J. O. Kephart and D. M. Chess, The vision of autonomic computing computer, pp.41-50, 2003.

I. Rish, M. Brodie, and S. Ma, Adaptive diagnosis in distributed dystems, on Neural Networks (special issue on Adaptive Learning Systems in Communication Networks, pp.1088-1109, 2005.
DOI : 10.1109/tnn.2005.853423

N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff, Mining for misconfigured machines in grid systems, KDD '06, pp.687-692, 2006.

T. Joachims, Making large-Scale SVM Learning Practical Advances in Kernel Methods -Support Vector Learning, pp.41-56, 1999.

M. Sebag, N. Lucas, and J. Azé, Impact studies and sensitivity analysis in medical data mining with ROC-based genetic learning, Third IEEE International Conference on Data Mining, pp.637-640, 2003.
DOI : 10.1109/ICDM.2003.1250996

N. Slonim and N. Tishby, Document clustering using word clusters via the information bottleneck method. Research and Development in Information Retrieval, pp.208-215, 2000.
DOI : 10.1145/345508.345578

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Meila, The uniqueness of a good optimum for K-means. ICML, pp.625-632, 2006.

J. B. Tenenbaum, V. D. Silva, and J. C. Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, vol.290, issue.5500, pp.2319-2323, 2000.
DOI : 10.1126/science.290.5500.2319

S. Roweis and L. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, vol.290, issue.5500, pp.2323-2326, 2000.
DOI : 10.1126/science.290.5500.2323

V. De-silva and J. Tenenbaum, Global versus local methods in nonlinear dimensionality reduction, NIPS. 705- 712, 2002.

M. Sugiyama, Local fisher discriminantanalysis for supervised dimensionality reduction, pp.905-912, 2006.

X. Yang, H. Fu, and H. Zha, Semi-supervised nonlinear dimensionality reduction, Proceedings of the 23rd international conference on Machine learning , ICML '06, pp.1065-1072, 2006.
DOI : 10.1145/1143844.1143978

K. Q. Weinberger, J. Blitzer, and L. K. Saul, Distance metric learning for large margin nearest neighbor classification, NIPS, pp.1473-1480, 2005.

C. Ding and X. He, -means clustering via principal component analysis, Twenty-first international conference on Machine learning , ICML '04, pp.225-232, 2004.
DOI : 10.1145/1015330.1015408

URL : https://hal.archives-ouvertes.fr/cea-01058940

A. Ng, M. Jordan, and Y. Weiss, On spectral clustering : Analysis and an algorithm, pp.849-856, 2001.

M. Kearns and M. Li, Learning in the Presence of Malicious Errors, SIAM Journal on Computing, vol.22, issue.4, pp.807-837, 1993.
DOI : 10.1137/0222052

V. N. Vapnik, The Nature of Statistical Learning, 1995.

S. Rosset, Model selection via the AUC, Twenty-first international conference on Machine learning , ICML '04, pp.89-96, 2004.
DOI : 10.1145/1015330.1015400

K. Jong, J. Mary, and A. Cornuejols, Ensemble Feature Ranking, Proc. ECML/PKDD, pp.267-278, 2004.
DOI : 10.1007/978-3-540-30116-5_26

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Neocleous, M. Dikaiakos, and P. Fragopoulou, FAILURE MANAGEMENT IN GRIDS: THE CASE OF THE EGEE INFRASTRUCTURE, Institute on System Architecture, Core- GRID -Network of Excellence, 2006.
DOI : 10.1142/S0129626407003113