F. Gagliardi, Building an infrastructure for scientific Grid computing: status and goals of the EGEE project, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.363, issue.1833, p.1833, 2005.
DOI : 10.1098/rsta.2005.1603

C. Germain-renaud, C. Loomis, J. T. Mo-'scicki, and R. Texier, Scheduling for Responsive Grids, Journal of Grid Computing, vol.16, issue.2, pp.10723-10730, 2007.
DOI : 10.1007/s10723-007-9086-4

URL : https://hal.archives-ouvertes.fr/inria-00117486

E. , D. Jensen, C. D. Locke, and H. Tokuda, A timedriven scheduling model for real-time operating systems, IEEE Real- Time Systems Symposium, pp.112-122, 1985.

O. Jeffrey, D. M. Kephart, and . Chess, The vision of autonomic computing, IEEE Computer, vol.36, issue.1, pp.41-50, 2003.

L. Amar, A. Barak, E. Levy, and M. Okun, An on-line algorithm for fairshare node allocations in a cluster, CCGRID, pp.83-91, 2007.

I. Mirman, Going Parallel the New Way, Desktop Computing, vol.10, issue.11, 2006.

C. Edward-rasmusen and C. Williams, Gaussian Processes for Machine Learning, 2006.

L. G. Roberts, Beyond Moore's law: Internet growth trends, Computer, vol.33, issue.1, pp.117-119, 2000.
DOI : 10.1109/2.963131

S. Richard, A. G. Sutton, and . Barto, Reinforcement Learning: An Introduction, 1998.

G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, On the use of hybrid reinforcement learning for autonomic resource allocation, Cluster Computing, vol.4, issue.4, pp.287-299, 2007.
DOI : 10.1007/s10586-007-0035-6

J. Gerald, J. O. Tesauro, and . Kephart, Utility functions in autonomic systems, Proceedings of the 1st International Conference on Autonomic Computing, pp.70-77, 2004.

D. Vengerov, A reinforcement learning approach to dynamic resource allocation, Engineering Applications of Artificial Intelligence, vol.20, issue.3, 2007.
DOI : 10.1016/j.engappai.2006.06.019