar-

chical AP achieves distributed AP and uses WAP to merge the sets of exemplars

learned from subsets. Based on these two building blocks, the third algorithm per-

forms Incremental Affinity Propagation on data streams. The paper validates the

two algorithms both on benchmark and on real-world datasets. The experimental

results show that the proposed approaches perform better than K-centers based

approaches.

Mots-clés : Data Clustering, Data Streaming, Affinity Propagation, K-centers

1 Introduction

Data Clustering, one major task in Unsupervised Learning, is concerned with struc-

turing data items into clusters, enforcing the similarity of items belonging to a same

cluster and their dissimilarity w.r.t. items in other clusters. While Unsupervised Lear-

ning has been acknowledged a core task of Machine Learning since the beginnings of

the field, its theoretical foundations are less mature than those of Supervised Learning.

Many fundamental advances in Data Clustering however have been proposed since

the mid 2000s. Ding et al. have highlighted the relationship between K-means and

Principal Component Analysis (Ding & He, 2004). Based on this relationship, Meila has

proposed a stability criterion for assessing clusters and shown the uniqueness of good

optima for K-means (Meila, 2005, 2006). In the meanwhile, various criteria have been

proposed to set the number K of clusters, e.g. based on Information Theory (Sugar &

James, 2003), ROC curve (Jahanian et al., 2004) or Dynamic Local Search (Karkkainen

& Franti, 2002). Simultaneously, the topic of distance learning has been considered

along different perspectives, e.g. related to accurate K-nearest neighbors (Weinberger

et al., 2005), or enforcing good margins (Hertz et al., 2004), or correlated to information

gain (Hillel & Weinshall, 2007).

The present paper is concerned with a new clustering approach, called Affinity Propa-

gation(AP) and proposed by Frey & Dueck (2007a). This approach is suited to domains



where no artefact item (e.g. the barycenter of a set of items) can be constructed although

a similarity or a distance function can be defined ; such domains involve e.g. molecular

biology (the barycenter of a set of molecules is hard to define) or scheduling problems.

In such spaces, data clustering is viewed as a combinatorial optimization problem : as-

suming the number K of clusters to be given, the goal is to select K items or exemplars

in the dataset, such that the average distance from an item to the nearest exemplar, is

minimal. This combinatorial optimization problem is tackled using a message passing

algorithm, like belief propagation, detailed in section 2.

AP involves the acquisition of the similarity matrix, and the message passing algo-

rithm. While the message passing algorithm converges with N log N complexity, the

similarity matrix is computed with quadratic complexity, thus hindering the scalability

os the approach. In Frey & Dueck (2007a), the similarity matrix is assumed to be given

beforehand, or to involve a small fraction of the item pairs.

The goal of the paper is to address the limitation related to the quadratic complexity ;

in order to do so, three extensions of the AP algorithm are proposed. Firstly, AP is

extended to handle duplicated items in a transparent way, resulting in the Weighted

AP (WAP) algorithm. Secondly, WAP is used to achieve Hierarchical AP, merging the

exemplars independently learned from subsets of the whole dataset. Lastly, an incre-

mental AP algorithm is defined, aimed to Data Streaming (section 3).

The paper is organized as follows. Section 2 presents the AP algorithm, and describes

the first two proposed extensions, Weighted and Hierarchical AP. Section 3 describes

the AP-based data streaming algorithm proposed, called STRAP. Section 4 describes

the comparative validation of the proposed algorithms on benchmark problems. A real-

world application, the clustering of 237,087 jobs submitted to a grid system, is finally

considered. The paper concludes with a discussion and some perspectives for further

research.

2 Affinity propagation and scalable variants

For the sake of self-containedness, this section first describes the AP algorithm, re-

ferring the reader to Frey & Dueck (2007a) and Frey & Dueck (2007b) for a compre-

hensive introduction. Two AP extensions are thereafter described, respectively handling

the case of weighted items, and the merge of partial solutions.

2.1 Affinity propagation

Let E = {e1, . . . eN} define a set of items, and let d(i, j) denote the distance or

dissimilarity between items ei and ej . Letting K denote a positive integer, the K-

center problem consists of finding K items in E , referred to as exemplars and denoted

ei1 , . . . , eiK
, such that they minimize the sum, over all items ej , of the minimal squared

distance between ej and eik
, k = 1 . . .K.

The Affinity Propagation approach proposes an equivalent formalization of the K-

center problem, defined in terms of energy minimization. Let σ(i) associate to each item

ei the index of its nearest exemplar, then the goal is to find the mapping σ maximizing



the functional E[σ] defined as :

E[σ] =

N
∑

i=1

S(i, σ(i))−
N

∑

i=1

χi[σ] (1)

where S(i, j) is set to −d(i, j)2 if i 6= j, and is set to a small constant −s∗, s∗ ≥
0 called preference otherwise. The second term in the energy function represent a

consistency constraint1 : if ei is an exemplar for others, it has to be its own exemplar

(σ(σ(ei)) = σ(ei)), with

χi[σ] =

{

∞ if σ(σ(i)) 6= σ(i)
0 otherwise

(2)

Aside from the consistency constraints, the energy function thus enforces a tradeoff

between the distortion, i.e. the sum over all items of the squared error d(i, σ(i))2 com-

mitted by assimilating item ei to its nearest exemplar eσ(i), and the cost of the model,

that is s∗×|σ| if |σ| denotes the number of exemplars retained. Eq. (1) thus does not di-

rectly specify the number of exemplars to be found, as opposed to K-centers. Instead,

it specifies the penalty s∗ for allowing an item to become an exemplar ; note that for

s∗ = 0, the best solution is the trivial one, selecting every item as an exemplar.

The resolution of the optimization problem defined by Eq. (1) is achieved by a mes-

sage passing algorithm, considering two types of messages : availability messages a(i, k)
express the accumulated evidence for ek to be selected as the best exemplar for ei ; res-

ponsibility messages r(i, k) express the fact that ek is suitable to be the exemplar of

ei.

All availability and responsibility messages a(i, k) and r(i, k) are set to 0 initially.

Their values are iteratively adjusted2 by setting :

r(i, k) = S(i, k)− max
k′,k′ 6=k

{a(i, k′) + S(i, k′)} (3)

r(k, k) = S(k, k)− max
k′,k′ 6=k

{S(k, k′)} (4)

a(i, k) = min{0, r(k, k) +
∑

i′,i′ 6=i,k

max{0, r(i′, k)}} (5)

a(k, k) =
∑

i′,i′ 6=k

max{0, r(i′, k)} (6)

The exemplar σ(i) associated to the i-th item is finally given by :

σ(i) = argmax{r(i, k) + a(i, k), k = 1 . . . N} (7)

The algorithm is stopped after a maximal number of iterations or when the exemplars

did not change for a given number of iterations.

1A soft-constraint AP(SCAP) was proposed by Leone et al. (2007) to relax the hard constraint that the se-

lected exemplar by other items has to be its own self-exemplar. This SCAP algorithm unveils the hierarchical

cluster structure in the data sets instead of regularly shaped clusters.
2Numerical oscillations are avoided by using a relaxation mechanism ; empirically, the actual value is set

to the half sum of the old and new values (Frey & Dueck, 2007a).



As could have been expected, Affinity Propagation is not to be seen as a universally

efficient data clustering approach. Firstly, as mentioned in the introduction, linear and

robust algorithms such as K-means should be preferred to AP in domains where artefact

items can be constructed3. Secondly, if the desirable number K of clusters is small, then

the combinatorial problem can be tackled by brute force (considering all NK possible

solutions). Lastly, and most importantly, AP suffers from a quadratic computational

complexity in the number N of items (as all dissimilarities d(i, j) must be computed),

hindering its direct use in large-scale applications. As mentioned in the introduction,

the computation cost of similarity matrix is not accounted for in Frey & Dueck (2007a).

The next subsection aims to address this limitation.

2.2 Weighted and Hierarchical AP

Two possibilities can be considered in order to reduce the computational complexity

of AP. The first one, left for further study, is based on uniformly sampling the dissi-

milarity matrix, computing the actual value d(i, j) for a fraction of the pairs of items

and setting d(i, j) to the default value∞ otherwise. The second one, considered in this

paper, is based on a hierarchical extension of AP, splitting the whole dataset into
√

N
subsets, each including

√
N items, and further clustering the sets of exemplars extracted

from every subset.

2.2.1 Weighted AP

In order to do so, a preliminary step is to extend AP in order to deal with multiply-

defined items. Let the dataset E be defined as in section 2.1, and let ni be the number

of copies of item ei (in the default case, ni = 1 for all i). The S matrix involved in

the energy criterion (Eq. (1)) is thus naturally modified as follows. With no difficulty,

the penalty S(i, j) of selecting ej as exemplar of ei is multiplied by ni ; as ei actually

represents a set of ni identical copies, the penalty is ni times the cost of selecting ej as

exemplar for each one of these copies.

Likewise by consistency with Eq. (1), the penalty S(i, i) of selecting ei as exemplar

for itself is set to s∗ + (ni− 1)εi. Indeed, let item ei be unfolded as a set of ni (almost)

identical copies {ei1 , . . . , eini
}, and let us assume that one of them, say ei1 is selected

as exemplar. One thus pays the preference penalty s∗, plus the sum of the dissimilarities

between ei1 and the other copies in ei, modelled as (ni− 1)εi. Constant εi thus models

the average dissimilarity among the ni copies of ei.

Formally, let E ′ = {(e1, ni), . . . , (eL, nL)}, and define S′ as :

S′(i, j) =

{

−nid
2(i, j) if i 6= j

s∗ + (ni − 1)× εi otherwise

It is then straightforward to show that the combinatorial optimization problem defined

3Selecting the best set of artefacts out of τ independent runs of K-means usually enforce a high-quality

distortion, with complexity τ ×K ×N .



as : find σ minimizing

E′[σ] =

L
∑

i=1

S′(i, σ(i))−
L

∑

i=1

χi[σ]

is equivalent, for εi = 0, to the optimization problem defined by Eq. (1) for E made of

the union of ni copies of ei, for i = 1 . . . L.

2.2.2 Hierarchical AP

The WAP algorithm above is then used to cluster the sets of exemplars constructed

from disjoint subsets of the whole dataset. Formally, let E be divided into
√

N subsets

of equal size, noted Ei, i = 1 . . .
√

N .

Let {ei1,, . . . eiKi
} be the set of exemplars extracted from Ei, with nij

the number of

items in Ei having eij
as nearest exemplar.

Consider the weighted AP problem defined from E ′ = {(eij
, nij

), i = 1 . . .
√

N, j =
1 . . .Ki}.

Note that the construction of E ′ is in O(N
3

2 ). Letting K be an upper bound on the

number of exemplars learned from every subset Ei, WAP thus achieves the hierarchical

clustering of the exemplars extracted from all Ei with complexity O(N
1

2 ×K2).
Further work is concerned with examining and bounding the energy loss entailed by

solving the WAP problem defined from E ′ with complexityO(N
1

2 ×(N +K2)) instead

of the initial AP problem defined from E with complexity O(N2).

3 Incremental AP and Data Streaming

This section describes the proposed extension from AP and Weighted AP to Data

Streaming. Data Streaming, one of the hottest topics in Data Mining (Fan et al., 2004;

Aggarwal et al., 2003; Guha et al., 2000), aims to provide a compact description of

the data flow (Muthukrishnan, 2005) and/or the frequent patterns or anomalies thereof.

It imposes an additional constraint on Data Mining techniques, the fact that each data

item can be seen only once due to the fast rate of acquisition.

The general schema proposed to extend AP to Data Streaming (called STRAP , Alg.

1) involves four main steps besides the initialization.

1. The first bunch of data is used by AP to compute the first exemplar-based model.

2. Each new item is compared to the exemplars ; if the new item is too dissimilar wrt

the current exemplars (section 3.1), it is put in the reservoir.

3. The restart criterion is triggered if the reservoir size exceeds some threshold, or if

some drift in the data distribution is detected (section 3.2).

4. If it is triggered, WAP is restarted with the current exemplars and the reservoir ; new

exemplars are thus obtained and the associated model is computed (section 3.3).

5. The process goes to step 2.

At every time step, the current model of the data flow is represented by the exemplars

and their distribution. The performance of the process is measured from the average

distortion and the overall size of the model, detailed in section 3.4.



Algorithm 1 WAP-based Data Streaming

Datastream e1, . . . et, . . . ; fit threshold ǫ
Init

AP(e1, . . . , eT )→ Exemplar-based Model

Reservoir = {}
for t > T do

Compute Fit(et, current model) section 3.1

if Fit > ǫ then

Update model section 3.3

else

Reservoir← et

end if

section 3.2

if Restart criterion then

Update model by WAP section 3.3

end if

end for

3.1 WAP-based Modelling

While AP only aims to provide the exemplars best representing the dataset according

to the energy criterion (Eq. 1), STRAP might need some additional information in order

to see whether a new item should be allocated to some exemplar or rather considered to

be an outlier at this point.

The proposed model, inspired from DBSCAN (Ester, 1996), characterizes each exem-

plar ei from a 4-tuple (ei, ni,Mi,Σi), where :

ni is the number of items associated so far to exemplar ei ;

Mi is the sum of the distances between these items and ei ;

Σi is the sum of the squared distances between these items and ei.

This model, as DBSCAN , enables an additive, computationally efficient update when a

new item is associated to any exemplar. It supports three alternative measures in order

to evaluate the relevancy between some new item e and any exemplar ei :

– Energy-based. The first criterion simply measures the distance d(e, ei) between

the new item e and exemplar ei. Item e is associated to the nearest exemplar provi-

ded that the associated squared distance is less than the energy threshold s∗ (section

2.1), i.e. the cost of turning the new item in an exemplar per se. Otherwise, item e
is put in the reservoir.

– Prior-based. Considering the set of items associated to each exemplar and the as-

sociated distances, the set of such distances is modelled as a Gaussian4 distribution

centered on µi = Mi

ni
with variance σi =

√

Σi

ni
− M2

i

n2

i

. The relevancy between item

e and exemplar ei is then measured as :

F (e, ei) = Pr(d(e, ei)|N (µi, σi))

4Naturally, considering that the set of distances follows a Gaussian distribution is a coarse approximation,

since distances are necessarily greater than 0 and smaller than the smallest distance to the other exemplars.



Let e∗i be the exemplar maximizing F (e, ei) ; item e is associated to exemplar e∗i
except if F (e, e∗i ) is lower than some user-given threshold ǫ, in which case the new

item is put in the reservoir.

– Posterior-based. The above measure does not take into account the actual number

of items associated to exemplars. The third relevancy criterion is thus defined as :

FB(e, ei) = Pr(d(e, ei)|N (µi, σi))× Pr(ei)

where Pr(ei) is the fraction of items associated to exemplar ei (Pr(ei) ∝ ni). As

in the previous case, item e is associated to exemplar e∗i maximizing the criterion,

except if FB(e, e∗i ) is lower than some user-given threshold ǫB , in which case the

new item is put in the reservoir.

3.2 Restart criterion

The core difficulty in Data Streaming is to deal with outliers and detect some drift in

the item generative process. As a matter of fact, when a poor fit with the current exem-

plars is observed, there is in general no easy way to tell outliers from items generated

after the new process distribution.

In the case of drift i.e. when the generative process has changed, the stream model

must be updated. While in some application domains, the model update can be smoothly

achieved through updating the clusters and their centers (e.g. in continuous spaces), AP-

relevant domains requires the definition of new exemplars. Therefore the data streaming

process needs a restart criterion, in order to decide whether the construction of new

exemplars from the current ones and the reservoir should be launched.

Two restart criteria have been considered. The first one is most simply based on the

size of the reservoir criterion. When the reservoir is filled with items, the construction of

new exemplars based on the current exemplars and the items in the reservoir is launched.

In this case, some care must be exercised (section 3.3) in order to ensure that i) the

number of new exemplars does not grow beyond control ; ii) relevant exemplars are not

sacrificed to outliers.

The second criterion is based on a change point detection test. Let us consider the

flow of items et, and the sequence pt = maxiF (et, ei) of their relevancy measure wrt

the current exemplars. If the item generative process is drifting, then sequence pt should

display some change ; the restart criterion is triggered upon detecting such a change.

The so-called Page-Hinkley change-point-detection test (Page, 1954; Hinkley, 1970,

1971) has been selected as it minimizes the expected detection time for a prescribed

false alarm rate. Formally, the PH test is controlled after a detection threshold λ and

tolerance δ, as follows :

p̄t =
1

t

t
∑

ℓ=1

pℓ (8)

mt =

t
∑

ℓ=1

(pℓ − p̄ℓ + δ) (9)

Mt = max{|mℓ|, ℓ = 1...t} (10)



PHt = (Mt −mt) > λ (11)

In this latter case, it might happen that the reservoir is filled before the restart criterion

is triggered. In such case, the new item put in the reservoir replaces the oldest one ; a

counter keeping track of the removed reservoir items is incremented.

3.3 Model update

In the case where a new item e is associated to an existing exemplar ei, model

(ei, ni,Mi,Σi) is most simply updated5, by incrementing ni, adding d(e, ei) (respecti-

vely, d(e, ei)
2) to Mi (resp. Σi).

Upon triggering of the restart criterion, Weighted AP is launched on the set of weigh-

ted items involving i) the current exemplars ei, i = 1 . . . N together with their size ni ;

ii) the reservoir items noted e′j , j = 1 . . .M , with n′
j = 1. The question is how to adjust

the penalties S(ei, ei) and the distances S(ei, e
′
j) in order to prevent the number of final

exemplars from increasing beyond control, and to avoid sacrificing relevant exemplars

to many outliers.

After section 2.2.1, it comes :

S(ei, ei) = s∗ + Σi

S(e′j , e
′
j) = s∗

S(ei, ej) = −nid(ei, ej)
2

S(ei, e
′
j) = −nid(ei, e

′
j)

2

S(e′j , ei) = −d(ei, e
′
j)

2

Let f1, . . . fK denote the exemplars constructed by WAP. The next point is to construct

the associated model from the previous model {(ei, ni,Mi,Σi)} and the reservoir items,

granted that the items originally involved in the extraction of exemplars ei are no longer

available.

Formally, let f be a new exemplar, let e1, . . . em (respectively e′1, . . . , e
′
m′ ) be pre-

vious exemplars (resp. reservoir items) associated to f . With no difficulty, the number

n of items associated to f is set to n1 + . . . + nm + m′.

The sum of distances of the items to f is estimated after an Euclidean model as

follows. Let e be an item associated to e1. After the Euclidean model, e is viewed as a

random item e1 + X~v, where ~v is a random vector in the unit ball, and X is a random

variable with distribution N (µ1, σ1). One has :

||f − e||2 = ||f − e1||2 + ||e1 − e||2 − 2〈f − e1, X~v〉
= d(f, e1)

2 + d(e1, e)
2 − 2X〈f − e1, ~v〉

Taking the expectation, it comes E[d(f, e)2] = d(f, e1)
2 + 1

n1

Σ1. Accordingly,

Σ =
m

∑

i=1

(

nid(f, ei)
2 + Σi

)

+
m′

∑

i=1

d(f, e′i)
2

5Further work is concerned with using relaxation-based update mechanism, in order to decrease the in-

fluence of the oldest items associated to the exemplar.



Along the same ideas, assuming that items associated to a given exemplar are inde-

pendent, M is approximated to

M = M0 +
m

∑

i=1

(nid(f, ei)) +
m′

∑

i=1

d(f, e′i)

where M0 is the M value of f before other exemplars and items are merged to it.

3.4 Evaluation criterion

An evaluation criterion, inspired from the energy criterion (Eq. 1), is proposed in

order to assess the STRAP algorithm. This criterion measures the trade-off between the

average distortion and the average size of the model.

The average size of the model is defined after the total number of exemplars construc-

ted, divided by the number of restarts + 1. The distortion D is computed as follows :

– If some new item e is associated to exemplar ei, D is incremented by d(e, ei)
2 ;

– Otherwise, e is put in the reservoir ; after the next restart, the average square dis-

tance d̄2 of the reservoir items to the new exemplars is computed, and D is incre-

mented by d̄2 times the number of items put in the reservoir since the last restart6.

4 Experimental Validation and Discussion

In this section, we first compare the distortion of AP with the best distortion of 20

independent runs of K-centers on the same time series benchmarks. We then assessed

Hierarchical AP on the two largest benchmark data sets. Finally, Hierarchical AP is

evaluated on a real world data set. The distortion is defined as

D([σ]) =

N
∑

i=1

d(i, σ(i))2 (12)

Hierarchical AP is validated by comparing with K-centers. For showing the perfor-

mance of WAP, we use both AP and WAP for clustering. Formally, letting N be the

total size of the dataset E , E is partitioned into
√

N subsets of equal size noted Ei.
– Hierarchical AP proceeds as follows :

1. On each subset Ei, the preference s∗i is set to the median of the pair differences

in the subset ; AP(WAP) is run and defines a set of Ki exemplars noted eij
,

each of those represents nij
items in Ei.

2. Letting E ′ denote the set of (eij
, nij

) for i = 1 . . .
√

N, j = 1 . . .Ki, AP(WAP)

is launched on E ′ with various values of the preference s∗. The associated

number of final exemplars and distortion are reported.

– Simultaneously :

6This procedure is meant to handle the case of items removed from the reservoir, when the restart criterion

is based on the change point detection test, section 3.2.



1. K-centers is applied on each subset Ei, with K set to the average of Ki over

i = 1 . . .
√

N .

2. The best K-centers out of 120 independent runs in terms of the distortion on

Ei are kept ; their union defines the set of centers C.

3. K-centers is applied to the total set E , with the constraint that the centers

must belong to C. For various values of K, K-centers is run independently

20 times, and the best distortion is kept. The independent launch times of

K-centers are set to make its running time comparable with WAP.

– Finally, the three curves (K, distortion(K)) are compared.

4.1 Validation on benchmarks

13 benchmark datasets kindly provided by E. Keogh have been considered (Keogh

et al., 2006), ranging over diverse application domains, e.g. images, videos, texts. On

each data set, the distance considered is the Euclidean one and the “ground truth” clus-

ters are defined by the classes.

Two experimental settings have been considered. In the first one (A), the number K
of centers is set to the number of classes and the preference s∗ is tuned so as the number

of exemplars is K. In the second one (B), the preference is set to the median squared

distance among pairs of items and K is set to the number of exemplars thus obtained

with AP.

TAB. 1 – Comparison of K-centers (best of 20 runs) and AP when K is set to the

number of classes and the preference s∗ is tuned so as the number of exemplars is K

Data K N D Distortion Distortion of Hierarchical clustering

KC AP KC AP WAP

1 6 600 60 24014 23719 / / /

2 2 200 150 4422 4422 / / /

3 3 930 128 78326 78326 / / /

4 14 2250 131 189370 183265 198658 190496 189383

5 6 442 427 151351 149615 / / /

6 15 1125 128 20220 19079 20731 20248 20181

7 50 905 270 93749 85558 / / /

8 4 200 275 10054 10072 / / /

9 4 112 350 24443 24447 / / /

10 2 121 637 65783 67104 / / /

11 7 143 319 25596 25274 / / /

12 2 200 96 6424 6424 / / /

13 37 781 176 547 356 / / /

In both cases, the distortion obtained by AP is compared with the best distortion

of K-centers out of 20 independent runs. Table 1 reports on the results obtained for



experimental setting (A) : K is the given number of classes, N is the number of items

in the dataset, D the dimension. The distortion of batch clustering, on the whole data

set, is reported in the left part of Table 1. The performance of Hierarchical AP on the

two largest data sets is also shown in the right part of Table 1.

TAB. 2 – Comparison of K-centers (best of 20 runs) and AP when K depends on AP

Data K K_AP Distortion K_HAP Distortion of Hierarchical clustering

KC AP KC AP WAP

1 6 35 18528 17522 / / / /

2 2 12 858 813 / / / /

3 3 47 44088 42593 / / / /

4 14 168 100420 88282 39 172359 164175 160415

5 6 41 90798 83795 / / / /

6 15 100 12682 9965 23 21525 20992 21077

7 50 62 87426 78996 / / / /

8 4 9 4529 4651 / / / /

9 4 13 15315 14662 / / / /

10 2 17 37826 35466 / / / /

11 7 16 20480 19602 / / / /

12 2 14 2254 2172 / / / /

13 37 70 412 216 / / / /

These results suggest that AP is more appropriate for complex datasets, where the un-

derlying structure of the domain involves many clusters. As could have been expected,

Hierarchical AP uses less information than batch clustering and entails a slightly higher

distortion.

In Hierarchical AP, WAP performs better than AP given the same set of exemplars

learned from the subsets. WAP merges the exemplars considering their potential ability

of being a bigger exemplar by passing weighted messages. AP, by contrast, fairly groups

the exemplars.

Table 2 reports on the results obtained for experimental setting (B), when the number

of clusters is set as K_AP . K_AP is the number of clusters obtained with AP when

the preference s∗ is set to the median distance. K_AP is larger than the K given by the

data. In the Hierarchical AP validation, K_HAP is the final number of clusters using

AP for subset clustering and then exemplars clustering. The preference s∗ used by WAP

is tuned to have also K_HAP final clusters. The K of K-centers in the exemplars

clustering is also set to be K_HAP . In the subset clustering, K of K-centers is set to

be Nall/Ns, where Nall is the total number of clusters learned from all subsets, and Ns

is the number of subsets. Left part of Table 2 is the results of batch clustering and right

part is the result of hierarchical clustering.

Hierarchical AP significantly decreased the clustering computation time compared

with batch clustering, in spite of a slightly higher distortion. On the 4-th dateset, Hie-

rarchical AP spent only 3 seconds while batch AP clustering spent 128 seconds. On



the 6-th dateset, Hierarchical AP spent 1.4 seconds while batch AP clustering spent 21

seconds.

4.2 Validation on real-world data

This validation considers a real-world dataset, the set of jobs submitted to the EGEE

grid system7, which will be described first.

4.2.1 Job stream

The considered dataset describes the states of the arrived jobs from 2006-03-14 to

2007-02-06, including 237,087 jobs each described by five attributes :

1. the time when a job arrived at a queue ;

2. the time when a job began to execute ;

3. the time when the job is finished ;

4. the identifier of the user who submitted the job ;

5. the identifier of queue by which the job was transited.

In the data preprocessing step, new features were derived from these initial ones and

the user identifiers were removed. Finally, a job is described by the following features :

1. the duration of waiting time in a queue ;

2. the duration of execution ;

3. the number of jobs waiting in the queue when the current job arrived ;

4. the number of jobs being executed after the transition of this queue when the

current job arrived ;

5. the identifier of queue by which the job was transited.

This representation makes it impossible to consider job artefact ; the behavior might

be significantly different from one queue to another and the expert is willing to extract

representative actual jobs as opposed to virtual ones (e.g. executed on queue 1 with

weight .3 and on queue 2 with weight .7).

The dissimilarity of two jobs xi and xj is the sum of the Euclidean distance between

the numerical description of xi and xj , plus a weight wq if xi and xj are not executed

on the same queue.

TAB. 3 – Parameters and running time of subset clustering on real-world jobs

Algorithm parameter running time N. of exemplars

K-centers K = 15 10 mins 7290

AP s∗ = median(S) 26 mins 8444

WAP s∗ = median(S) 10 mins 7531

7http ://www.eu-egee.org/



FIG. 1 – Distortion of hierarchical AP and K-centers on real-world jobs

The validation of hierarchical AP was conducted on this real-world dataset. The

whole data, 237,087 jobs, is divided into 486 subsets and each subset includes 486

jobs. We used K-centers, AP and WAP respectively on each subset to get exemplars.

WAP is used on subset clustering because there are around 30% duplications in the

real-world data. The parameters, the number of exemplars and running time are shown

in Table 3. K-centers is independently launched 120 times to make its running time

comparable with WAP. The best results which have lowest distortion are reported. All

the experiments were conducted on a Intel 2.66GHz Dual-Core PC with 2 GB memory

by Matlab codes.

K-centers, AP and WAP are applied on the set of exemplars learned from the subsets.

The distortions on different number K of clusters are shown in Fig. 1.

The Fig. 1 shows that WAP-based hierarchical clustering has lower distortion than

AP-based and K-centers based hierarchical clustering. The proposed approach scales

down the computation complexity of large-size data with roughly one third of the dis-

tortion when compared with K-centers.

5 Conclusion and Perspectives

In this paper we have explored the possibility of using the affinity propagation algo-

rithm to perform online clustering of data stream and set a general approach for this

purpose. Frey & Dueck (2007a) have shown that AP performs better than K-centers



clustering especially on sufficiently complex problems. Considering the possible huge

amount of data flow which is supposed to be treated in real applications (e.g. job error

detection in grid computing), the main step is to adapt the scalability of AP.

To overcome the N2 complexity of AP (caused by the computation of the similarity

matrix), we firstly proposed the Weighted AP by aggregating the similar items into one

single item.

The second algorithm achieves hierarchical clustering, by building exemplars from

subsets of the initial dataset and aggregating them using WAP. Experimental validation

demonstrates that hierarchical AP is competitive with K-centers on large datasets.

The third proposed algorithm, STRAP , achieves data streaming based on Hierarchical

AP. Further research is concerned with experimental validation of STRAP and bounding

the distortion loss due to the distributed computing of exemplars from different subsets.
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