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Abstract. We derive lower bounds for comparison-based or selection-based algorithms,
improving existing results in the continuous setting, and extending them to non-trivial
results in the discrete case. We introduce for that the use of the VC-dimension of the level
sets of the fitness functions; results are then obtained through the use of Sauer’s lemma. In
the special case of optmization of the sphere function, improved lower bounds are obtained
by bounding the possible number of sign conditions realized by some systems of equations.
The results include several applications to the parametrization of sequential or parallel
algorithms of type (µ +, λ)-ES.
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1 Introduction

Evolution strategies (ES), defined by Rechenberg [14], are a family of optimization algorithms
with nice robustness properties. Most ES use only comparisons between fitness values and not
the fitness values themselves. This fact has been used in [17] in order to provide lower bounds
that match some upper bounds known for evolutionary algorithms in the continuous domain [8,
2, 15], and [10] has shown the optimality of this comparison-based principle for some robustness
criterion (see also [3, 19, 4]). In [17] is provided a new tool for proving lower bounds for evolutionary
algorithms, but, as pointed out by the authors, some bounds are not tight and in particular: (i) the
discrete case provides essentially trivial results; (ii) the bounds for the (µ, λ)-ES are far too large.
In this work, we propose improved lower bounds for evolution strategies of type (µ +, λ)-ES (i.e.
upper bounds on the convergence rates of these algorithms) in term of the VC-dimension of level
sets of the fitness functions. In the special case of optimization of the sphere function, improved
upper bound on the convergence rate of evolution strategies are presented; they are obtained by
bounding the number of sign conditions realized by a system of equations.

The paper is organized as follows. Basic definitions and terminology of evolution strategies we
consider are described in Section 2. Lower bounds on (µ +, λ)-ES based on the branching factor,
obtained in [17], are recalled in Section 3. Improved lower bounds on (µ +, λ)-ES in term of VC-
dimension are presented in Section 4. At last, practical implications of the theory are discussed in
Section 5.

Notations. In all the paper, log(x) denotes the logarithm with basis 2, i.e. log(2) = 1. The set
of integers {1, 2, . . . , n} is denoted by [[1, n]].

2 Evolution Strategies of type (µ +, λ)

We define in this section (µ +, λ)-algorithms – we refer to Beyer and Schwefel [6] for a comprehensive
introduction to evolution strategies.



The aim of a (µ +, λ)-algorithm is to find the minimum of a function f (called the fitness
function) defined over a domain D. This algorithm cannot evaluate the function f but has to work
only with comparisons: given two points x and y, the algorithm has access to a black-box telling
wether f(x) < f(y), f(x) = f(y) or f(x) > f(y). Of course such an algorithm is not required to
work for one fitness function but for a whole family of fitness functions. In the following we denote
by F the set of fitness functions we consider.

In the rest of the paper, we assume we never have a case of equality f(x) = f(y) among the
generated points in order to avoid technical difficulties. Let λ and µ denote two integers (subject

Algorithm 1 SB-(µ, λ)-ES (resp. SB-(µ + λ)-ES), i.e. evolution strategies based on selection,
working on a fitness function f . The real number ω is a random seed, uniform in [0, 1]. We do not
specify the generation of offpsrings, because we work on the whole family of algorithms matching
this framework.

Initialize I0 ∈ I, S−1 = ∅ and n = 0
while true do

Generate an offspring On of λ distinct points: On = generate(In, ω).
Selection: Use the fitness f in order to partition On (resp. On ∪ Sn−1) in two sets Sn of cardinal
min(µ, Card(On)) and Rn such that

x ∈ Sn and y ∈ Rn ⇒ f(x) < f(y).

We denote this by Sn = select(On, f) (resp. Sn = select(On ∪ Sn−1, f)).
Update the internal state: In+1 = update(In, f, On) = selectionUpdate(In, Sn, Rn) ∈ I.

x
(f)
n+1 = proposal(In)

n = n + 1
end while

Algorithm 2 (µ, λ)-ES (resp. (µ + λ)-ES) based on full ranking, working on a fitness function
f . The real number ω is a random seed, uniform in [0, 1]. Compared to Algorithm 1, Sn is now
a vector of points, ordered with respect to their fitness values. This family of algorithms is more
general than Algorithm 1, as we can use all the ranking information.

Initialize I0 ∈ I, S−1 = ∅ and n = 0
while true do

Generate an offspring On of λ distinct points: On = generate(In, ω).
Selection with ranking: Use the fitness f in order to partition On (resp. On ∪ Sn−1) in a vector
Sn = (x′

1, . . . , x
′

cn
) of cardinal cn = min(µ, Card(On)) (resp. cn = min(µ, Card(On ∪ Sn−1))) and a

set Rn such that
∀i ∈ [[1, cn]], ∀y ∈ Rn, f(x′

i) < f(y),

and ∀i ∈ [[1, cn − 1]], f(x′

i) < f(x′

i+1).

We denote this by Sn = select(On, f) (resp. Sn = select(On ∪ Sn−1, f)).
Update the internal state: In+1 = update(In, f, On) = fullRankUpdate(In, Sn, Rn) ∈ I.

x
(f)
n+1 = proposal(In)

n = n + 1
end while

in the non-elitist (µ, λ) case to the condition µ 6 λ). A SB-(µ +, λ)-ES (Selection Based (µ +, λ)-
ES) is an algorithm working as follows. There is a set I of internal states and an initial state
I0. At each iteration, the algorithm follows these three successive steps. First generate a set of λ
points, called the offspring. Then select only the µ best ones, i.e. the µ points with lowest fitness
values; in the case of a SB-(µ, λ)-ES, points generated at previous stages are forgotten and this



selection is only among the offspring, while an algorithm of type SB-(µ + λ)-ES selects the µ best
points among the offspring and the points selected at the previous step (hence these µ selected
points are always the µ points with lowest fitness value found so far). At last the internal state is
updated. General outlines of SB-(µ, λ)-algorithms (resp. SB-(µ + λ)-algorithms) are summarized
in Algorithm 1.

Algorithms with the ”+” are usually termed elitist ; this means that we always keep the best
individuals. Algorithms with the ”,” are termed non-elitist. Elitist strategies are usually faster on
easy fitness functions, but less robust; therefore, non-elitist strategies are usually prefered.

At last we would like to explain a generalization of SB-(µ +, λ)-ES, called (µ +, λ)-ES. Instead
of just giving the best µ points (i.e. the µ points with the lowest fitness value), we can consider
a selection procedure which returns the best µ points ordered with respect to their fitness. More
precisely, given the points (y1, . . . , yp) (On in the case of (µ, λ)-ES or On ∪ Sn−1 in the case of
(µ + λ)-ES), it returns µ distinct indices (i1, . . . , iµ) such that f(yi1) < . . . < f(yiµ

) and for all
j 6∈ {i1, . . . , iµ}, f(yiµ) < f(yj). We call full ranking this kind of ”selection” [4, 3, 19]. The outline
of these algorithms is summarized in Algorithm 2.

Note that both Algorithms 1 and 2 define a class of algorithms: in order to obtain an algorithm,
one has to specify how generation of points is done, what is the set of internal states as well as
the update function. A usual case is retrieved when the offspring is randomly and independently
drawn according to a Gaussian distribution, with parameters (mean, variance and covariances)
depending on the internal state of the algorithm.

3 Branching factor and convergence rate

We consider a (possibly discrete) domain D ⊂ R
d and a norm ‖ · ‖ on R

d. For ε > 0, we define
N(ε) to be the maximum number of disjoint open balls of radius ε that one can put in the domain
D. That is, N(ε) is the maximum integer n such that there exist n distinct points x1, . . . , xn ∈ D
with ‖xi − xj‖ > 2ε for all i 6= j.

If each function f ∈ F has one and only one optimum f∗, for any given optimization algorithm
as in Algorithm 2, and for ε > 0 and δ > 0, we let nε,δ be the minimum number n of iterations
such that with probability at least 1−δ, an optimum is found at the n-th iteration within distance
ε. I.e. nε,δ is minimal such that for all n > nε,δ and for all f ∈ F ,

Prw∈[0,1](‖x(f)
n − f∗‖ 6 ε) > 1 − δ.

For an algorithm of type (µ +, λ)-ES working over a set F of fitness functions, we define the
branching factor of any algorithm as in Algorithm 2 as

K = sup
I∈I,O

Card{update(I, f, O) | f ∈ F}.

Notice that in the case of selection based algorithms (any algorithm fitting Algorithm 1):

K 6 sup
O

Card{select(O, f) | f ∈ F}

where the supremum holds for:

– O any set of λ points in the case of SB-(µ, λ)-ES;
– O any set of λ + µ points in the case of SB-(µ + λ)-ES.

A similar remark holds in the case of full ranking (µ +, λ)-ES, except that a bound on K is given
by the possible number of choices of selected points together with their order (with respect to
their fitness values).

Let us recall the following result from Teytaud and Gelly [17] (restricted here to our purpose)
relating the convergence rate and the branching factor of a (µ +, λ)-ES.



Theorem 1 (Lower bound on the convergence rate of (µ +, λ)-ES.). Consider a (µ, λ)-ES
or (µ + λ)-ES as in Algorithm 2. Consider a set F of possible fitness functions on domain D,
i.e. F ⊂ R

D, such that any fitness function f ∈ F has only one min-argument f∗, and such that
{f∗ | f ∈ F} = D. Let ε > 0 and δ ∈]0, 1[. Let K be the branching factor of this algorithm. Then

nε,δ >

⌈

log(1 − δ)

log(K)
+

log(N(ε))

log(K)

⌉

.

In the following all logarithms are in base 2. We can define the convergence rate for both
discrete and continuous domains thanks to the following unified definitions. The convergence rate
of an algorithm for precision ε is defined as

CRε =
log N(ε)

dnε, 1

2

.

For a finite domain D = {0, 1}d, N(0) = 2d and the median of the parallel running time is 1/CRε

for ε = 0. For both discrete and continuous domains again, we define the normalized convergence
rate (normalized by the number of individuals generated per epoch) by

NCRε =
log N(ε)

dλnε, 1

2

.

For a finite domain D = {0, 1}d as above, the sequential running time is 1/NCRε for ε = 0. CRε

is relevant for quantifying the parallel convergence rate (i.e. the convergence rate when working
on a parallel computer, with parallel evaluation of the offspring). NCRε is relevant for quantifying
the sequential convergence rate, i.e. when individual are evaluated sequentially.

Theorem 1 can be reformulated with these unified definitions of convergence rates as follows.
Consider a (µ +, λ)-ES satisfying the hypothesis of Theorem 1. Let α(ε) = 1/(1 − 1/N(ε)). Then

CRε 6
log(K)α(ε)

d
and NCRε 6

log(K)α(ε)

dλ
. (1)

4 Sauer’s lemma and VC-dimension

Teytaud and Gelly [17] applied the bounds obtained in Section 3 in the following way: the number
of subsets of size µ of a set of λ points, is at most

(

λ
µ

)

6
(

λ
⌊λ/2⌋

)

6 (2λ/
√

2πλ) – see e.g. [7, p587]

or [9] for these inequalities. This surely holds, but it is a worst case on possible selections: if the
fitness funtions are “nice”, many of these subsets cannot be realized. This is precisely quantified by
Sauer’s lemma in the theory of VC-dimension. In this section, we show how this allows to obtain
more precise lower bounds on the convergence rate of (µ +, λ)-ES.

Given a function f defined over D and r > 0, let Of,r = {x ∈ D | f(x) < r}. We define the
level sets LF of a set F of functions defined over the domain D as

LF = {Of,r | f ∈ F , r > 0}.

We now briefly recall the definition of VC-dimension and Sauer’s lemma [18, 16] – our presentation
is based on [13]. A set system on a set A is a family S of subsets of A. For B ⊆ A, we define the
restriction of S to B as S|B = {S ∩ B | S ∈ S}. The VC-dimension of the set system S defined
over A is defined as sup{|B| | S|B = 2B} where 2B denotes the powerset of B; in other words, it
is the size of the largest subset B of A such that any subset of B can be obtained by intersecting
B with an element of S. Given a set system S over A, the shatter function πS is defined by
πS(m) = max{|S|B | | B ⊆ A, |B| = m}; thus πS(m) is the maximum number of different subsets
of A which can be obtained by intersecting a single subset of size m of A with all elements of S.
We next recall Sauer’s lemma which gives an upper bound on πS in terms of the VC-dimension
of S.



Lemma 1 (Sauer’s lemma). For any set system S of VC-dimension d, then for all integer m,

it holds that πS(m) 6
∑d

i=0

(

m
i

)

.

At last, let us recall the following classical bounds [13]:

d
∑

i=0

(

m

i

)

6 min{
(em

d

)d

, λd, 2m}. (2)

Note that the trivial bound 2m is tight when m 6 d. The interesting case happens when m is
large with respect to the VC-dimension d: the bound becomes polynomial in m in this case. This
element is central for the difference between the results in this paper and results in [17].

4.1 Non-elitist strategies

We first give an upper bound on the branching factor of a SB-(µ, λ)-ES in term of the VC-dimension
of level sets.

Lemma 2. Consider a SB-(µ, λ)-ES as described in Algorithm 1. Let V be the VC-dimension of
the level sets of the family F of fitness functions under consideration. Then the branching factor
of this algorithm satisfies K 6 λV .

Proof. Given a set of λ points P = {x1, . . . , xλ} in the domain D, and f ∈ F , let us define Mf (P )
to be the subset Q of size µ of P correponding to the µ points of P with lowest fitness values with
respect to f . Note that the branching factor satisfies

K 6 max
P⊂D, |P |=λ

|{Mf (P ) | f ∈ F}|.

Now remark that for any P , the set Q of the µ points of P with lowest value (with respect to the
fitness function f) can be separated from P \Q by an element from the level sets: in other words,
there exists O ∈ LF such that O ∩ P = Q. It follows that

|{Mf (P ) | f ∈ F}| 6 πLF
(λ).

If the VC-dimension of LF is at most V , it follows from Sauer’s lemma and the bound given in
Equation 2 that πLF

(λ) 6 λV . Thus K 6 λV . ⊓⊔

Theorem 2 (SB-(µ, λ)-ES). Consider a SB-(µ, λ)-ES (Algorithm 1) in a domain D ⊂ R
d,

such that D = {f∗ | f ∈ F}. Let V be the VC-dimension of the level sets of F . The normalized
convergence rate of this algorithm satisfies NCRε 6 V log(λ)α(ε)/(dλ), where α(ε) = 1/(1 −
1/N(ε)).

Proof. The result easily follows from the upper bound on the branching factor given in Lemma 2,
and from Theorem 1 as stated in Equation 1. ⊓⊔

We next give a couple of applications based on the VC-dimension of classical set systems [7].
Corollaries in the continuous domain. Let’s consider the case of the domain D = [0, 1]d ⊂ R

d.
Then, α(ε) → 1 as ε → 0. The sphere functions is the the set of fitness functions F = {fc | c ∈ D}
where fc(x) = ((x1−c1)

2+. . .+(xd−cd)
2)1/2; the system of level sets has VC-dimension V = d+1

in this case. Quadratic functions with positive Hessian, where level sets are ellipsoids, have VC-
dimension V 6 d + d(d + 1)/2. Functions with hyperrectangles as level sets satisfy V 6 2d. In all
these cases, algorithms of type SB-(µ, λ)-ES have convergence rate CRε = O(V log(λ)/d).

Corollaries for bitstrings. Let’s now consider the discrete case D = {0, 1}d. For ε sufficiently
small, the balls are singletons; it follows that α(0) = 1/(1−1/2d). First, let’s consider the onemax

function (x 7→∑d
i=1 xi) and its symetries: the set of functions is

{x 7→
∑

i∈[[1,d]]

|xi − ηi| ; η ∈ {0, 1}d}.



Then, the VC-dimension of level sets (balls) satisfies V 6 d + 1; therefore, the convergence rate
CRε is at best, for ε sufficently small, α(0) · (d + 1) · log(λ)/d. A second classical set of fitness
functions on the same domain {0, 1}d is linear functions. Since they are obtained by a restriction
of linear functions in R

d, their VC-dimension satisfies V 6 d + 1; hence, the convergence rate
CRε is at best, for ε sufficently small, α(0) · (d + 1) · log(λ)/d. In particular, this includes the
special case of the set of permutations of [[1, d]]. In the same way, sphere functions or quadratic
positive definite functions in the discrete case have a VC-dimension bounded from above by the
VC-dimension in the continuous case, leading to similar results.

4.2 Non-elitist strategies with full ranking

This subsection is organized as follows:

– First we will see to which extent lower bounds obtained for SB-(λ, µ)-ES are modified when
we use the full ranking information and not only selection information (i.e. we move from
Algorithm 1 to Algorithm 2);

– However, we show that the speed-up as a function of λ is at most logarithmic for λ large in
the special case of the sphere function;

– At last, for the sphere function again, we show that for λ = 2d, some significant improvement
holds: CRε moves from Θ(1/d) when λ = 1 to Θ(1) for λ = 2d. This is the tightness of
Theorem 3 for λ = 2d as discussed below.

Keeping the full ranking information. Consider the case of Algorithm 2 instead of Algo-
rithm 1; we have a wider family of algorithms as we can use all the ranking information. There are
evolutionary algorithms which use the full ranking information of the selected points and not only
selection; for example, roulette-wheel with rank-based fitness assignment (stochastic sampling [4],
rank-based fitness assignment [3, 19]), weighted recombination [11, 1] or breda [10]. In this case,
an upper bound on the number of possible outcomes of the selection step (including the ranking of
children) is obtained by multiplying by µ! the number of possible outcomes in the case of selection
only. This gives

NCRε 6 (V log λ + µ log µ) α(ε)/(dλ).

However, we can say better in the case where µ is large with respect to the VC-dimension V of
the level sets of the fitness functions.

Lemma 3. Let F be a set of functions on a domain D; let V be the VC-dimension of level sets
of F . Let x1, . . . , xn be distinct points in D. The number of permutations π of [[1, n]] such that
there exists f ∈ F satisfying

f(xπ(1)) < f(xπ(2)) < . . . < f(xπ(n))

is at most 24V n.

Proof. Let us denote by γ(n) the maximum number of permutations realized by a fixed set of n
points of D with respect to all functions of F . Let p be the integer satisfying 2p−1 < n 6 2p. Let
ñ = 2p. A possible order on ñ points is completely determined by the ñ/2 points with smallest
values with respect to f , multiplied by the number of possible orders on two sets of ñ/2 points.
Thus γ(ñ) 6 ñV γ(ñ/2)2. Iterating this p times until we get sets of size 2, we obtain:

γ(ñ) 6 ñV

(

ñ

2

)2V

. . .

(

ñ

2p−1

)2p−1V

.

It follows that

log(γ(ñ)) 6 V

(

p−1
∑

i=0

2i log

(

ñ

2i

)

)

.



Of course ñ/2i = 2p−i. Moreover,

p−1
∑

i=0

2i(p − i) = 2p+1 − p − 2 6 2ñ 6 4n.

This gives log γ(n) 6 4V n. ⊓⊔

Theorem 3 (Full ranking (µ, λ)-ES). Consider a (µ, λ)-ES (Algorithm 2) in a domain D ⊂
R

d, such that D = {f∗ | f ∈ F}. Let V be the VC-dimension of the level sets of F . Then the
normalized convergence rate of this algorithm satisfies

NCRε 6 V (log λ + 4µ) α(ε)/(dλ)

where α(ε) = 1/(1 − 1/N(ε)).

Proof. The branching factor of this algorithm is bounded by K 6 λV γ(µ) where γ(µ) is the
possible number of orders on the µ selected points with respect to fitness values. Lemma 3 shows
that log γ(µ) 6 4V µ. Using Equation 1 yields the desired bounds. ⊓⊔

Selecting λ individuals among λ individuals is not meaningless if we keep the full ranking
information. Then, the bound on the convergence rate per iteration becomes CRε = O(λV/d).
This does not forbid NCRε = Θ(1). However, we now show that this bound can be improved
in the case of the sphere function. Surprisingly, we improve the lower bound by considering
specifically the sphere function; a similar phenomenon holds in [17], in which the authors show
that some fast convergence rates are possible with specific unnatural fitness functions, easier than
the sphere function.

The case of the sphere function: complexity bounds for λ large. For the sphere function
and the Euclidean norm, we next give an upper bound on the convergence rate of a selection-based
algorithm using full ranking.

Proposition 1. Consider a (µ, λ)-ES, as in Algorithm 2, optimizing the sphere function in a
domain D ⊂ R

d. Then NCRε 6 2(log λ)/λ · α(ε) where α(ε) = 1/(1 − 1/N(ε)).

Proof. Given two distinct points p and q in R
d, we denote by Hp,q be the mediator hyperplane of

p and q, i.e. Hp,q = {x ∈ R
d | ‖x − p‖ = ‖x − q‖}.

At each iteration of the algorithm, an offspring of λ points {x1, . . . , xλ} is generated and
the algorithm receives the sequence of indices of the µ points with lowest fitness values, ordered
with respect to their fitness values. Obviously the branching factor is maximal when µ = λ,
i.e. when the algorithm is given the full ordering of points with respect to their fitness values.
This information corresponds to giving the sign si,j of f(xi) − f(xj) for each 1 6 i < j 6 λ;
this sign is positive or negative since we assumed equality never occurs. The number of possible
sign vectors s = (si,j)16i<j6λ is exactly the number of cells of the arrangement of hyperplanes
{Hxi,xj | 1 6 i < j 6 λ} in R

d. But it is known that n hyperplanes in R
d define at most nd cells

– see chapter 6 of [13]. Since there are
(

λ
2

)

6 λ2 hyperplanes here, we obtain K 6 λ2d. Applying
Equation 1 yields the announced bounds on CRε and NCRε. ⊓⊔

When ε tends towards 0 and as N(ε) → ∞, this gives CRε 6 2 log λ; this shows that the upper
bound given by Theorem 3 cannot be reached in this case.

Although Proposition 1 concerns the case of the sphere function, it can be applied to a more
general setting. Indeed, it applies to systems where the number of sign conditions, i.e. the number
of possible sign vectors (sign(f(xi) − f(xj)))16i<j6n realized by any set of points x1, . . . , xn ∈ D
and any fitness function f ∈ F , can be efficiently bounded. This is in particular the case for
polynomials of bounded degree – see [?] and chapter 10 of [13].



The case of the sphere function: fast convergence rate with λ = 2d. We point out here
that for the specific case of the sphere function, a convergence rate CRε = Θ(1) can be reached
with λ = 2d in the domain [0, 1]d by some algorithm of type full ranking (µ, λ)-ES; this shows
tightness of Theorem 3 for µ = λ = 2d, within logarithmic factors of λ.

This convergence rate is easily obtained with Algorithm 3, which works as follows. It splits
[0, 1]d in the 2d cells delimited by the d hyperplanes of equations xi = 1/2; the full ranking of
the 2d points {xi = η | 1 6 i 6 d, η ∈ {0, 1}} allows to decide in which of these cells lies the
optimum; then the algorithm proceeds recursively. This is quite similar to the Hooke and Jeeves
algorithm [?].

Algorithm 3 An example of algorithm for which the convergence rate is CRε = Θ(1) with
λ = 2d on the sphere function with optimum in [0, 1]d. In this algorithm ei denotes the vector
(0, . . . , 0, 1, 0, . . . , 0) with a unique 1 in position i.

x = 0.5, σ = 0.5.
while true do

Generate λ = 2d distinct points equal to x± σei.
With the ranking information, decide in which octant of x + [−σ, σ]d is the optimum. Move x to the
center of this octant.
Set σ ← σ/2.

end while

After n iterations, the point x
(f)
n proposed by this algorithm satisfies ‖x(f)

n − f∗‖2 6
√

d/2n.
Moreover, this distance is realized by some fitness functions. It follows that nε,1/2 = log 1

ε + 1
2 log d.

On the other hand log(N(ε)) = Θ(d log 1
ε ). Thus, we have obtained:

For λ = 2d : CRε =
log N(ε)

d nε, 1

2

= Θ(1). (3)

4.3 Elitist strategies

For the sake of completeness, we state the analog of previous results in the elitist case. The same
technique as in Theorem 2 applies to the case of SB-(µ + λ)-ES.

Corollary 1 (SB-(µ+λ)-ES). Consider a SB-(µ+λ)-ES as Algorithm 1 in a domain D ⊂ R
d,

such that D = {f∗ | f ∈ F}. Let V be the VC-dimension of the level sets of F . The normalized
convergence rate of this algorithm satisfies NCRε 6 V log(λ + µ)α(ε)/(dλ), where α(ε) = 1/(1 −
1/N(ε)).

Proof. An analog of Lemma 2 yields K 6 (λ+µ)V in this setting, since the selection is performed
among a set of λ + µ points instead of λ points at each iteration. Then the result follows from
Equation 1. ⊓⊔

When µ is very large this leads to CRε = O (V log(µ + λ)); thanks to the use of Sauer’s lemma,
this improves the λ log(µ + λ) bound from [17] by removing the linear dependency in λ. Of course
the last theorem is pertinent when µ + λ > V ; otherwise, one should apply the bound K 6

(

λ+µ
µ

)

used in [17]. One can also obtain an analog of Theorem 3 in the elitist setting with full ranking:

Corollary 2 (Full ranking (µ + λ)-ES). Consider a (µ + λ)-ES (Algorithm 2) in a domain
D ⊂ R

d, such that D = {f∗ | f ∈ F}. Let V be the VC-dimension of the level sets of F . Then the
normalized convergence rate of this algorithm satisfies

NCRε 6 V (log(λ + µ) + 4µ) α(ε)/(dλ)

where α(ε) = 1/(1 − 1/N(ε)). ⊓⊔



A possible variant of full ranking (µ+λ)-ES is obtained with µ = ∞. In this type of algorithms,
an offspring of λ points is generated at each step, and the full ranking of all points generated so
far is given to the algorithm.

Proposition 2 (Full ranking (∞+λ)-ES). Under the hypothesis of Corollary 2, the normalized

convergence rate of a (∞ + λ)-ES satisfies NCRε 6
4V
d ·
(

1 − 1
log N(ε)

)−1

.

Proof. The number of leaves of a computation tree after n steps is bounded from above by the
number L of orders of λn points with respect to some fitness function f ∈ F . By Lemma 3, it holds
that L 6 24V λn. It follows that 24V λnε,δ > (1 − δ)N(ε). This gives nε,1/2λ > (log N(ε) − 1)/4V .

Thus NCRε 6
4V
d · log N(ε)

log N(ε)−1 . ⊓⊔

In the special case of sphere function, an analysis similar to the one of Proposition 1 can be

done here; this allows to obtain the improved bound NCRε 6
log N(ε)

( 1

2
N(ε))

1/2d .

5 Summary of results

Let’s apply the results obtained in the previous section to the simple framework of the domain
D = [0, 1]d with the Euclidean norm. Lower bounds obtained in this setting are summarized in
Figure 1. Higher values mean better possible convergence rates. However, it is not known when
these convergence rates can be achieved. Indeed, results marked with (*) in Figure 1 are improved
in the special case of the sphere function in Section 4.2: this shows that at least in this case,
general bounds on convergence rate derived from VC-dimension are not tight. Discussion of these
results follows.

SB-(µ, λ)-ES SB-(µ + λ)-ES Full ranking Full ranking Full ranking
(µ, λ)-ES (µ + λ)-ES (∞+ λ)-ES

CR V log(λ)/d V log(µ + λ)/d V (log(λ) + µ)/d (*) V (log(λ + µ) + µ)/d 4V λ/d
NCR V log(λ)/(dλ) V log(µ + λ)/(dλ) V (log(λ) + µ)/(dλ) (*) V (log(λ + µ) + µ)/(dλ) 4V/d

Shown in Theorem 2 Corollary 1 Theorem 3 Corollary 2 Proposition 2

Fig. 1. Upper bound on the (normalized) convergence rate in the case of Euclidean norm in the domain
[0, 1]d, when the level sets of fitness functions have VC-dimension V .

Asymptotic speed-up in the case of selection only, non-elitist. In the case of evolution strategies
based on selection only (algorithms of type SB-(µ, λ)-ES), the linear speed-up of selection-based
evolution strategies shown in [5] cannot be obtained for λ large enough. Asymptotically, the speed-
up obtained with such an algorithm is at most logarithmic as shown in Theorem 2.

Selection based algorithms vs. full ranking. When moving from selection based algorithms of
type SB-(µ, λ)-ES to full ranking (µ, λ)-ES, upper bounds on the convergence rate obtained here
in the general case do not forbid a strong improvement asymptotically; essentially, the speed-up
that could be achieved moves from logarithmic to linear in λ.

However, we know from Proposition 1 that the speed-up is at most logarithmic for a full ranking
(µ, λ)-ES in the special case of sphere function – see also the discussion following Proposition 1.
This raises the following question: for which kind of fitness functions is it interesting to keep the
full ranking information?

On the other hand, in the special case of the sphere fonction, we have seen that a linear speed-
up is can be achieved for λ linear in the dimension d in the full ranking case. This may suggest
that for parallel evolution strategies evaluating λ points at once, using a number of processors
linear in the dimension may be a reasonable choice.



A related intriguing question is the convergence rate that can be reached for selection based
algorithms (i.e. without keeping the full ranking information) for the sphere function. In particular,
in the case λ = Θ(d) in dimension d, is it possible to achieve a convergence rate CRε = Θ(1), as
in Equation 3? To the best of our knowledge, this is an open problem.

Elitist vs. non-elitist. Bounds obtained do not show a strong improvement between elistist and
non-elitist strategies: bounds on the convergence rate are of the same order, in both selection
based and full ranking settings. This is simply explained by the fact that any algorithm of type
SB-(µ+λ)-ES can be simulated by an algorithm of type SB-(µ′, λ′)-ES with µ′ = µ and λ′ = µ+λ
(and in the same way, a full ranking (µ + λ)-ES can be simulated by a full ranking (µ′, λ′)-ES).
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