When does quasi-random work ?

Olivier Teytaud 1, 2
2 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : We experiment the efficiency of quasi-random mutations in evolution strategies in continuous domains from various points of views: (i) non-convexity (ii) convergence rate (iii) non-asymptotic behavior (iv) noise. We conclude that quasi-random mutations are great.
Document type :
Conference papers
Complete list of metadatas

Cited literature [28 references]  Display  Hide  Download

https://hal.inria.fr/inria-00287863
Contributor : Olivier Teytaud <>
Submitted on : Friday, June 13, 2008 - 10:42:09 AM
Last modification on : Thursday, April 5, 2018 - 12:30:12 PM
Long-term archiving on : Friday, September 28, 2012 - 3:52:52 PM

File

dcmanew.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00287863, version 1

Collections

Citation

Olivier Teytaud. When does quasi-random work ?. Parallel Problem Solving from Nature, Sep 2008, Dortmund, Germany. ⟨inria-00287863⟩

Share

Metrics

Record views

299

Files downloads

318