
HAL Id: inria-00288376
https://inria.hal.science/inria-00288376v1
Submitted on 16 Jun 2008 (v1), last revised 2 Sep 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interaction Grammars
Bruno Guillaume, Guy Perrier

To cite this version:
Bruno Guillaume, Guy Perrier. Interaction Grammars. [Research Report] 2008, pp.29. �inria-
00288376v1�

https://inria.hal.science/inria-00288376v1
https://hal.archives-ouvertes.fr

Interaction Grammars

Bruno Guillaume

LORIA, INRIA

Bruno.Guillaume@loria.fr

Guy Perrier

LORIA, Université Nancy2

Guy.Perrier@loria.fr

June 16, 2008

Abstract

Interaction Grammar (IG) is a grammatical formalism based on the notion of polarity. Polarities
express the resource sensitivity of natural languages by modelling the distinction between saturated and
unsaturated syntactic structures. Syntactic composition is represented as a chemical reaction guided
by the saturation of polarities. It is expressed in a model-theoretic framework where grammars are
constraint systems using the notion of tree description and parsing appears as a process of building tree
description models satisfying criteria of saturation and minimality.

Keywords Grammatical formalism, Categorial Grammar, Unification, Polarity, Tree description

Introduction

Interaction Grammar (IG) is a grammatical formalism based on an old idea of O. Jespersen [20], L. Tesnière [46]
and K. Adjukiewicz [2]: a sentence is viewed as a molecule with its words as the atoms; every word is equipped
with a valence which expresses its capacity of interaction with other words, so that syntactic composition
appears as a chemical reaction.

The first grammatical formalism that exploited this idea was Categorial Grammar (CG) [39]. In CG,
constituents are equipped with types, which express their interaction ability in terms of syntactic categories.
A way of highlighting this originality is to use polarities: syntactic types can be represented by partially
specified syntactic trees, which are decorated with polarities that express a property of non saturation;
a positive node represents an available grammatical constituent whereas a negative node represents an
expected grammatical constituent; negative nodes tend to merge with positive nodes of the same type and
this mechanism of neutralization between opposite polarities drives the composition of syntactic trees to
produce saturated trees in which all polarities have been neutralized.

The notion of polarity in this sense was not used explicitly in computational linguistics until recently. To
our knowledge, A. Nasr was the first to propose a formalism using polarized structures [31]. Then, nearly at
the same time, R. Muskens [30], D. Duchier and S. Thater [15], and G. Perrier [33] proposed grammatical
formalisms using polarities. The latter was a first version of IG, presented in the framework of linear logic.
This version, which covers only the syntax of natural languages, was extended to the semantics of natural
languages [35]. Then, S. Kahane showed that all well known formalisms (CFG, TAG, HPSG, LFG) can be
viewed as polarized formalisms [21]. Unlike the previous approaches, polarities are used in a non monotonous
way in Minimalist Grammar (MG). E. Stabler [43] proposes a formalization of MG which highlights this.
Polarities are associated with syntactic features to control movement inside syntactic structures: strong
features are used to drive the movement of phonetic forms (overt movement) and weak features are used to
drive the movement of logical forms (covert movement).

With IG, we highlighted the fundamental mechanism of saturation between polarities underlying CG
in a more refined way, because polarities are attached to the features used to describe constituents and
not to the constituents themselves — but the essential difference lies in the change of framework: CG are

1

usually formalized in a generative deductive framework, the heart of which is the Lambek Calculus [23],
whereas IG is formalized in a model-theoretic framework. A particular interaction grammar appears as a
set of constraints, and parsing a sentence with such a grammar reduces to solving a constraint satisfaction
problem. G. K. Pullum and B. C. Scholz highlighted the advantages of this change of framework [37]. Here,
we are especially interested in some of these advantages:

• syntactic objects are tree descriptions which combine independent elementary properties in a very
flexible way to represent families of syntactic trees;

• underspecification can be represented in a natural way by tree descriptions;

• partially well-formed sentences have a syntactic representation in the sense that, even if they have no
complete parse trees, they can be characterized by tree descriptions.

The notion of tree description, which is central in this approach, was introduced by M. Marcus, D. Hindle
and M. Fleck to reduce non-determinism in the parsing of natural languages [27]. It was used again by
K. Vijay-Shanker to represent the adjoining operation of TAG in a monotonous way [48]. Then, it was studied
systematically from a mathematical point of view [40] and it gave rise to new grammatical formalisms [22, 38].

If model theory provides a declarative framework for IG, polarities provide a step by step operational
method to build models of tree descriptions: partially specified trees are superposed1 under the control of
polarities; some nodes are merged in order to saturate their polarities and the process ends when all polarities
are saturated. At that time, the resulting description represents a completely specified syntactic tree. The
ability of the formalism to superpose trees is very important for its expressiveness. Moreover, the control of
superposition by polarities is interesting for computational efficiency.

In natural languages, syntax is a way to access semantics and a linguistic formalism worthy of the name
must take this idea into account. If the goal of the article is to give a formal presentation of IG which
focuses on the syntactic level of natural languages, the formalism is designed in such a way that various
formalizations of semantics can be plugged into IG. The reader can find a first proposal in [35].

An important concern with IG is to provide a realistic formalism, which can be experimented parsing
actual corpora. In order to combine the theoretical development of the formalism with experimentation,
we have designed a parser, Leopar, based on IG [5]. If a relatively efficient parser is a first condition to
get a realistic formalism, a second condition is to be able to build large coverage grammars and lexicons.
With an appropriate tool, XMG [14], we have built a French interaction grammar with a relatively large
coverage [36]. This grammar is designed in such a way that it can be linked with a lexicon independent of
any formalism. Since our purpose in this article is to present the formal aspects of IG, we will not dwell on
the experimental side.

The layout of the paper is as follows:

• Section 1 gives an intuitive view of the main IG features (polarities, superposition and underspecifica-
tion) through significant examples.

• Section 2 presents the syntax of the language used to represent polarized tree descriptions, the basic
objects of the formalism.

• Section 3 explains how syntactic parse trees are related to polarized tree descriptions with the notion
of minimal and saturated model.

• In section 4, we illustrate the expressivity of IG with various linguistic phenomena.

• In section 5, we compare IG with the most closely related formalisms.

• Section 6 briefly presents the computational aspects of IG through their implementation in the Leopar

parser, which works with a relatively large French interaction grammar.

1As no standard term exists, we use the term “superposition” to name the operation where two trees are combined by
merging some nodes of the first one with nodes of the second one.

2

1 The main features of Interaction Grammars

The aim of this section is to give informally, through examples, an overview of the key features of IG.

1.1 A basic example

1.1.1 Syntactic tree

In IG, the parsing output of a sentence is an ordered tree where nodes represent syntactic constituents
described by feature structures. An example of syntactic tree for sentence (1) is shown in Figure 12.

(1) Jean
John

la
it

voit.
sees.

‘John sees it.’

Each leaf of the tree carries a phonological form which is a string that can be empty (written ǫ): in our
example, “Jean” in node [C], “la” in [E], “voit” in [F], ǫ in [G] and “.” in [H]). The phonological projection
of a tree is the left to right reading of the phonological forms of its leaves (“Jean”·“la”·“voit”·ǫ·“.” = “Jean
la voit.” in the example).

[C]
/Jean/
cat = np
funct = subj

[B]
cat = np

funct = subj

[D]
cat = v

[F]
/voit/
cat = v

[E]
/la/
cat = clit
funct = obj

[G]
cat = np

funct = obj

[H]
/./

cat = punct

[A]
cat = s

Figure 1: Syntactic tree for the sentence “Jean la voit.”

1.1.2 Initial tree descriptions

[C1]
/Jean/
cat = np

funct = ?

[B1]
cat -> np

funct <- ?

[D2]
cat ~ v

[F2]
cat ~ aux | v

[E2]
/la/

cat = clit
funct = obj

[G2]
cat -> np

funct <- obj

[A2]
cat ~ s

[G3]
cat <- np

funct -> obj

[A3]
cat -> s

[D3]
cat = v

[B3]
cat <- np

funct -> subj

[F3]
/voit /

cat = v

[H4]
/./

cat = punct

[A4]
cat <- s

{A2, A3, A4} −→ A {B1, B3} −→ B {C1} −→ C {D2, D3} −→ D

{E2} −→ E {F2, F3} −→ F {G2, G3} −→ G {H4} −→ H

Figure 2: IPTDs and interpretation function for the sentence “Jean la voit.”

2To increase readability, only a part of the feature structures is shown in the figures; many other features (gender, number,
mood, . . .) are used in practice. In the following, we only show relevant features in figures.

3

The elementary syntactic structures are initial polarized tree descriptions (written IPTDs in the follow-
ing). Figure 2 shows the four IPTDs used to build the syntactic tree in Figure 1. A syntactic tree is said
to be a model of a set of IPTDs if each node of the syntactic tree interprets some nodes of the IPTDs and
this tree satisfies saturation and minimality constraints. For our example, the interpretation function is also
given in Figure 2.

IPTDs are underspecified trees: for instance, in Figure 2, the precedence relation between nodes [D2]
and [G2] is large: [D2] must be to the left of [G2] but any number of intermediate nodes between [D2] and
[G2] are allowed in the final tree model.

Moreover, IPTDs contain features with polarities acting as constraints. A positive (written ->) polarity
must be associated with a compatible negative (written <-) one: in the example, when building the model,
the positive feature cat -> s of node [A3] is associated with the negative feature cat <- s of node [A4].

1.1.3 Tree descriptions

A more general notion of tree description is not strictly needed in the formalism definition, however this
notion is useful to represent partial parses of sentence and to consider atomic steps in parsing process. These
polarized tree descriptions (PTDs) are formally described in the next section.

1.2 Polarized features to control syntactic composition

The notion of polarity represents the core of the IG formalism.

1.2.1 Positive and negative polarities

Like in categorial grammars, resources can be identified as available (positive polarity) or needed (negative
polarity). Each positive or negative feature must be neutralized by a dual polarity when the model is built.
A polarity which is either positive or negative is said to be active.

This mechanism is intensively used. It is used similarly as in CG, for instance, to control the interactions
of:

• a determiner with a noun;

• a preposition with a noun phrase;

• a verb, a predicate noun or adjective with its arguments defined in the subcategorization frame.

But polarities are also used in a more specific manner in IG to deal with other kinds of interactions. For
instance:

• to handle pairs of grammatical words like ne/pas, . . . (see below subsection 4.1);

• to manage interaction of punctuation with other constructions in the sentence;

• to link a reflexive pronoun se with the reflexive construction of verbs;

• to manage interaction between auxiliaries and past participles.

1.2.2 Virtual polarities

Recently, a third kind of polarity was added which is called virtual (written ∼). A feature with a virtual
polarity must be combined with some other compatible feature which has a polarity different from ∼. It
gives more flexibility to express constraints on the context in which a node can appear. Virtual polarities
are used, for instance:

• to describe interaction between a modifier and the modified constituent (adverb, adjective, . . .), see
subsection 4.3 for an example;

4

• to express context constraints on nodes around the active part of a description; it allows for a control
on the superposition mechanism: in Figure 2, the three nodes [A2], [D2] and [F2] with virtual cat
polarities describe the context in which the clitic “la” must be used; this IPTD requires that three
other non-virtual nodes compatible with [A2], [D2] and [F2] exist in some other IPTDs; in our example,
non-virtual nodes [A3], [D3] and [F3] are given by the verb. This mechanism handles the constraint
on the French clitic “la”. It comes before the verb (node [E2] before node [F2]) but contributes with
an object function (node [G2] after node [F2] because the canonical position of French direct object in
on the right of the verb).

1.2.3 Polarities at the feature level

A difference with respect to other formalisms using polarities is that, in IG, polarities are attached to
features rather than to nodes. It is then possible to use polarities for several different features to control
different types of positive/negative pairing (for instance in our grammar, the feature mood is polarized in
the auxiliaries/past participles interaction; the feature neg is polarized in the interaction of the two pieces
of negation).

Hence with polarities at the feature level, the same syntactic constituent can interact more than once
with its environment through several feature neutralizations.

One of the typical usage of such interactions, that implies more than two nodes is subject inversion. In
French, in some specific cases the subject can be put after the verb (sentences (2), (3) and (4)). However,
uncontrolled subject inversion would lead to over-generation. A solution is to use two different interactions:
between the subject and the verb on one hand; and on the other hand between the subject and some other
word which is specific to the construction where the subject can be postponed.

(2) Jean
John

qu’aime
that

Marie
loves

vient.
Mary comes.

‘John that Mary loves comes.’

(3) Aujourd’hui
Today

commence
begins

le
the

printemps.
spring.

‘Today begins the spring.’

(4) Que
What does

mange
eat

Jean ?
John?

‘What does John eat?’

In the sentence (2), the subject “Marie” of the verb “aime” can be postponed because it is in a relative
clause introduced by the object relative pronoun “que”. Hence, in the noun phrase “Jean qu’aime Marie”
(see figure 3), the proper noun “Marie” interacts both with the verb “aime” (neutralization of the features
cat -> np in [A] and cat <- np in [B]) and with the relative pronoun “qu’ ” (neutralization of the features
funct <- ? in [A] and funct -> subj in [C]). Figure 4 gives the PTD after superposition.

1.3 Tree superposition as a flexible way of realizing syntactic composition

For the grammatical formalisms that are based on trees (the most simple formalism of this type is Context
Free Grammar), the mechanism of syntactic composition often reduces to substitution: a leaf L of a first
tree merges with the root R of a second tree. In this way, constraints on the composition of both trees are
localized at the nodes R and L. They cannot say anything about the environment of both nodes.

The TAG formalism offers a more sophisticated operation, adjunction, but this operation is also limited
in expressing constraints on syntactic composition: instead of merging two nodes, we merge two pairs of
nodes. A node N splits into an up node Nup and down node Ndown, which respectively merge with the root
R and the foot F of the auxiliary tree. Constraints on syntactic composition is now localized on three nodes
N , R and F .

5

/qu'/
cat = cpl

cat ~ v
[C]

cat ~ np
funct -> subj

cat ~ n | np
cat <- s
cpl = que

cat -> np
funct <- obj

cat ~ np

cat <- np
funct -> obj

cat = v

/aime/
cat = v

[B]
cat <- np

funct = subj

cat -> s

/Marie/
cat = np

[A]
cat -> np

funct <- ?

Figure 3: IPTDs for the sequence of words “qu’aime Marie” before superposition

/qu'/
cat = cpl

cat = v
[A-B-C]
cat = np

funct = subj

/aime/
cat = v

/Marie/
cat = np

cat = np
funct = obj

cat ~ n | np
cat = s
cpl = que

cat ~ np

Figure 4: PTD for the sequence of words “qu’aime Marie” after superposition

In IG, the syntactic composition is much more flexible: we can merge any two nodes (in the same PTD
or in two different ones). Then, the propagation of the constraints related to each PTD entails a partial
superposition of the two tree structures around the two nodes. In this way, we can express constraints on
the environment of a node.

(5) Jean
John

en
of it

connâıt
knows

l’auteur.
the author.

‘John knows the author of it.’

Let us consider the sentence (5). The clitic pronoun “en” provides the object “auteur” of the verb
“connâıt” with a noun complement. Our French lexicon gives the IPTD of Figure 5 to represent the syntax
of this usage of the clitic pronoun “en”. In this IPTD, the node [N] with feature prep -> de represents the
trace of the preposition phrase represented by the clitic “en” as a sub-constituent of the object of the verb.
Figure 6 shows a PTD resulting from the (partial) parsing of “connâıt l’auteur”. In this PTD, the node [M]
with feature prep <- de represents the noun complement that is expected by the noun “auteur”.

Now, when we compose “en” with “connâıt l’auteur” (i.e. tree descriptions of Figures 5 and 6), nodes
[N] and [M] have to be merged in order to neutralize their features cat, funct and prep. By propagating
tree well-formedness and polarity constraints, the merging of [N] and [M] entails the partial superposition
(Figure 7) of the two PTDs. Note that there are 9 atomic operations of node merging during this composition.

6

cat ~ v

cat ~ aux | v
/en/

cat = clit

cat ~ np
funct = obj

cat ~ n

cat ~ n

[N]
cat -> pp

funct <- deobj
prep -> de

cat = np | s
cat = prep

prep = de

cat ~ s

Figure 5: IPTD representing the syntax of the clitic “en”

cat = np
funct = obj

cat = n
funct = obj

/l'/
cat = det

[M]
cat <- pp

funct -> deobj
prep <- de

/auteur/
cat = n

funct = obj

/connaît /
cat = v

cat = v

cat -> s

cat <- np
funct -> subj

cat ~ prep
prep = de

cat = np
funct = deobj

Figure 6: PTD representing the syntax of the phrase “connâıt l’auteur”

1.4 Underspecified structures

With IG, both dominance and precedence relations can be underspecified: an IPTD can constrain a relation
between two nodes without restricting the distance between the nodes in the model. Underspecified relations,
combined with tree superposition, increase the flexibility of the formalism: it is possible to give more general
constraints on the context of a node.

Underspecification on dominance relation makes it possible to express general properties on unbounded
dependencies. For instance, the relative pronoun “que” can introduce an unbounded dependency between
its antecedent and a verb which has this antecedent as object of adjectival complement: sentences (6) and

7

cat = v

/connaît /
cat = v

/en/
cat = clit

cat = np
funct = obj

cat = n
funct = obj

/l'/
cat = det

/auteur/
cat = n

funct = obj

[M-N]
cat = pp

funct = deobj
prep = de

cat = np
funct = deobj

cat = prep
prep = de

cat -> s

cat <- np
funct -> subj

Figure 7: PTD representing the syntax of the phrase “en connâıt l’auteur”

(7)3.

(6) Jean
John

que

that
Marie
Mary

aime
loves

� dort.
sleeps

(7) Jean
John

que

that
Pierre
Peter

croit
thinks

que
that

Marie
Mary

aime
loves

� dort.
sleeps

cat ~ vfunct ~ subj
/que/

cat = cpl

[M]
cat <- s
cpl = que

[N]
cat ~ s

cat = s
funct = obj | void

cat ~ n | np

cat ~ np

[E]
cat -> np

funct <- attr | obj

Figure 8: IPTD for the relative pronoun que

3The symbol � indicates the original place of the extracted argument.

8

Figure 8 provides an IPTD to model this use of “que”. An empty node [E] represents the trace of an
object or an adjectival phrase; [N] represents the clause in which the trace is a direct constituent and [M]
represents the relative clause introduced by the relative pronoun “que”. [N] can be embedded at any depth
in [M], which is expressed by an underspecified dominance relation. Figure 9 shows a model for the sentence
(6) in which the relation is realized by merging [M] and [N], whereas Figure 10 shows a model for the sentence
(7) in which the relation is realized by an immediate dominance relation.

In order to deal with island constraints, large dominances need to be controlled. In IG, this is possible
with the notion of filtering feature structures. A filtering feature structure is a polarized feature structure
where all polarities are neutral. A large dominance M >∗ N labelled with a filtering feature structure ψ
means that node M must dominate N in the model and that each node along the path from M to N in
this model must be compatible with ψ. For instance, in Figure 8, such a filter is used to avoid extraction
through nodes that are not of category s.

/Jean/
cat = np

funct = subj

[M-N]
cat = s
cpl = que

cat = v
cat = np

funct = obj
cat = np

funct = subj
/que/
cat = cpl

cat = np
funct = subj

cat = v

/dort/
cat = v

/./
cat = punct

/aime/
cat = v

/Marie/
cat = np

funct = subj

cat = s

Figure 9: Syntactic tree for the sentence (6)

With underspecification on precedence relation, it is possible to describe a free ordering of some argu-
ments. For instance, both sentences (??a) and (??b) can be parsed using the same IPTD (Figure 11) for
the word “demande”.

(8) Jean
John

demande
asks

une
an

invitation
invitation

à
to

Marie.
Mary.

‘John asks an invitation to Mary.’

(9) Jean
John

demande
asks

à Marie
Mary

une
an

invitation.
invitation

‘John asks Mary an invitation.’

2 Formal definitions

This section is dedicated to formal definitions of IG. We define in turn:

9

/Jean/
cat = np
funct = subj

[M]
cat = s
cpl = que

cat = v

[N]
cat = s
cpl = que

funct = obj

cat = np
funct = subj

/que/
cat = cpl

cat = np
funct = subj

cat = v

/dort/
cat = v

/./
cat = punct

/croit/
cat = v

cat = np
funct = obj

cat = v
/que/
cat = cpl

cat = np
funct = subj

/Pierre/
cat = np
funct = subj

/aime/
cat = v

/Marie/
cat = np
funct = subj

cat = s

Figure 10: Syntactic tree for the sentence (7)

cat ~ prep
prep = a

cat ~ n | np
funct = dat

cat <- np
funct -> obj

demande
cat = v

cat = v
cat <- pp

funct -> dat
prep <- a

cat -> s

cat <- np
funct -> subj

Figure 11: IPTD for the verb “demande”

• syntactic trees: the final syntactic structures in the parsing process;

• initial polarized tree descriptions (IPTDs): the initial syntactic structures that are associated to words
at the beginning of the parsing process; PTDs are also defined as a generalization of IPTDs;

• the notion of model which links IPTDs and syntactic trees.

10

2.1 Syntactic trees

2.1.1 Features

Features are built relatively to a feature signature. A feature signature is defined by:

• a finite set F of constants called feature names;

• for each feature name in F a finite set Df of constants called atomic values.

A feature is a couple (f, v) where f ∈ F and v ∈ Df and a feature structure is a set of features with
different feature names.

2.1.2 Syntactic trees

A syntactic tree is a totally ordered tree where:

• each node carries a feature structure,

• each leaf carries a string (which can be the empty string written ǫ) called phonological form.

In syntactic trees, parenthood relation is written M ≫ N (this means that M is the mother node of N),
immediate precedence between sisters is written M≺≺N (this means that M and N have the same mother
and that M is just before N in the sisters ordering)4. We also use the notation M ≫ [N1, . . . , Nk] when the
set of daughters of M is the ordered list [N1, . . . , Nk].

Let ≫∗ denote the reflexive and transitive closure of ≫. If M ≫∗ M ′ then we call path(M,M ′) the list
of nodes from M to M ′:

path(M,M ′) = {Ni}1≤i≤n such that







N1 = M

Ni ≫ Ni+1 for 1 ≤ i < n
Nn = M

We define the phonological projection PP (M) of a node M to be the list of non-empty strings built with
the left to right reading of the phonological forms in the subtree rooted by M :

• if M ≫ [] (i.e. M is a leaf) and the phonological form of M is ǫ then PP (M) = [],

• if M ≫ [] and the phonological form of M is the non-empty string phon then PP (M) = [phon],

• if M ≫ [N1, . . . , Nk] then PP (M) = PP (N1) ◦ . . . ◦ PP (Nk) (where ◦ is the concatenation of lists).

The phonological projection of a syntactic tree is the phonological projection of its root.
We conclude here with a remark. The fact that syntactic trees are completely ordered trees can sometimes

produce unwanted effects. For instance, when a node has several empty daughters, it may be not relevant
to consider the relative order of these nodes. In sentences (8) and (9), the verb “demander” with a direct
object and a dative does not impose any order between arguments. When the two arguments are realized as
clitics in sentence (10), the relative order of clitics is fixed but there are two models with different ordering
on empty nodes corresponding to the two arguments.

(10) Jean
John

la
it

lui
to her

demande.
asks.

’John asks it to her.’

In order to avoid this problem, it is possible to define an equivalence relation that identifies the two
models of the sentence (10). We will not detail this relation in this article.

4We use double symbols to avoid confusion with relations that are defined later for IPTDs.

11

2.2 Polarized tree descriptions

2.2.1 Polarities

Polarities are heavily used in IG to take into account the resource sensitivity of natural languages. Further-
more, the parsing process strongly relies on these polarities.

The current IG formalism uses four polarities:

• positive (written ->): a feature with a positive polarity describes an available resource;

• negative (written <-): a feature with a negative polarity describes a needed resource;

• virtual (written ∼): a feature with a virtual polarity is waiting for unification with another non-virtual
one; virtual polarities are used for expressing constraints on the context in which an IPTD can be
inserted;

• neutral (written =): a feature with a neutral polarity is not concerned by the resource management: it
acts like a filter in case of unification; but unification is not required.

A multiset of polarities is said to be globally saturated:

• if it contains exactly one positive and one negative polarity;

• or if it contains no positive, no negative and a least one neutral polarity.

2.2.2 Polarized features

Whereas features in final syntactic trees are defined by a couple name value, in the tree description a polarity
is attached to each feature and the feature values can be underspecified (with a disjunction of atomic values).

Hence, polarized features are now defined by triples of:

• a feature name f taken from F ,

• a polarity,

• a feature value which is a disjunction of atomic values taken from Df ; a feature value is written as a list
of atomic values separated by the pipe symbol |; the question mark symbol ? denotes the disjunction
of all values in Df .

A polarized feature is written as the concatenation of these three components (for instance cat -> np|pp,
funct <- ? are polarized features).

It is also possible to give additional constraints on feature values with co-references. A co-reference is
noted with <i>; for instance mood = <2> ind|subj is a co-referenced feature.

2.2.3 Polarized feature structures

A polarized feature structure is a set of polarized features with different feature names.

2.2.4 Filtering feature structures

Filtering feature structures are used to represent constraints on underspecified dominances. A filtering feature
structure is a polarized feature structure where all polarities are neutral.

The constraints on underspecified dominances are stated in terms of compatibility. A feature structure
ϕ is said to be compatible with a filtering feature structure Ψ (notation ϕ ⊳ Ψ) if, for each feature name f
defined in both structures, the atomic value associated with f in ϕ is included in the disjunction associated
with f in Ψ.

12

2.2.5 Polarized nodes

A polarized node is described by:

• a polarized feature structure;

• a node type.

Node types express constraints on the phonological projection of nodes in the model. Each node has one
of these four types:

• anchor with an associated phonological form (a non-empty string): the image of an anchor must be a
leaf of the tree model (anchors are drawn with a double border in figures);

• full: a full node must have an image with a non-empty phonological projection;

• empty: an empty node must have an image with an empty phonological projection (empty nodes are
drawn with white background in figures);

• default: a default node has no constraint on its phonological projection.

2.2.6 Polarized tree descriptions

We consider four types of relation between nodes in our tree descriptions:

dominance

The relation M > N constrains the image of M to be the mother of the image of N . In such a relation
it can also be imposed that N is the leftmost (resp. rightmost) daughter of M : we write M > •N
(resp. M > N•). Finally, an arity constraint can be expressed on the set of daughters of a node:
M > {N1, . . . , Nk} imposes that the image of M in the model has exactly k daughters that are images
of the Ni (this arity constraint does not impose any order on the k daughters of the node M).

large dominance

M >∗ N constrains the image of N to be in the subtree rooted at the image of M5. A large dominance
can also carry an additional constraint on the nodes that are on the path from M to N in the model:
M >∗

Ψ N (where Ψ is a filtering feature structure) constrains that the image of N is in the subtree
rooted at the image of M and that each node along the path between the two images carries a feature
structure which is compatible with Ψ.

precedence

M ≺ N constrains the images of the two nodes to be daughters of the same node in the model and the
image of M to be the immediate left sister of the image of N ;

large precedence

M ≺+ N constrains the images of the two nodes to be daughters of the same node in the model and
the image of M to precede the image of N in the ordered tree; this precedence is strict, hence the two
images have to be different.

A polarized tree description (PTD) is defined by:

• a set of polarized nodes;

• a set of relations on these nodes which verifies the condition: if N1 ≺ N2 or N1 ≺+ N2 then there is a
node M such that M > N1 and M > N2.

Note that this condition imposes that N1 and N2 have the same mother in the IPTD and not only in
the model.

5Note that the symbol >
∗ is another relation which is not defined as the reflexive and transitive closure of the relation >.

The same remark applies to relations ≺
+ and ≺ defined below.

13

2.2.7 Initial polarized tree descriptions

IPTDs are elementary structures that are linked with words in the grammar; an IPTD is a PTD which
verifies the additional constraint: the relation > ∪ >∗ defines a tree structure on the nodes, this implies
connexity and the fact that except the root node, all other nodes N have exactly either one mother node M
(M > N) or one ancestor node M (M >∗ N or M >∗

Ψ N).

3 Syntactic trees as models of IPTDs

The aim of this section is to describe precisely the link between IPTDs and syntactic trees.

3.1 Syntactic trees as models of set of IPTDs

Let G be an interaction grammar. A syntactic tree T is a model of a multiset of IPTDs P = {Pi}1≤i≤k if
there is an interpretation function I from the nodes NP of the multiset P to nodes NT of the syntactic
tree T such that:

Dominance adequacy

• if M,N ∈ NP and M > N then I(M) ≫ I(N).

Large dominance adequacy

• if M,N ∈ NP and M >∗ N then I(M) ≫∗ I(N).

• if M,N ∈ NP and M >∗
Ψ N then I(M) ≫∗ I(N) and for each node P in path(I(M), I(N)),

ϕ(P) ⊳Ψ.

Precedence adequacy

• if M,N ∈ NP and M ≺ N then I(M)≺≺I(N).

Large precedence adequacy

• if M,N ∈ NP and M ≺+ N then I(M)≺≺+I(N).

Feature adequacy

• if M ∈ NT and f = v is a feature of M then, for each node N in I−1(M), either v is an admissible
value for the feature f in N or N does not contain the feature name f ;

• if M,N ∈ NP both contain a feature f with the same co-reference, then the values associated
with f in I(M) and I(N) are identical.

Node type adequacy

• if M ∈ NP is an anchor with phonological form phon, then PP (I(M)) = [phon];

• if M ∈ NP is empty then PP (I(M)) = [];

• if M ∈ NP is full then PP (I(M)) 6= [].

Saturation

• the multiset of polarities associated to a feature name f in the set of nodes in I−1(M) which
contains the feature f is globally saturated.

Minimality

• I is surjective;

• if M,N ∈ NT and M ≫ N then there is M ′ ∈ I−1(M) and N ′ ∈ I−1(N) such that M ′ > N ′;

14

• if M ∈ NT and f = v is a feature of M then at least one node in I−1(M) contains a feature with
name f ;

• if M ∈ NP is a leaf node with a non-empty phonological form phon, then I−1(M) contains
exactly one anchor node with phonological form phon.

The four points defining minimality control the fact that “nothing” is added when the model is built.
They respectively control the absence of node creation, parenthood relation creation, feature creation, and
phonological form creation.

Note that there can be more than one interpretation function for a given tree model.

3.2 Polarized grammars

An interaction grammar G is defined as a set of IPTDs. The tree language defined by the grammar G is the
set of syntactic trees which are the models of a multiset of IPTDs from G. The string language defined by a
grammar is the set of phonological projections of the trees in the tree language.

We said that a syntactic tree T is a parse tree of a sentence S, that is a list of words S = w1, . . . wn if:

• T is a model of some multiset of IPTDs from G,

• PP (T) = [w1, . . . , wn].

An interaction grammar is said to be lexicalized if each IPTD contains at least one anchor (an anchor is
a leaf with a non-empty phonological form).

An interaction grammar is said to be strictly lexicalized if each IPTD contains exactly one anchor. In this
case, the link with the words of the language can be seen as a function which maps a word to the subset of
IPTDs which have this word as the phonological form of its anchor. The grammar written so far for French
is strictly lexicalized.

4 The expressivity of Interaction Grammars

We present four aspects of IG that highlight their expressivity. We illustrate these aspects with examples
taken from our French IG because it is the only IG which is fully implemented at the moment, but there is
no essential obstacle to use IG with other languages (an English IG is being written).

4.1 The use of polarities for pairing grammatical words

In French, there are some grammatical words that are used in pairs:

• comparative, “plus . . . que” (more . . . than), “moins . . . que” (less . . . than), “si . . . que” (so . . . that),
“aussi . . . que” (as . . . as);

• negation, “ne . . . pas” (not), “ne . . . rien” (nothing), “ne . . . aucun” (no), “ne . . . personne” (nobody),
. . .;

• coordinating words like “soit . . . soit . . .” (either . . . or), “ni . . . ni . . .” (neither . . . nor), “ou . . . ou
bien . . .” (either . . . or).

The difficulty of modelling them is that their relative position in the sentence is more or less free. For
instance, here are examples that illustrate various positions of the determiner “aucun” used with the particle
“ne”:

(11) [Aucun]
No

collègue
colleague

[ne] parle
talks

à
to

la
the

femme
wife

de
of

Jean.
John.

‘No colleague talks to John’s wife.’

15

cat ~ s

cat ~ v
neg -> true

cat ~ aux | v
/ne/

cat = clit
cat <- n

funct -> ?
/aucun/

cat = det

cat ~ v
neg <- true

cat ~ s

cat ~ np | pp

cat -> np
funct <- ?

cat = np | pp

Figure 12: IPTDs associated with the particle “ne” and the determiner “aucun”

(12) Jean
John

[ne] parle
talks

à
to

la
the

femme
wife

d’
of

[aucun]
no

collègue.
colleague.

‘John talks to no colleague’s wife.’

(13) Le
The

directeur
director

dans
in

[aucune]
no

entreprise
compagny

[ne] décide
decides

seul.
alone.

‘The director in no compagny decides alone.’

(14) Jean
John

[n’] est
is

à
at

la
the

tête
head

d’
of

[aucune]
no

entreprise.
compagny.

‘John is at the head of no compagny.’

(15) ∗Jean
John

qui
who

dirige
heads

[aucune]
no

entreprise,
compagny,

[n]’est
isn’t

satisfait.
satisfied.

The IPTDs from Figure 12, associated with the words “ne” and “aucun”, allow all these sentences to
be correctly parsed. The word “ne” put a positive feature neg -> true on the maximal projection of the
verb that it modifies and this feature is neutralized by a dual feature neg <- true provided by “aucun”. In
its IPTD, there is a constraint in the underspecified dominance relation that forbids the acceptation of the
sentence (15).

4.2 Constrained dominance relations modelling long-distance dependencies

Underspecified dominance relations are used to represent unbounded dependencies and the feature structures
that label these relations allow for the expression of constraints on these dependencies, such as barriers to
extraction.

Relative pronouns, such as “qui” or “lequel”, give rise to unbounded dependencies in series, a phenomenon
that is called pied piping. Sentence (16) is an example of pied piping.

(16) Jean
John

[dans
in

l’
the

entreprise
compagny

de
of

qui]
whom

Marie
Mary

sait
knows

que
that

l’
the

ingénieur
engineer

travaille
works

� est
is

malade.
sick.

16

‘John, in the compagny of whom Mary knows the engineer works, is sick.’

(17) ∗Jean
John

[dans
in

l’
the

entreprise
compagny

de
of

qui]
whom

Marie
Mary

qui
who

travaille
works

� le
knows

connâıt
it

est
is

malade.
sick.

(18) ∗Jean
John

[dans
in

l’
the

entreprise
compagny

qui
which

appartient
belongs

à
to

qui]
whom

Marie
Mary

travaille
works

� est
is

malade.
sick.

In example (16), there is a first unbounded dependency between the verb “travaille” and its extracted
complement “dans l’entreprise de qui”. The trace of the extracted complement is denoted by the symbol
�. This dependency is represented with an underspecified dominance relation in the IPTD describing the
syntactic behaviour of the relative pronoun “qui” on figure 13. The dominance relation links the node [RelCl]
representing the relative clause “[dans l’entreprise de qui] Marie sait que l’ingénieur travaille �” and the
node [Cl] representing the clause “que l’ingénieur travaille �”, in which the extracted prepositional phrase
“dans l’entreprise de qui” plays the role of an oblique complement. The filtering feature structure labelling
the relation expresses that the path from [RelCl] to [Cl] can only cross a sequence of object clauses. This way,
the sentence (17) is rejected because the dependency crosses a noun phrase, which violates the constraint.

Inside the extracted prepositional phrase, there is a second unbounded dependency between the head of
the phrase and the relative pronoun “qui”, which can be embedded more or less deeply in the phrase. This
dependency is also represented on figure 13 with an underspecified dominance relation. This dominance
relation links the [ExtrPP] node and the node representing the relative pronoun “qui” and the associated
filtering feature structure expresses that the embedded constituents are only common nouns, noun phrases
or prepositional phrases. Finally, the sentence (18) is rejected.

[Cl]
cat ~ s

[TracePP]
cat -> pp

funct <- <4>?
prep -> <5>?

cat = npcat = prep

[RelCl]
cat <- s

mood = cond | ind | inf
typ = decl

cat = s

[ExtrPP]
cat <- pp

funct -> <4>?
prep <- <5>?

/qui/
cat -> np

funct <- adj | aobj | dat | deobj | obl
gen = <1>f | m
num = <2>pl | sg
pers = <3>3

cat = n | np | pp

[ModN]
cat ~ np
gen = <1>f | m
num = <2>pl | sg
pers = <3>3

[Ant]
cat ~ n | np

Figure 13: IPTD associated with the relative pronoun “qui” used in an oblique complement

17

4.3 Adjunction of modifiers with virtual polarities

In French, the position of adverbial complements in a sentence is relatively free, as the following examples
show:

(19) Le soir,
At night,

Jean
John

va rendre visite à
visits

Marie.
Mary.

‘At night, John visits Mary.’

(20) Jean,
John,

le soir,
at night,

va rendre visite à
visits

Marie.
Mary.

‘At night, John visits Mary.’

(21) Jean
John

va rendre visite
visits

le soir

at night
à Marie.

Mary.

‘John visits Mary at night.’

(22) Jean
John

va rendre visite à
visits

Marie
Mary

le soir.
at night.

‘John visits Mary at night.’

These variants express different communicative intentions but the adverbial complement “le soir” is a
sentence modifier in all cases.

The virtual polarity ∼ was absent from the previous version of IG [35]. Modifier adjunction was performed
in the same way as in several formalisms (CG, TAG) by adding a new level in the syntactic tree including the
modified constituent: instead of a node with a category X, we inserted a tree with a root and two daughters;

• the root represents the constituent with the category X after modifier adjunction;

• the first daughter represents the constituent with the category X before modifier adjunction;

• the second daughter represents the modifier itself.

Sometimes, this introduction of an additional level is justified, but most of the time it brings additional
artificial complexity and ambiguity. Borrowing an idea from the system of black and white polarities of
A. Nasr [31], we have introduced the virtual polarity ∼. This polarity allows for the introduction of a
modifier as an additional daughter of the node that it modifies without changing anything in the rest of the
tree including the modified node. Figure 13 gives an example of an IPTD modelling a modifier: the relative
pronoun “qui”, after combining with the relative clause that it introduces, provides a modifier of a noun
phrase. The noun phrase to be modified is the antecedent of the relative pronoun, represented by node [Ant]
and the noun phrase, after modification, is the root [ModN] of the IPTD.

4.4 The challenge of coordination

Even if we restrict ourselves to syntax, modelling coordination is a challenge. First, there is no consensus
about the analysis of the phenomenon in thslae communauty of linguists [10, 18]. Then, whatever the
chosen approach is, formalization encounters serious obstacles. In particular, both Phrase Grammars and
Dependency Grammars have difficulties for modelling coordination of non-constituents.

J. Le Roux and G. Perrier propose to model coordination in IG with the notion of polarity [25, 24]. From
this notion, they define the interface of a PTD as the nodes that carry positive, negative or virtual polarities.
The interface characterizes the ability of a phrase to interact with other phrases. Two phrases can be
coordinated if the PTDs representing their syntactic structure offer the same interface. Then, coordination
consists in merging the interfaces of the two PTDs. This merging needs to superpose several positive or
negative polarities and it also requires parse structure to be DAGs rather than trees. Hence, the merge

18

of two interfaces cannot be modelled directly in IG and it is simulated in the PTD associated with a
coordination conjunction: this is divided into three parts; two lower parts are used to saturate the interfaces
of the conjuncts and a higher part presents the common interface to the outside.

With this principle, it is possible to parse the following sentences, which illustrate different kinds of
non-constituent coordination:

(23) Jean
John

[boit
drinks

du vin]
wine

et
and

[mange
eats

du pain].
bread.

‘John drinks wine and eats bread.’

(24) [Jean
John

aime]
likes

mais
but

[Marie
Mary

déteste]
dislikes

la compétition.
competition.

‘John likes but Mary dislikes competition.’

(25) Jean
John

donne
gives

[des fleurs
flowers

à
to

Marie]
Mary

et
and

[des bonbons
candies

à
to

Pierre].
Peter.

‘John gives flowers to Mary and candies to Peter.’

(26) La
The

destruction
destruction

[de
of

la
the

gare routière
bus station

par
by

les bombes]
bombs

et
and

[de
of

la
the

gare ferroviaire
railway station

par
by

les tanks]
tanks

rend
makes

l’ accès
access

à
to

la
the

ville
city

difficile.
difficult.

‘The destruction of the bus station by bombs and of the railway station by tanks makes access to the
city difficult.’

(27) Jean
John

voit
sees

[sa
its

soeur
sister

lundi]
on monday

et
and

[son
its

frère
brother

mardi].
on tuesday.

‘John sees its sister on monday and its brother on tuesday.’

(28) [Jean
John

aime
likes

le ski]
skiing

et
and

[Marie
Mary

� la
swimming.

natation].

‘John likes skiing and Mary likes swimming.’

Sentences (23) and (23) respectively illustrate left and right node raising. Sentences (25) and (26) illus-
trate coordination of argument clusters. Sentence (27) coordinates clusters mixing arguments and adjuncts.
Sentence (28) illustrates the coordination of sentences with gaps. Here, the gap, which is represented by the
� symbol, corresponds to the elided verb “aime”.

5 Comparison with other formalisms

Currently, there exists no linguistic formalisms that prevails over the others. This means that the domain
of natural language modelling is still in an embryonic state and the congestion of the market is not a good
reason for not examining any new proposal. On the contrary, the market is open. But any new formalism
has to show some advantages with respect to the established ones in order to survive. The challenge is
to approximate linguistic generalities as much as possible while remaining tractable. Remaining tractable
means being able to build large scale grammars and efficient parsers. Under this angle, the number of
relevant formalisms is not that important: among the most well known and largely used, there are LFG,
HPSG, TAG or CCG. The comparison of IG with other formalisms will highlight some of its strong features.

19

5.1 Categorial Grammar

The list of linguistic formalisms above mentions CCG (Combinatory Categorial Grammars) [45]. CCG are
part of the CG family and since IG stems from CG, it is natural to begin the comparative study with CG.

IG shares with CG the fact that syntactic composition is based on the resource sensitivity of natural
languages, a property which is built-in in both kinds of formalisms. However, they differ in the framework
that they use. For this, we refer again to the distinction between two approaches for syntax introduced by
G. Pullum and B. Scholtz [37] and we can claim that CG uses a generative-enumerative syntactic (GES)
framework whereas IG uses a model-theoretic syntactic (MTS) framework. In other words, CG derives all
acceptable sentences of a language from a finite set of axioms, the lexicon, using a finite set of rewriting rules.
IG associates sentences with a set of constraints, which are solved to produce their syntactic structures.

[34] proposes a method for transposing grammars from the GES to the MTS framework under some
conditions. This method applies to CG and can be used to compare IG with CG by putting them in the
same MTS framework. The precise description of such a translation goes beyond the goal of this article but
we give an outline of its output.

To be more precise, let us focus on a particularly interesting member of the CG family: CCG. The
formalism of CCG is a very good compromise between expressivity, simplicity and efficiency. At the same
time, it is able to model difficult linguistic phenomena, the most famous being coordination [44], and it is
used for parsing large corpora with efficient polynomial algorithms and large scale grammars [19, 11].

If we use the method proposed in [34] to translate a particular CCG in the MTS framework, we obtain
a very specific IG with the following features as output:

• Each syntactic type is translated into an IPTD with a particular shape. Nodes are labelled with feature
structures which contains only the cat feature. The values of this feature are the atomic types of the
CCG. Immediate dominance relations always go from nodes with a positive feature to nodes with a
negative feature (possibly with intermediate nodes without labels). For large dominance relations, this
is the contrary.

• In the output IPTD, there are no precedence relations. Word order is controlled by a special feature
phon, which gives the phonological form of each node. This feature is neutral and takes its values from
the monoid of the words of the language. We need to extend the system of IG feature values to allow
the presence of variables inside terms representing phon values. These variables are used to model the
sharing of unknown substrings of words by phon values of different nodes.

• Successful CCG derivations are translated into constructions of IPTD models. However, all valid IPTD
models do not correspond to successful derivations, because the particular form of the combinatory
rules imposes constraints to superposition. Conversely, in very rare cases, CCG derivations cannot be
translated into constructions of IPTD models because of two rules: backward and forward crossed com-
positions. By allowing word permutation, these rules contradict the monotony of the MTS framework.
A simple solution consists in discarding the two problematic rules and considering only a restriction of
CCG.

Even if the translation of a CCG into an IG is not perfect, this highlights the difference between the two
formalisms. CCG can be viewed as IG with additional constraints on the form of IPTDs and superpositions.
What is important, is that node merging is restricted to pairs of nodes with dual cat features. This has two
important consequences:

• It is not possible to express passive constraints on the environment of a syntactic object, as we do in
IG using nodes with virtual and neutral features.

• The internal structure of an IPTD, that is its saturated nodes, is ignored by CCG. The only thing that
matters is its interface, that is its unsaturated nodes.

The abstraction power that is expressed by this last remark is a source of over-generation for CCG. To
limit over-generation, [3] have introduced modalities to control the applicability of combinators rules. These

20

modalities are specified in the lexicon, so that the syntactic behaviour of a word can be more or less con-
strained. The problem is that we cannot relativize these constraints with respect to the environment in
which the word can be situated. For instance, consider the following sentence:

(29) Mary whom John met yesterday is my wife.

In CCG, the relative pronoun “whom” provides an object for the clause that it introduces on the right
periphery of this clause, but the transitive verb “met” expects its object immediately on its right. The way
to solve this contradiction is to assign a modality to the lexical entries of “met” and “yesterday”, which allow
the permutation of the object of “met” with “yesterday”. But, doing this, we make the following sentence
acceptable:

(30) * John met yesterday Mary.

IG does not present such an drawback, because “yesterday” is taken as a sentence modifier and it is modelled
according to the method presented in subsection 4.3.

To summarize, multi-modal CCG limits over-generation but does not eliminate it.

5.2 Dependency Grammars

Like CG, Dependency Grammar (DG) [32] does not denote a unique formalism but rather a family of
formalisms. At the root of this family, there is the concept of dependency. A dependency links two words
in an asymmetrical manner: one word is the régissant and the second word is the subordonné, according to
the terminology introduced by L. Tesnière, the pioneer of DG [47].

Even if there is no explicit notion of polarity in DG, this underlies the notion of dependency. The
potentiality of two words to establish a dependency between themselves can be expressed by equipping the
régissant with a negative feature and the subordonné with a positive feature, the two features having the
same value, the POS (part-of-speech) of the subordonné for instance. This is the general idea, which must
be made more precise by examining the different DG formalisms. A key feature which differentiates DG
variants is the relationship between dependency structure and word order.

Projective DG forbid cross-dependencies. They have interesting computational properties and they can be
easily translated into phrase structure grammars, especially Adjukiewicz-Bar-Hillel (AB) grammars [4]. Since
AB grammars can be viewed as CCG with only two combinatory rules, forward and backward applications,
the consequence is that projective DG can be translated into IG following the method presented above.
This translation highlights the limits of projective DG. In fact, these are not expressive enough to represent
cross-dependencies or long-distance dependencies.

If we look at non projective DG, there is no formalism that has reached sufficient maturity to be used for
developing real grammars. Nevertheless some works are promising and we propose to focus on Generalized
Categorial Dependency Grammar (GCDG) [13], which constitute a good compromise between expressivity
and complexity.

GCDG include two kinds of dependencies, thus giving birth to two independent formal systems:

• projective dependencies are represented by AB grammars, slightly extended to better take modifiers
into account,

• discontinuous dependencies are represented with polarities that neutralize themselves in dual pairs.

A word that is able to govern another one in a discontinuous dependency is equipped with a negative polarity
typed by the category of the subordonné and the subordonné is equipped with the dual polarity.

This representation of discontinuous dependencies makes the comparison with IG difficult. It is not
possible to translate it in the framework of IG because it has no simple relationship with dominance and
precedence relations, which consider phrases and not words. In IG, discontinuous dependencies are generally
represented in the IPTD associated with only one of the word responsible for the dependency, by means of
an underspecified dominance relation (see section 4).

21

Another reason that makes the comparison between IG and GCDG difficult is that there is no effective
GCDG for any language. Nevertheless, we can make some remarks. In GCDG, the iteration operator ∗
allows to represent modifiers by sister adjunction as in IG. On the other hand, the hermetic separation
between the two kinds of dependencies does not allow to express that the same words require a dependency
when it does not matter if the dependency is projective or discontinuous.

Because of the fine dependency structure that they propose, GCDG can contribute to make clearer a
controversial issue in DG, the analysis of grammatical function words, but they will be confronted to syntactic
constructions, which remain problematic for all DG: coordination for instance.

5.3 Unification Grammars

The family of Unification Grammars (UG) includes all formalisms for which the mechanism of unification
between feature structures occupies a central position. HPSG [41] is the member of this family for which
the idea is integrated as completely as possible. The grammatical objects are typed feature structures
(grammatical rules, lexical entries and partial analysis structures) and the only composition operation is
unification.

From some angle, HPSG feature structures can be viewed as DAGs, in which edges are labeled with
feature names and leaves with atomic feature values. In this way, unification appears as DAG superposition.
As in IG, superposition gives flexibility to HPSG and allows to represent sophisticated passive contexts of
syntactic constructions.

The main difference is that the notion of unsaturated structure is not built-in in the composition mech-
anism such as for IG with the notion of polarity. However, this notion is present in some grammatical
principles such as the Valence Principle.

Moreover, HPSG presents three important differences with respect to IG

• DAG are more expressive than trees. In this way, some phenomena are easier to model with HPSG
than with IG. For instance, factorization, which is specific to coordination, is directly represented in
HPSG [29], whereas it must be simulated in IG (see paragraph 4.4 and [25]).

• Underspecification is more restricted in HPSG than in IG; it reduces to the underspecification associated
with unification. All dominance relations are completely specified, so that unbounded dependencies
are represented with another mechanism: the slash feature, the propagation of which allows to mimic
unbounded dependencies.

• word order is not expressed by linear order between DAG nodes but with a specific feature PHON.

Lexical Functional Grammar (LFG) [9] is another well known member of the UG family, but because
of their functional structures paired with constituency structures, they are difficult to compare with IG
IPTDs. Nevertheless, presenting functional structures as path equations allows the expression of a form of
underspecification, which is not present in HPSG but which exists in IG: the concept of functional uncertainty
is similar to the IG notion of large dominance, with the same possibility of constraining the dominance path
between nodes without determining its length.

Tree Adjoining Grammar (TAG) [1] is often ranked in the UG family, even if they are rather tree grammars
but their use of unification is more limited: contrarily to previous formalisms, it cannot be used to superpose
structures. Structures only combine by adjunction, which greatly limits the expressivity of the formalism.

6 Computational aspects

A question that arises naturally for a new formalism is its complexity. The theoretical complexity is an
important point but the less formal notion of “practical” complexity is also crucial for applications. The
practical complexity can be thought as: “how does the formalism behave with real grammars and real
sentences?”.

22

It is clear that IG is not as mature as the other formalisms presented in the previous section. However,
some theoretical and practical works presented in this section give some insights about this question in the
IG framework.

The current work focuses on strictly lexicalized IG: the methods and algorithms presented in this section
apply to grammars where each IPTD contains exactly one anchor. For such a grammar, we call lexicon
the function that maps each word to its corresponding set of IPTDs. However, it is easy to transform any
lexicalized grammar into an equivalent strictly lexicalized grammar with the mechanism used in section 4.1.

In the particular case of strictly lexicalized grammar, the definition of section 3.2 can be refomulated as
follows. A sentence S = w1, . . . wn has a parse tree T iff there is an ordered list of IPTDs P = [P1, . . . ,Pn]
such that:

• for all 1 ≤ i ≤ n, wi is the phonological form of the anchor of Pi;

• T is a model of the multiset {P1, . . . ,Pn};

• PP (T) = [w1, . . . , wn].

Hence, the parsing process can be divided in two steps: first, select for each word of the sentence one of
the IPTDs given by the lexicon; then build a syntactic tree which is a model of the list of IPTDs chosen in
the first step. The choice of one IPTD for each word of the sentence is called a lexical selection.

6.1 Complexity

The general parsing problem for IG is NP-complete, even if the grammar is strictly lexicalized. It can be
shown for instance with an encoding of a fragment of linear logic (Intuitionistic Implicative Linear Logic) in
IG. Intuitively, the complexity has two sources:

• Lexical ambiguity. In a lexicalized IG, each word of the lexicon can be associated to several IPTDs.
Hence, the numbers of lexical selections for a given sentence grows exponentially with the number of
words it contains.

• Parsing ambiguity. When a lexical selection is done, a model should be built for the corresponding
list of IPTDs. Building a model is equivalent to finding a partition on the set of nodes of the IPTDs
such that each node obtained by the mergings of nodes that are in the same subset of the partition are
saturated. Once again, there is an exponential number of possible partitions.

The next two subsections address these two sources of ambiguity. As already mention above, we address
the problem of practical complexity. Hence, we are looking for algorithms which behave in an interesting
way for real NLP grammars. For instance, the formalism can be used to define a grammar without any
active polarity, but this is clearly out of the IG “spirit”. The methods described below are designed for
well-polarized grammars.

6.2 Global filtering of lexical selections

In this section, we describe a method which is formalized in a previous paper [6] and we see how it applies to
the IG formalism. The idea is close to tagging, but it relies on more precise syntactic descriptions than POS-
tagging. Such methods are sometimes called super-tagging [8]: we consider an abstraction of our syntactic
structures for which parsing is very efficient even if this abstraction brings over-generation. The key point
is that a lexical selection which is not parsed in the abstract level cannot be parsed in the former level and
can be safely removed.

In IG, we consider as an abstract view of an IPTD the multiset of active features present in the IPTD.
Then, a lexical selection is valid in the abstract level if the union of the multiset associated to IPTDs is
globally saturated.

23

The parsing at this abstract level is efficient because it can be done using finite state automata (FSA).
For each couple (f, v) of a feature name and a feature value, an acyclic automaton is build with IPTDs as
edges and integers as state: the integer in a state is the count of polarities (positive counts for 1 and negative
for −1) for the couple (f, v) along every paths from initial state to the current state. Finally, only lexical
selections which end with a state labelled with 0 should be kept.

An automaton is built for each possible couple (f, v), then a FSA intersection of the set of automata
describes the set of lexical selections that are globally saturated.

The fact that feature values can be disjunction of atomic values in IPTDs causes the automata to be non
deterministic. We turn them into deterministic ones using intervals of integers instead of integers in states
of the automaton.

When a grammar uses many polarized features, the method can be very efficient and remove many bad
lexical selections before the deep parsing step. For instance, for the sentence (6.2) the number of lexical
selections reduces from 578 340 to 115 (in 0.08s).

(31) L’
The

ingénieur
engineer

le
him

présente
presents

à
to

l’
the

entreprise.
enterprise.

‘The engineer presents him to the enterprise.’

The main drawback of the method is that the count of polarities is global and does not depend on word
order: any permutation of a saturated lexical selection is still saturated. Some recent or ongoing works try
to apply some finer filters on automaton. In [7], a specialized filter is described dealing with coordination for
instance. For each IPTD for a symmetrical coordination, this filter removes the IPTD if it is not possible to
find two sequences of IPTD on each side of the coordination with the expected multiset of polarities.

6.3 Deep parsing

Deep parsing in IG is a constraint satisfaction problem. Given a list of IPTDs, we have to find the set of
models of the corresponding multiset which respects the word order of the input sentence.

Three algorithms have been developed for deep parsing in IG:

Incremental This algorithm scans the sentence word by word. An atomic step consists in chosing a couple
of positive and negative features to superpose. In others words, an interpretation function is built step
by step, guided by the saturation property of models.

CKY-like The CKY-like algorithm, as the incremental one, tries to build the interpretation function step
by step. The difference with the previous one is the way the sentence is scanned; it is done by filling a
chart with partial parsing corresponding to sequence [i, j] of consecutive words.

Earley-like This last algorithm tries to build at the same time the tree model and the interpretation
function. It proceeds with a top-down/left-right building of the tree.

6.3.1 Node merging

The first two algorithms use the same atomic operation of node merging. This operation takes as input a
PTD D and a couple of nodes (N1, N2); it returns a new PTD D′ which verifies that each model of D′ is a
model of D.

The model searching can be decomposed in small node merging steps because of the following property:
if the unsaturated PTD D has a model T then there are two dual nodes N1 and N2 such that T is still a
model of the PTD obtained by merging of N1 and N2 in D.

Technically, when two nodes are merged, some other constraint propagation rules can be applied to the
output description without changing the set of models. For instance, if M1 > N1 and M2 > N2 and N1 is
merged with N2 then M1 is necessarily merged with M2.

24

6.3.2 The incremental algorithm

As already said, there is an exponential number of possible choices of couples of nodes to merge. The
incremental algorithm tries to mimic the human reading of a sentence and uses a notion of bound inspired
by psycholinguistics motivations to guide the parsing. This notion of bound is used in a very similar spirit
in Morrill’s works [28].

The psycholinguistic hypothesis is that the reading uses only a small memory to represent the already
read part of the sentence. Hence, we bound the number of unresolved dependencies that can be left open
while scanning the sentence. In our context, we bound the number of active polarities. Then the algorithm
uses a kind of shift/reduce mechanism: we start with an empty PTD and then we used recursively the two
rules:

REDUCE if the current PTD has a number of active polarities greater than the bound or if there is no
more IPTD to add, then try the different ways to neutralize two dual active features;

SHIFT else, add the next IPTD to the current PTD.

In the Leopar implementation, the search space is controlled in the REDUCE operation. Couples of
active polarities are ordered in such a way that multiple constructions of the same model which differ only
by a permutation on the neutralizations order are avoided.

6.3.3 The CKY-like algorithm

The well-known CKY parsing algorithm for CFG can be adapted to IG. The basic idea is to focus on
contiguous sequence of words and to use the following informal rule:

A PTD for a sequence [i, j] is obtained with a neutralization of two dual features in two different PTDs
for sequences [i, k] and [k + 1, j].

This rule is used recursively to fill a chart. In the end, we consider the PTDs obtained for the whole
sentence and search for models: use the REDUCE rule of the previous algorithm until there is no more
active polarity and second, build a totally ordered tree which is a model of the saturated PTD obtained in
the first step.

The advantages of this algorithm is that it does not depend on a bound and that it is able to share more
sub-parsing. The drawback is that it is designed to find only models that follow some continuity conditions:
for instance, it is not able to find a model if neutralization arises between w1 and w3 in a 3 words sentence.
However, in our French grammar, this condition is most of the time respected. But this algorithm should
be generalized in order to deal with other languages.

6.3.4 The Earley-like algorithm

Another algorithm inspired by the classical Earley parsing algorithm for CFG has been developed for IG.
The algorithm is described in [24, 26]. It is being implemented in Leopar and the current version is not
very efficient but we hope to improve it for the next release.

There are two main difficulties to adapt this classical algorithm to IG. First, when trying to build the
tree model top-down, we have to deal with large dominance relations. If the node M is used to build a node
in the tree model and if M >∗ N , then the node N must be used at any depth in the construction of the
sub-tree rooted in M . Our solution is to include in each item a set of nodes that must be used in the subtree
rooted at the current node. The other difficulty is to deal with the fact that the daughters of a node are only
partially ordered in IPTDs and that we have to consider every total ordering compatible with the partial
order when building the tree structure of the model.

6.4 Implementation

The IG formalism is implemented in a parser named Leopar. This software contains several modules which
are used in turn for sentence parsing.

25

Tokenizer a minimal tokenizer is included: it allows to deal with usual tokenization problems like contrac-
tion (for instance in French, the written word “au” should be understood as the contraction of the two
words “à” and “le”). The tokenizer returns an acyclic graph to represent tokenization ambiguities.

Lexer a flexible system of linguistic resources description is used in Leopar. Several levels of description
can be used to described various linguistic information: morphological, syntactical,. . . . Unanchored
IPTDs are read in an XML format produced by XMG [14] (an external tool which provides a high level
language to build large coverage grammars). The anchoring mechanism is controlled by the notion of
interface:

• each description tree of the unanchored grammar is associated with a feature structure called
interface;

• each word is linked to a set of usages: a usage is a feature structure which describes the morpho-
logical and syntactical properties of a word;

• if an interface I(T) of a tree description T unifies with a word usage U associated with a word w:
then an IPTD T ′ is produced from T with w as phonological form.

The lexer outputs an acyclic graph which edges are labelled by IPTDs.

Filter this stage implements the global filtering of lexical selections presented above (subsection 6.2). It
takes as input the acyclic graph given by the lexer and returns another acyclic graph which paths are
the lexical selections kept by the filtering process.

Deep parser the final stage is the building of a set of models for the acyclic graph given by the previous
stage. Implemented algorithms are adapted to deal with the sharing given by the graph representation
of the ambiguity in the output of the filtering process.

The whole system can be used either with commands or through an interface. In the interface, an
interactive mode is available. The user can choose a path in the automaton given by the filter stage and
then choose couple of nodes to merge: this interactive mode is very useful in grammar testing/debugging.

7 Conclusion

In this paper, we focused on a formal presentation of IG, highlighting their originality with their ability to
express various and sophisticated linguistic phenomena. We left both Language-Theoretic properties and
implementation aspects of IG aside, as they need to be studied for themselves.

One of our fundamental ideas is to combine theory and practice. The formalism of IG is implemented
in the Leopar parser in the same form as it is described in this paper. In this way, it can be validated
experimentally. To use Leopar on large corpora, we need resources. There exists a French IG with a
relatively large coverage [36], which is usable with a lexicon independent of the IG formalism [17]. There
exists a lexicon with a large coverage available in the format required by the grammar: the Lefff [42]. The
Lefff contains about 500 000 inflected forms corresponding, among others, to 6 800 verb lemmas, 37 600
nominal lemmas and 10 000 adjectival lemmas. With the Lefff and the French IG, Leopar is on the way of
parsing real corpora.

The formalism is not definitively fixed and the forward and backward motion between theory and practice
is important to improve it step by step. Among the questions to be studied in a deeper way, there are:

the form of the syntactic structure of a sentence: phenomena such as coordination or dislocation show
that the notion of syntactic tree is too limited to express the complexity of the syntactic structure of
sentences; structures as directed acyclic graphs fit in better with these phenomena;

the enrichment of the feature dependencies: dependencies between features are frequent in linguistic
constructions but they cannot be represented in a compact way in the current version of IG; all cases

26

have to be enumerated, which is very costly; it seems not to be a difficult problem to enrich the feature
system in order to integrate these dependencies.

The paper is restricted to the syntactic level of natural languages but syntax cannot be modelled without
any idea of the semantic level and of the interface between the two levels; [35] presents a first proposal
for the extension of IG to the semantic level but we can envisage other approaches using existing semantic
formalisms such as MRS [12] or CLLS [16].

References

[1] A. Abeillé and O. Rambow, editors. Tree Adjoining Grammars: Formalisms, Linguistic Analysis and
Processing. Stanford, CSLI, 2001.

[2] K. Adjukiewicz. Die syntaktische konnexität. Studia Philosophica, 1:1–27, 1935.

[3] J. Baldridge and G.-J. Kruijff. Multi-Modal Combinatory Categorial Grammar. In 10th Conference
of the European Chapter of the Association for Computational Linguistics (EACL ’2003), Budapest,
Hungary, 2003.

[4] Y. Bar-Hillel, H. Gaifman, and E. Shamir. On categorial and phrase structure grammars. Bulletin of
the research council of Israel, 9F:1–16, 1960.

[5] G. Bonfante, B. Guillaume, and G. Perrier. Analyse syntaxique électrostatique. Traitement Automatique
des Langues, 44(3):93–120, 2003.

[6] G. Bonfante, B. Guillaume, and G. Perrier. Polarization and abstraction of grammatical formalisms
as methods for lexical disambiguation. In 20th International Conference on Computational Linguistics,
CoLing 2004, Genève, Switzerland, pages 303–309, 2004.

[7] G. Bonfante, J. Le Roux, and G. Perrier. Lexical Disambiguation with Polarities and Automata. In
Lecture Notes in Computer Science, volume 4094, pages 283–284. Springer-Verlag, 2006.

[8] P. Boullier. Supertagging: a non-statistical parsing-based approach. In Proceedings of the 8th Interna-
tional Workshop on Parsing Technologies (IWPT03), pages 55–65, Nancy, France, April 2003.

[9] J. Bresnan. Lexical-Functional Syntax. Blackwell Publishers, Oxford, 2001.

[10] R. Carston and D. Blakemore. Introduction to coordination: Syntax, semantics and pragmatics. Lingua,
115(4):353–358, 2003.

[11] S. Clark and J.R. Curran. Parsing the wsj using ccg and log-linear models. In 42nd Annual Meeting of
the Association for Computational Linguistics (ACL ’04), pages 103–110, Barcelona, Spain, 2004.

[12] A. Copestake, D. Flickinger, K. Pollard, and I.A. Sag. Minimal Recursion Semantics - an Introduction.
Research on Language and Computation, 3:281–332, 2005.

[13] M. Dekhtyar and A. Dikovsky. Generalized Categorial Dependency Grammars. In Arnon Avron,
Nachum Dershowitz, and Alexander Rabinovich, editors, Pillars of Computer Science, volume 4800 of
Lecture Notes in Computer Science. Springer, 2008.

[14] D Duchier, J. Le Roux, and Y. Parmentier. The Metagrammar Compiler: an NLP Application with a
Multi-paradigm Architecture. In Second International Mozart/Oz Conference, MOZ 2004, Charleroi,
Belgium, pages 175–187, 2004.

[15] D. Duchier and S. Thater. Parsing with tree descriptions: a constraint based approach. In Natural
Language Understanding and Logic Programming NLULP’99,Dec 1999, Las Cruces, New Mexico, 1999.

27

[16] M. Egg, A. Koller, and J. Niehren. The Constraint Language for Lambda Structures. JOLLI, 10:457–
485, 2001.

[17] C. Gardent, B. Guillaume, G. Perrier, and I. Falk. Extracting subcategorisation information from
maurice gross’ grammar lexicon. Archives of Control Sciences, pages 289–300, 2005.

[18] D. Godard. Problèmes syntaxiques de la coordination et propositions récentes dans les grammaires
syntagmatiques. Langages, 160:3–24, 2005.

[19] J. Hockenmaier. Parsing with generative models of predicate-argument structure. In 41st Annual
Meeting of the Association for Computational Linguistics (ACL ’03), pages 359–366, Sapporo, Japan,
2003.

[20] O. Jespersen. Analytic Syntax. Allen and Unwin, London, 1937.

[21] S. Kahane. Polarized unification grammars. In 21st International Conference on Computational Lin-
guistics and 44th Annual Meeting of the Association for Computational Linguistics, pages 137–144,
Sydney, Australia, 2006.

[22] L. Kallmeyer. Tree Description Grammars and Underspecified Representations. PhD thesis, Universität
Tübingen, 1999.

[23] J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly, 65:154–169, 1958.

[24] J. Le Roux. La coordination dans les grammaires d’interaction. PhD thesis, Université Nancy 2, 2007.

[25] J. Le Roux and G. Perrier. La coordination dans les grammaires d’interaction. Traitement Automatique
des Langues, 47(3):89–113, 2006.

[26] J. Marchand. Algorithme de Earley pour les grammaires d’interaction. Travaux universitaires, Université
Nancy 2, 2006.

[27] M. Marcus, D. Hindle, and M. Fleck. D-Theory: Talking about Talking about Trees. In 21st Annual
Meeting of the Association for Computational Linguistics, pages 129–136, 1983.

[28] G. Morrill. Incremental processing and acceptability. Computational Linguistics, 26(3):319 – 338, 2000.

[29] F. Mouret. Grammaire des constructions coordonnées. Coordinations simples et coordinations à redou-
blement en français contemporain. PhD thesis, Université Paris 7, 2007.

[30] R. Muskens and E. Krahmer. Talking about trees and truth-conditions. In Logical Aspects of Compu-
tational Linguistics, LACL’98. Grenoble, France, 1998.

[31] A. Nasr. A formalism and a parser for lexicalised dependency grammars. In 4th Int. Workshop on
Parsing Technologies, Prague, Czechoslowakia, pages 186–195. State University of NY Press, 1995.

[32] J. Nivre. Dependency Grammar and Dependency Parsing. MSI report 04071, Växjö University: School
of Mathematics and Systems Engineering., 2005.

[33] G. Perrier. Interaction grammars. In 18th International Conference on Computational Linguistics,
CoLing 2000, Sarrebrücken, pages 600–606, 2000.

[34] G. Perrier. Intuitionistic multiplicative proof nets as models of directed acyclic graph descriptions. In
8th International Conference on Logic for Programming, Artificial Intelligence and Reasoning - LPAR
2001, 2001, volume 2250 of Lecture Notes in Artificial Intelligence, pages 233–248, Havana, Cuba, 2001.

[35] G. Perrier. La sémantique dans les grammaires d’interaction. Traitement Automatique des Langues
(TAL), 45(3):123–144, 2005.

28

[36] G. Perrier. A French Interaction Grammar. In Galia Angelova, Kalina Bontcheva, Ruslan Mitkov,
Nicolas Nicolov, and Kiril Simov, editors, RANLP 2007, pages 463–467, Borovets Bulgarie, 2007. IPP
& BAS & ACL-Bulgaria.

[37] G.K. Pullum and B.C. Scholz. On the Distinction between Model-Theoretic and Generative-
Enumerative Syntactic Frameworks. In P. de Groote, G. Morrill, and C. Retoré, editors, Logical Aspects
of Computational Linguistics, LACL 2001, Le Croisic, France, volume 2099 of Lecture Notes in Com-
puter Science, pages 17–43. Springer Verlag, 2001.

[38] O. Rambow, K. Vijay-Shanker, and D. Weir. D-tree substitution grammars. Computational Linguistics,
27(1):87–121, 2001.

[39] C. Retoré. The Logic of Categorial Grammars, 2000. avalaible at URL:
http://www.cs.bham.ac.uk/research/conferences/esslli/.

[40] J. Rogers and K. Vijay-Shanker. Reasoning with descriptions of trees. In 30th Annual Meeting of the
Association for Computational Linguistics, pages 72–80, 1992.

[41] I.A. Sag, T. Wasow, and E.M. Bender. Syntactic Theory : a Formal Introduction. Center for the Study
of Language and INF, 2003.

[42] B. Sagot, L. Clément, E. de La Clergerie, and P. Boullier. The lefff 2 syntactic lexicon for french:
architecture, acquisition, use. In LREC 06, Genova, Italy, 2006.

[43] E. Stabler. Derivational minimalism. In C. Retoré, editor, Logical Aspects of Computational Linguistics,
LACL’96, Nancy, France, volume 1328 of Lecture Notes in Computer Science, pages 68–95, 1997.

[44] M. Steedman. Dependency and Coordination in the Grammar of Dutch and English. Language,
61(3):523–568, 1985.

[45] M. Steedman. The Syntactic Process. Bradford Books. MIT Press, 2000.

[46] L. Tesnière. Comment construire une syntaxe. Bulletin de la Faculté des Lettres de Strasbourg, 7 -
12ième année:219–229, 1934.

[47] L. Tesnière. Eléments de syntaxe structurale. Librairie C. Klincksieck, Paris, 1959.

[48] K. Vijay-Shanker. Using description of trees in a tree adjoining grammar. Computational Linguistics,
18(4):481–517, 1992.

29

