On multiplicative noise models for stochastic search

Mohamed Jebalia 1 Anne Auger 1
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : In this paper we investigate multiplicative noise models in the context of continuous optimization. We illustrate how some intrinsic properties of the noise model imply the failure of reasonable search algorithms for locating the optimum of the noiseless part of the objective function. Those findings are rigorously investigated on the (1+1)-ES for the minimization of the noisy sphere function. Assuming a lower bound on the support of the noise distribution, we prove that the (1+1)-ES diverges when the lower bound allows to sample negative fitness with positive probability and converges in the opposite case. We provide a discussion on the practical applications and non applications of those outcomes and explain the differences with previous results obtained in the limit of infinite search-space dimensionality.
Type de document :
Communication dans un congrès
Parallel Problem Solving From Nature, Sep 2008, dortmund, Germany. 2008
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00287725
Contributeur : Mohamed Jebalia <>
Soumis le : lundi 18 août 2008 - 15:51:17
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : vendredi 28 septembre 2012 - 15:52:31

Fichier

MohamedAnnePPSN08.ForHal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00287725, version 1

Collections

Citation

Mohamed Jebalia, Anne Auger. On multiplicative noise models for stochastic search. Parallel Problem Solving From Nature, Sep 2008, dortmund, Germany. 2008. 〈inria-00287725〉

Partager

Métriques

Consultations de la notice

335

Téléchargements de fichiers

175