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Dynamics and bifurcations of the adaptive exponential
integrate-and- re model

Résune : Recently, several two-dimensional spiking neuron modeisetheen introduced, with
the aim of reproducing the diversity of electrophysiol@adieatures displayed by real neurons while
keeping a simple model, for simulation and analysis purpogenong these models, the adaptive
integrate-and- re model is physiologically relevant inathits parameters can be easily related to
physiological quantities. The interaction of the diffefiahequations with the reset results in a rich
and complex dynamical structure. We relate the subthreldeatures of the model to the dynamical
properties of the differential system and the spike pastemnthe properties of a Poincaré map de ned
by the sequence of spikes. We nd a complex bifurcation stmecwhich has a direct interpretation
in terms of spike trains. For some parameter values, spiktenpa are chaotic.
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1 Introduction

The biophysics of neurons and their ionic channels are noserstood in great details, although
many questions remain [Hille(2001)]. Yet, simple neurondels such as the integrate-and- re
model [Lapicque(1907), Gerstner and Kistler(2002)] remagry popular in the computational neu-
roscience community, because they can be simulated vecieetly and, perhaps more importantly,
because they are easier to understand and analyze. Theattaislthat these simple models cannot
accountforthe variety of electrophysiological behavmirseal neurons (see e.g. [Markram et al(2004)]
forinterneurons). Recently, several authors introdueedvariable spiking models [I1zhikevich(2004),
Brette and Gerstner(2005), Touboul(2008)] which, desthitar simplicity, can reproduce a large
number of electrophysiological signatures such as bugsiitregular spiking. Different sets of pa-
rameter values correspond to different electrophysiaalgilasses.

All these two-dimensional models are qualitatively similaut we are especially interested in
the adaptive exponential integrate-and- re model (AdBxdtte and Gerstner(2005)]) because its
parameters can be easily related to physiological quastiind the model has been successfully t
to a biophysical model of a regular spiking pyramidal celllao real recordings of pyramidal cells
[Clopath et al(2007)Clopath, Jolivet, Rauch, Lisched &erstner, Jolivet et al(2008)Jolivet, Kobayashi, Raiayd, Shinorm
This model is described by two variables, the membrane patén and an adaptation current
whose dynamics are governed by the following differentiplaions:

8

3c¥ = gV E)+gDrexp \%

5 w+ | 1)
Tt = aVv E) w

When the membrane potentigl is high enough, the trajectory quickly diverges becausehef t
exponential term. This divergence to in nity models thelksp(the shape of the action potential is
ignored, as in the standard integrate-and- re model). Rspldying or simulation purposes, spikes
are usually cut to some nite value (e.g. 0 mV). When a spikeuss, the membrane potential is
instantaneously reset to some vallyeand the adaptation currentis increased:
( vV IV
w ' vvr+ b @
Although the differential system is only two-dimensiorthle reset makes the resulting dynamical
hybrid system very rich.
The differential equations and the parameters have a plogsial interpretation. The rst equa-
tion is the membrane equation, which states that the capacitrrent through the membrane is
the membrane capacitance) is the sum of the injected curi@md of the ionic currents. The rst
term is the leak curreng( is the leak conductance aii is the leak reversal potential), the mem-
brane time constant is, = C=g.. The second (exponential) term approximates the sodiuneicyr
responsible for the generation of action potentials [FaudzTrocme et al(2003)Fourcaud-Trocme, Hansel, van Vrigesand B
The approximation results from neglecting the inactivatbd the sodium channel and assuming that
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4 Touboul & Brette

activation is in nitely fast (which is reasonable). Becalectivation curves are typically Boltzmann
functions [Angelino and Brenner(2007)], the approximatadent is exponential near spike initia-
tion. The voltage thresholdr is the maximum voltage that can be reached without gengratin
spike (without adaptation), and the slope fad@rquanti es the sharpness of spikes. In the limit of
zero slope factor, the model becomes an integrate-and-aegahwith a xed threshold/r. Quanti-
tatively, it is proportional to the slope constdrinh the activation function of the sodium current. The
second variablev is an adaptation current with time constapt which includes both spike-triggered
adaptation, through the reset w+ b, and subthreshold adaptation, through the coupling (bkeia
a). It may model ionic channels (e.g. potassium) or a demdeitimpartment. Quantitatively, the
coupling variablea can result from a linearization of the dynamics of a ionicrutel, or from the
axial conductance in the case of a dendritic compartmentg&¥derally assuma> 0 in this paper,
although the analysis also applies &ox 0 whena is not too large.

The interaction of the differential equations with the tassults in a rich dynamical structure.
There are 9 parameters plus the injected curtebtit these can be reduced to 4 variables plus the
currentl by changes of variables (e.g. settitg as the reference potenti@d; as the voltage unit,
tm as the time unit, etc.). Thus, the electrophysiologicalaf the model, de ned loosely here as
the set of qualitative behaviours for different values ,as parameterized in a 4-dimensional space.
In this paper, we will make this de nition more precise by &dping different electrophysiological
signatures in terms of dynamics of the model. Because weealng with a hybrid dynamical sys-
tem, we shall study here two distinct dynamical aspects ®itiodel: the subthreshold dynamics,
de ned by the differential equations (section 2), and thiisg dynamics, de ned the sequence of
resets (section 3). The former case was addressed by [T2D08)] in a more general setting: we
will review some of those results in the speci ¢ context of tdaptive integrate-and- re model, and
present new speci ¢ results, in particular about osciiat, attraction basins and rebound proper
ties. In the latter case, we will see that the spike pattefiseomodel correspond to orbits under a
Poincaré map, which we shall call thhelaptation mag-. Interestingly, we nd that this map can
have chaotic dynamics under certain circumstances. Affhave focus on this model for the rea-
sons mentioned above, many results also apply when the na@bruation is replaced by a more
general equatiodV=dt = F(v) w+ I, whereF is a smooth convex function whose derivative is
negative at ¥ and in nite at+ ¥ (in particular, Izhikevich model and the quartic model hévese
properties, see [Touboul(2008)]).

All simulations shown in this paper were done with the Briaftware [Goodman and Brette(2008)]
The code is available on ModelDB at the following URMttp://senselab.med.yale.edu/
modeldb/ShowModel.asp?model=114242

2 Subthreshold dynamics
2.1 Rescaling

The equations can be written in dimensionless units by esgrg time in units of the membrane
time constant,, = C=g,, voltage in units of the slope fact@y and with reference potentiafr,
and rewriting both the adaptation varialsleand the input curreritin voltage units. We obtain the

INRIA



Dynamics and bifurcations of the adaptive exponentialgrage-and- re model 5

following equivalent model: (
(3)
and when a spike is triggered: (
= 4

where
— tw — Oitw
: c

a\E VvVt
+(1+ QL) Dr

INIRARAN/ ©O
S B R R
I
9‘_9|m5|
9

t
M (5)
Vy = Y
V1Y V() Vr
: V—(t) — W(tl))JI a(EL V1)
w(r) = g
It appears that the model has only four free parameters (prigput current). In this section
we will focus on the differential equations; we will turn toet sequence of resets in section 3. Thus,
only two parameters characterize the subthreshold dyrgrtiie ratio of time constantg=t, and
the ratio of conductances=g, (note:acan be seen as the stationary adaptation conductance).
The rescaled model belongs to the class studied in [TouBOO&)] withF(v) = ¢ v, i.e.,F
is convex, three times continuously differentiable, hasgative derivative at ¥ and an in nite
derivative at+ ¥. Therefore it has the same bifurcation structure, which \iledevelop here and
relate to electrophysiological properties We also provatenulas for the excitability type, rheobase
current, voltage threshold and the I-V curve. Besides, we guantitative conditions for the oc-
curence of oscillations, along with a formula for their fusmcy. Finally, we examine the rebound
properties of the model, in relationship with the attractimasin of the stable xed point.

2.2 Excitability

The dynamics in the phase plafé w) are partly determined by the number and nature of xed
points, which are the intersections of the two nuliclineig (R):

Vr

V
gV EL)+ gDrexp Dr

w

+ 1 (V-nulicline)

w avV E.) (w-nullcline)

Because the membrane current ( rst equation) is a convegtiom of the membrane potential
V, there can be no more than two xed points. When the inputentdr increases, the V-nulicline
goes up and the number of xed points goes from two to zero|enthie trajectories go from resting
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Figure 1: Nullclines of the dynamical system (horizontaka¥ ; vertical axis:w). A. The nullclines
intersect in two points, and divide the phase space into lomeg The potentiaV/ increases below
theV-nullcline, w increases below the-nullcline. The direction of the ow along each boundary
gives the possible transitions between regions (rightjkigg can only occur in the South region.
B. The nullclines do not intersect. All trajectories mustezrihe South region and spike.
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Figure 2: Excitability types. A,B. Type Ia < tvn; (here: a= :2q9., tm = 3tw). Whenl is in-
creased, the resting point disappears through a saddlediidcation: the two xed points merge
and disappear. The current-frequency curve is continuBus3,D. Type Il a > tm (here:a= 3g,,
tm = :5tw). Whenl is increased, the resting point becomes unstable througlmdmnov Hopf
bifurcation: the stable xed point becomes unstable. Theent-frequency curve is discontinuous,
there is a non-zero minimum frequency (D).

to spiking. The excitability properties of the model depemchow the transition to spiking occurs,
that is, on the bifurcation structure.

2.2.1 Excitability types

Whenl is very negative, there are two xed points, one of which iabd¢ (the resting potential).
It appears that, when increasihgtwo different situations can occur depending on the gtyanti

a(t:W = gi Lw (ratio of conductances times ratio of time constants).

If 2 im then the system undergoes a saddle-node bifurcation Wigeimcreased, i.e., the
stable and Unstable xed points merge and disappear. Thisifgplies that the model has type |
excitability, that is, the current-frequency curve is doabus (Fig. 2). Indeed, when the xed points
disappear, the vector eld is almost null around the formeed point (theghostof the xed point).
Since the vector eld can be arbitrarily small close to th&ubsation, the trajectory can be trapped
for an arbitrarily long time in the ghost of the xed point, at the ring rate can be arbitrary small
whenl is close to the bifurcation point (threshold). This progexiso explains the phenomenon of
spike latency.

If gaL > tm , then the system undergoes an Andronov-Hopf bifurcatidorbehe saddle-node
one, meamng that the stable xed point rst becomes ungtddgfore merging with the other xed
point. This fact implies that the model has type Il excit@jilthat is, the current-frequency curve
is discontinuous at threshold, the ring rate suddenly junfipm zero to a nite value when the
bifurcation point is crossed (Fig. 2).

The bifurcation for the limit cas§— tm is called a Bogdanov-Takens bifurcation. It has codi-

mension two, i.e. it appears when S|multaneously varyiegwo parametera andl of the rescaled
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8 Touboul & Brette

model. At this point, the family of unstable periodic orbgsnerated around the Andronov-Hopf
bifurcation collides with the saddle xed point and disappevia a saddle-homoclinic bifurcation.
There is no other bifurcation in this model (as well as in kavich model [Izhikevich(2004)]).
Other similar models such as the quartic model may also godzBautin bifurcation, associated
with stable oscillations (see [Touboul(2008))).

The xed points can be calculated using the Lambert fundfigrwhich is the inverse of 7! xe*:

8
3v =E ! R e
=Bt g DWo o gt (6)
3V, = EL+ L DWW L eorgat Or
-V L g +a 1 1+ a=g.

whereW is the principal branch of the Lambert function &, the real branch of the Lambert
function such thatVv 1(x) 1,denedfor e ! x< 1 (indeed since 7! xe'is not injective,
the Lambert function is multivalued).

The xed pointV; is always a saddle xed point (hence unstable), i.e. its Besomatrix has
an eigenvalue with positive real part and an eigenvalue méthative real part. The xed poi is
stable if the model is type I, otherwise it depends on theerir, as we discuss below.

2.2.2 Rheobase current

The rheobase current is the minimum constant current requo elicit a spike, i.e., the rst point
when the stable xed point becomes unstable, which dependsexcitability type.
For type | (g% %1 < 1), it corresponds to the saddle-node bifurcation point:

h |
a
Irlh:(gL"' a)Vf EL Dr+Dylog 1+ a )

which is obtained by calculating the intersection of thdciules when these are tangent.
For type I (g%f—x > 1), it corresponds to the Andronov-Hopf bifurcation point:

h i
Ih=(g.+a) Vr E. Dr+Drlog(1+ :—m)
" a
o
It is important to note that the saddle-node bifurcatiom alscurs in the type Il case at the point
Isn= 1}y, (> 1}}; for type Il we usdsy instead ofl},, to avoid ambiguities).

+ Drau( §—$> ®)

2.2.3 \Voltage threshold for slow inputs

For a parameterized inplg(t), the threshold is the minimum value of the parametéor which
a spike is elicited. For example, the rheobase current ishreshold constant current. How-
ever, the notion of a spike threshold for neurons is ofterculesd as avoltage thresholdal-
though the voltage is not a stimulation parameter (thusnijlicitly refers to an integrate-and-
re model). It is nevertheless possible to de ne a meanihgfitage threshold for the case of

INRIA



Dynamics and bifurcations of the adaptive exponentialgrage-and- re model 9

constant current inputs as follows: the voltage threshslthe maximum stationary voltagé
for subthreshold constant current inputs ( I,). For the exponential integrate-and- re model
[Fourcaud-Trocme et al(2003)Fourcaud-Trocme, Hansel Mraeswijk, and Brunel], this is simply
Vr. For the present model, it corresponds to the voltdget the rst bifurcation point, when the
stable xed point becomes unstable.

Not surprisingly, its value depends on the excitability gypFor type | excitability &=g; <
tm=tw), the voltage threshold is

Viirotnola= VT + Drlog(1+ a=g1)
For type Il excitability =g, < tm=tw), the voltage threshold is
Virthold= Vr + Drlog(1+ tm=tw)

Interestingly, the threshold for type | excitability depksnon the ratio of conductances, while the
threshold for type | excitability depends on the ratio of¢iconstants.

2.2.4 Voltage threshold for fast inputs

For short current pulses € qd(t), whereq is the total charge and(t) is the Dirac function), the
voltage threshold is different, but the same de nition maysed: it is the maximum voltagethat
can be reached without triggering a spike. Injecting shomtent pulses amounts to instantaneously
changing the membrane potentiéli.e., in the phase spa¢¥;w), to moving along an horizontal
line. If, by doing so, the poinfV;w) exits the attraction basin of the stable xed point, then ikep
is triggered. Therefore, the threshold is a curve in the plsp@ce, de ned as the boundary of the
attraction basin of the stable xed point (for which we havdartunately no analytical expression,
although it can be computed numerically). Therefore the ehdisplaysthreshold variability the
voltage threshold depends on the value of the adaptatiaablaw, i.e., on the previous inputs. The
boundary of the attraction basin of the stable xed pointither the stable manifold of the saddle
xed point(separatrix) or a limit cycle. We examine thisugsin section 2.6 and in appendix C.

2.3 |-V curve

The |-V curve of a neuron is the relationship between the sfip®f the (constant) injected current
and the stationary membrane potential (it may also be defoedon-constant input currents, see
e.g. [Badel et al(2008)Badel, Lefort, Brette, Petersenstaer, and Richardson]). Experimentally,
this curve can be measured with a voltage-clamp recording. o¥fain a simple expression by
calculatingl at the intersection of the nullclines:

V V
I(V)=(a+a)(V E) gDrexp TT

Thus, far from threshold, the V curve is linear and its slope is the leak conductance plus the
adaptation conductance.

RR n° 6563



10 Touboul & Brette

2.4 Oscillations

Because of the coupling between the two variableand w, there can be oscillations near the
resting potential, more precisely, damped oscillatioredf{(sustained oscillations are not possible
in this model, nor in Izhikevich model, as is shown in [Toulf@0Q08)]). Oscillations occur when
the eigenvalues associated with the stable xed point amaptex; when they are real, solutions
converge (locally) exponentially to the stable xed point.

Because of the nature of the bifurcations, near the rhechasent (section 2.2.2), the model is
non-oscillating if it has excitability type laEgL < tm=tw) and oscillating if it has type Il. Far from
threshold, these properties can change. In this sectioriweesgplicit expressions for the parameter
zones corresponding to both regimes; details of the calonlare detailed in appendix A for the
rescaled model (3).

The parameter zones depend on the excitability types, tietig=t, and the following condi-
tion: 5

i < t_m 1 t_W (9)
gL 4ty fm

These results are summarized in Fig. 3.

2.4.1 Oscillations for type |
Three cases appear:

* If inequality (9) is false, then the model oscillates wHen |, where the formula fot, is
given in Appendix A. In practice, we observe thatis very close to the rheobase current, so
that the model almost always oscillates below threshold.

* Ifinequality (9) is true and, > ty, then the model never oscillates near the xed point.
« If inequality (9) is true and, < tw, then the model oscillates whén < | < |, where the
formulaforl is givenin Appendix A.
2.4.2 Oscillations for type I
Two cases appear:

* If inequality (9) is false, then the model always oscillateear the xed point, for any sub-
threshold input currerit

« Ifinequality (9) is true, then the model oscillates onlyewi > | .

We call the occurrence of oscillations thesonatorregime and their absence tligegrator
regime (see 2.5.1). The model is called a resonator whemlviays (for alll) or almost always (for
| < 1) in the resonator regime, i.e., when inequality (9) is falsés called an integrator when it
never oscillates, i.e., whap, > t,, and inequality (9) is true; it is said to be in a mixed mode when
it oscillates only above some vallie (see Fig. 3).

INRIA
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Figure 3: Oscillations. A. Behavior of the model as a functad a=g. andt=t\. Light (dark)
colors indicate type | (type Il) excitability. Blue: resdnamode (oscillations for any or almost any
1). Green: integrator mode (oscillations for anyPink: mixed mode (resonatorlifis large enough,
otherwise integrator). B. Behavior of the model as a functiba=g, andl=g._ for tm = 2t (left)
andt, = 2ty (right). White: spiking; blue: oscillations; green: no dktion. Spiking occurs when
| is above the saddle-node curve (SN) in the type | regime, bBodeathe Hopf curve (Hopf) in the
type Il regime. A repulsive limit cycle (circle) exists whéris above the saddle-homoclinic curve
F%Hr%oonl for type II). Oscillations occur wheh < | < I+ (on the left,l+  Isn; on the right,
= . C,D. Response of the system to a short current pulse (Disgrr the resting point, in the
resonator regime (3= 10g., tm = tw) and in the integrator regime (&= :1g., tm = 2ty). Left:
response in the phase spgbew); right: voltage response in time.
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2.4.3 Frequency of oscillations

When the model oscillates, the frequency of the oscillatisn

2

V V-
= ﬂ = 2a i e Dr . 1+ t_m ; (10)
2p  pOitw Ptm tw
which can be approximated far from threshdld (  Vr) as follows:
2
W a 2 L (11)

2p  poitw m tw

2.5 [Input integration

The way the model integrates its inputs derives from theltesibove.

2.5.1 Resonator vs. integrator

On the temporal axis, the integration mode can be de nedlp@ar a small inputl (t)) as
V(t) = Vo+(K?2I)(t)

where the kerneK is the linear impulse response of the model arounandK ?1 is a convolution.
This impulse response is determined by the eigenvaluesedfttible xed point. When these are
complex, the kerneK oscillates (with an exponential decay), as discussed itiose2.4 (see Fig.
3C). In that case the model acts aseaonator two inputs are most ef cient when separated by
the characteristic oscillation period of the model (givendy. 10). The membrane time constant
is 1=/, wherel is the real part of the eigenvalues. Far from thresh®la€ V), we nd the
following time constant (see Appendix A):

Emtw
tm+ tw

t=2

When the eigenvalues are real, the kerels a sum of two exponential functions, and the
model acts as an integrator. In that case there are two timstaots, given by the real part of the
eigenvalues. It is interesting to note that there is a parammegion where both integration modes
can exist, depending on the (stationary) input curterdscillations arise only when the model is
suf ciently depolarized (> | ).

2.5.2 Adaptation

There are two sorts of adaptation in the model: thresholgtdian and voltage adaptation. The
former one comes from the orientation of the separatrix | (¥ w) plane, as we discussed in
section 2.2.4. The latter one derives from the fact that @ititegrator mode (no oscillation), the
model kerneK is a sum of two exponential functions. If the slower one isatieg, then the response

INRIA
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to a step shows an overshoot (as in Fig. 4D for a negativeristep), which is a form of adaptation
(the voltage response is initially strong, then decaysyatTvershoot can be seen when there is no
oscillation andt i, < ty (see Appendix B), i.e., in theixed modshown in pink in Fig. 3, when the
input currentis low(< | ).

2.6 The attraction basin of the stable xed point
2.6.1 Limitcycle

The existence of a repulsive limit cycle arises for type Itigability from the Andronov-Hopf bi-
furcation. The saddle-node and Andronov-Hopf bifurcagionllide via a Bogdanov-Takens bifur-
cation. In the neighborhood of this bifurcation, the fanolfylimit cycles disappears via a saddle-
homoclinic bifurcation. The normal form of the Bogdanoweas bifurcation gives us a local ap-
proximation of this saddle-homoclinic bifucation curveand the point in parameter space given by
(12) (see [Touboul(2008)]), and the full saddle-homoclituirve can be computed numerically us-
ing a continuation algorithm. The currenabove which a limit cycle exists is locally approximated
at the second order by the following expression:

12 Drt? C., 2
leycle = | =W (a )%+ 12
cycle BT 25C(tm+ tw) (a tw) O(al) ( )
fora> % wherelgt is the rheobase current at the Bogdanov-Takens bifurcation
c.h c |
ler=(g.+—) Vr E. Dr+Drlog 1+ —
tw OLtw

Below the threshold currerityce, there is no limit cycle (see next section). Above thgje,
there is a repulsive limit cycle, circling anti-clockwiseoand the stable xed point (see Fig. 3B
and 4A); the saddle xed point is outside that cycle. Intéregy, it appears that one can exit the
attraction basin of the stable xed point (and thus genegaspike) not only by increasing, but
also by decreasing orw (or increasingv). This phenomenon is sometimes caltedound and we
discuss it further in section 2.7.

2.6.2 Separatrix

For type | excitability, or for type Il excitability wheth < I¢yce, there is no limit cycle. In that
case the stable manifold of the saddle xed point is an unbedrseparatrix, i.e., it delimits the
attraction basin of the stable xed point. From the positwithe nullclines, it appears that the
stable manifold must cross the saddle xed point from abow#hmullclines (North) to below both
nullclines (South). It follows that the side above the nlirles is the graph of an increasing function
of V (see Fig. 4). As for the other part of the manifold, severaksacan occur: it may cross the
w-nullcline, both nuliclines or none. One can show (appe@jithat if condition (9) is false (section
2.4), then both nulliclines are crossed, anthik ty, then at least the w-nulicline is crossed. These
conditions cover all parameter regions except the zone evtier model is always an integrator (no
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Figure 4: The attraction basin of the stable xed point anblaend properties. Left column: the
dashed lines represent the nuliclines, each panel comesgo a different set of parameter values;
the red line delimits the attraction basin of the stable xaint; the black line is the trajectory of the
model in response to a short negative current pulse, whelltine line is the trajectory in response to
along negative current step. Right column: voltage respofithe model to the a short puls&'{Bfack)
and to a long step (blue). A. Type Il resonatar< 3g,, tw = 2tm) close to the rheobase current.
A repulsive limit cycle appears. Trajectories can escapeattraction basin and spike with fast or
slow hyperpolarization. B. Type | resonat@ £ 10g,, tm = 12ty). The separatrix crosses both
nullclines (for both branche¥, andw go to+ ¥). In theory trajectories can escape the attraction
basin with hyperpolarization, but one would need to reacteaiistically low voltages{ 200
mV). C. Integrator § = :29,,tm = 3tw). The separatrix does not cross the nuliclines. No rebound
is possible. D. Type Il mixed modaE g, tw = 10ty). The separatrix crosses the w-nullcline.
Rebound is possible with long hyperpolarization (shortdmpolarization can also induce rebounds,
but with unrealistically low voltages).
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oscillations); in particular, it includes the type Il exatiility zone. The position of the separatrix has
important implications for the rebound property (section)2

2.7 Rebound

The termreboundrefers to the property that a spike can be triggered by hygarjzing the mem-
brane. This can be done either by sending a short negativertyrulse, which amounts to moving
the state vectdiV; w) horizontally to the left, or by slowly hyperpolarizing theemmbrane with a long
negative current step (or ramp) and releasing it, which art®td moving the state vector along the
w-nulicline.

For type | excitability, there is no limit cycle and there is anbounded separatrix. tf, < tyw
or if condition (9) is false, then the separatrix crosseswheulicline. It follows that both types of
rebounds are possible. Otherwise the model is in the integragime, and the the separatrix may
not cross the w-nullcline. In that case it is only possiblé&igger a spike by increasing the voltage:
there is no rebound.

For type Il excitability, there is either a repulsive limiae which circles the stable xed point
when the input current is close enough to the rheobase duirenlcyce), Or the separatrix crosses
both the w-nullcline and the v-nulicline. In both casessipossible to exit the attraction basin of the
stable xed point and thus trigger a spike by changing anyakde in any direction. Therefore, both
types of rebound are possible. Note that with short currefggs, a more negative voltage must be
reached in order to trigger a spike.

2.8 After-potential

After a spike, the state vector resets to a certain pointérstate space. The subsequent trajectory
is determined by this initial state. We will discuss the gpilequences in more details in section 3,
but here we simply note that if the state vector is reset aloge/-nulicline, then the membrane
potentialV will rst decrease then increase (broad after-potentiéfjfie state vector is reset below
the V-nulicline,V will increase (sharp after-potential).

3 Spike patterns

In the previous section, we analyzed the subthreshold digsashthe model and found a rich struc-
ture, with the two parameteid=g, and tn=t\ controlling excitability, oscillations and rebound
properties. Here we turn to the patterns of spikes, such @daespiking, tonic/phasic bursting
orirregular spiking, and explain them in terms of dynami€empared to the previous section, two
additional parameters play an important role: the resateMd| and the spike-triggered adaptation
parameteb.

To study the spike sequences, we introduce a Poincaré magh whnsforms the continuous
time dynamics of the system into the discrete time dynanfitisad map.
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Figure 5: The adaptation map. A, B. Response of a type | modekuprathreshold constant input
(A: membrane potentid¥; B: adaptation variablev). The value ofw after each spike de nes a
sequencéw,). C. The adaptation map maps the value of the adaptation variable from one spike
to the next. The sequenée,) is the orbit ofwg underfF.

3.1 The adaptation map

After a spike, the potentidl is always reset to the same vaMe therefore the trajectory is entirely
determined by the value of the adaptation variab#g spike time: the sequence of vales), w, =

ty (th = time of spike numben) uniquely determines the trajectory after the rst spikehefefore,
it is useful to introduce the functioR mappingw, to wy: 1, which we call theadaptation map
Let us de neD as the domain of the adaptation variablsuch that the solution of (1) with initial
condition(Vy; w) spikes (blows up in nite time). Then the adaptation ntas

D7'R

(13)
Wo 7! we + b

wherewy is the value of at divergence time (spike time) for the trajectory startiram (V;;wp),
as illustrated in Fig. 5. The sequen@®,) is the orbit ofwg underF, as shown in Fig. 5C. Note
that this sequence may be nite if for sormew, 2 D. The property that the sequence is in nite
(resp. nite) is calledtonic spiking(resp.phasic spikingy The spike patterns are determined by the
dynamical properties df ( xed points, periodic orbits, etc.), as we show in next satt First, we
examine the spiking domal.

When there is no stable xed point, i.e., whéns above the rheobase current (section 2.2.2),
eitherl), or 1!} depending on the excitability type, then any trajectorkepiD = R. When there
is a stable xed point, all trajectories starting inside titéraction basin of that xed point will not
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Figure 6: The spiking domaiDd for the same cases as in Fig. 4, when the nuliclines (dashed
lines) intersect. The attraction basin of the stable xednpds bounded by the red curve. The
blue and purple vertical lines indicate the reset Nhe V,. When that line is outside the attraction
basin (blue), theD = R and the model is bistable (tonic/resting). When the linensects the
attraction basin (purple), thed is an interval or the union of two intervals. In that case, riedel

is generally phasic (C,D) but may be bistable (A,B). In piatwith realistic values ob (spike-
triggered adaptation), bistability essentially occursewlthere is a limit cycle (A).
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spike. The spiking domaib is then the complementary of the intersection of the reseMi= V;
with the attraction basin of the stable xed point (up to ajpation onto thew axis), as shown in
Fig. 6. We previously found (2.6) that the attraction badithe stable xed point is either a limit
cycle or the stable manifold of the saddle xed point. In tagtér case, it may have a minimum
voltage (resonator) or not (integrator or mixed). Fig. 6whdow these different cases determine
the spiking domaiD . We summarize these ndings below, and describe the adaptatapF .

We rst de ne two special valuesv andw as follows: the reset lin¥ = V, intersects the
V-nulicline and w-nulicline at the point®/;;w ) and(V;;w ), respectively, where

( Ve Vp
w a(\r E)+ gDrexp 5T +1
a(Vr EL)

w

Nearby spiking trajectories starting on the reset Ve V, abovew (i.e., above the V-nulicline)
may spike only after half a turn (sind¢ initially decreases), or possibly an odd number of half-
turns, which implies that the vertical order of the traje@se is reversed at spike timé: is locally
decreasing aboww . Spiking trajectories starting below spike either directly or after an even
number of half-turns, so thé&t is locally increasing belowv . It follows that the sequencéer,) are
bounded.

We now describe the mdp and the spiking domaib for the two excitability types, depending
on the input current.

1. Typel:

(a) (subthreshold) if < Ir'h, then there is a stable xed point and no limit cycle (seeisect
2.6). If the separatrix has no lower bound (typically: iretgr or mixed regime), then
the domairD is aninterval ¥ ;wmax) Wherewnaxis the value of the adaptation variable
on the separatrix fo = V;. The mapF is continuous on that set. We note that if
V <V, <V, then there can only be phasing spiking: indegg,, > w,+ b for all n,
therefore at some point the orbit exids
When the separatrix has a lower voltage boupd (typically: resonator), then there are
two cases. I¥; < Vpin, thenD = R andF has the same properties as in case 1%; i
Viin, thenD = ( ¥;Wmin) [ (Wmax, + ¥). BesidesF (Wmax+¥))  F(( ¥;Wmin))-

(b) (suprathreshold) if > Ir'h, all trajectories spike. ThereforB, = R. The adaptation map
is concave foww < w , regular, has a unique xed point and an a horizontal asymepto
whenw! +¥.

2. Typell:

(a) (subthreshold) if < l¢ycle, then there is a stable xed point and no limit cycle, so that
the situation is similar to case 1b.

(b) (subthreshold) ifeygle < | < Ir'L then there is a stable xed point and a repulsive limit
cycle bounding the attraction basin of the stable xed poibét Vimax andVpin be the
two extremal voltage values of the limit cycle. Pédr< Viin 0rVy > Vinax, D = R and
F has the same properties as in case 1b.

INRIA



Dynamics and bifurcations of the adaptive exponentialgrage-and- re model 19

(c) (suprathreshold) ifr'}1 < | < Ign, then there are two unstable xed points and no limit
cycle, hence all trajectories spike. Therefbree R. WhenV; 2 (V ;V:), the adaptation
map is discontinuous at some pohax < W , andF (Wmax) < F (W0 (When trajec-
tories start circling around the xed point). Thisis locally but not globally increasing
on( ¥;w). The magF also has a horizontal asymptote wheh +¥.

(d) (suprathreshold)if> Isy, thenD = R andF has the same properties as in case 1b (type

).

Tonic spiking occurs for any initialp if D = R (in particular, in the supratpreshold regime). In
other cases, spiking is generally phasic but there can be $piking if the set - OF”(D) is not
empty. When it occurs, the model is bistable.

The sequencen,), o of values of the adaptation variable at spike times is thé oftwy under
F: w, = F"(wp). Since there is a mapping from to the interspike interval, the properties Bf
determine the spike patterns. In the following, we examigerelationship between the adaptation
mapF and the spike patterns.

3.2 Tonic Spiking
3.2.1 Regular Spiking

Regular spiking means that interspike intervals are regptsssibly after a transient period of shorter
intervals. For the adaptation variable, it means that tiqggsecgw,) converges, i.ef has a stable
xed point. This situation is shown in Fig. 5. For low initi@alues of the adaptation variable,

is increasing andr (w) > w, so that the sequendger,) is increasing, implying that the duration of
interspike intervals decreases (this implication is troreif < w , i.e., before the maximum d¥).

The shape of after-potentials (broad or sharp) dependsegseviously saw, on whethév; ; w)
is above or below the V-nulicline, i.e., whether> w orw< w . Asymptotically, the condition
for broad resets is thusg > w , wherewy, is the xed point of F. Given the properties of,
this meand-(w ) > w . Since the parametdr (spike-triggered adaptation) shifts the curvefof
vertically, there is a minimurb above which resets are (at least asymptotically) broad.

WhenF is continuous (cases 2d and 1b), it always has a xed pointcéd (w) > w+ b for
low wandF convergesto a nite limit whemv! +¥), but that xed point may not be stable. That
property depends on all parameter values; in particular,xad point is an attraction basin whdn
orl is large enough (for large, the xed pointis on the plateau &f, which implies broad resets). If
the xed point is not stable, then the sequeffeg) may converge to a periodic orbit or be irregular.

3.2.2 Bursting

A bursting response is a sequence of shortly spaced spiéparated by longer intervals. For the
adaptation variablev, it corresponds to a periodic orbit, where the period eqtlasnumber of
spikes per burst. For the adaptation mpgperiodic orbits are associated with stable xed points of
FP. This situation is illustrated in Fig. 7. Typically, bunsg occurs for large reset valu¥s. the

rst spike resets the trajectory to a high voltage value,ethinduces a fast spike, and the adaptation
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Figure 7: Bursting and chaos. Each panel shows a samplensso andw) from the model,
with different values o¥/; (parametersC = 281 pF,g. = 30nS,EL. = 706 mV,Vy = 504 mV,
Dr=2mV,ty=40ms,a= 4nS,b= 0:08 nA,l = :8 nA). A burst withn spikes corresponds to an
n-periodic orbit undeF . The last spike of each burst occurs in the decreasing p&rt mfducing a
slower trajectory. A. Bursting with 2 spike¥(= 485 mV). B. Bursting with 3 spikesf = 47:7
mV). C. Bursting with 4 spikes = 47:2 mV). D. Chaotic spiking\¢t = 48 mV).

builds up after each spike, until the trajectory is resetvalibeV-nullcline (after the peak of at
w ). At that pointdV=dt < 0 and the trajectory must turn in phase space before it spikeducing
a long interspike interval. Thus, the number of spikes pestincreases whew increases (since
w increases witlv;) and wherb decreases. Thus the bifurcation diagram with respeét (6ig. 8)
shows a period adding structure. Interestingly, when zogroh a transition fronm to n+ 1 spikes,
a period doubling structure appears, revealing chaotitsorb

3.2.3 Chaotic spiking

The period doubling structure shown in Fig. 8B implies thdtdits are chaotic for some parameter
values. A sample response of the model for one of those vadugsown in Fig. 7D. It results in
irregular, unpredictable ring, in response to a constaupiit current.

3.3 Phasic spiking

Phasic spiking or (bursting) can occur in subthresholdmegi ( < I, for type | excitability,| < 1}

for type Il excitability), when there is a stable xed pointéD 6 R. In that case, the system needs
to be destabilized (e.g. a short current pulse, which mayolséipe or negative, as explained section
2.7). The situation depends on the properties of the aithrabiasin of the stable xed point, and can

be understood from Fig. 6.
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Figure 8: Bifurcation structure with increasivg (same parameters as in Fig. 7). A. Bifurcation
diagram showing a period adding structure (orbits undeeatiegtation map with varying values
for V). Fixed points indicate regular spiking, periodic orbitglicate bursting, dense orbits indicate
chaos. B. Zoom on the bifurcation diagram A (as indicatedhigyghaded box), showing a period
doubling structure.

We can distinguish two cases:

1. If D =( ¥;wWnin) (C,D: integrator or mixed regime), then wh&h < V; < V. there can
only be phasic spiking, otherwise tonic spiking is possiliheleed, itV < V; < V., then the
sequencéwy) is such thatv,: 1 > w, + b, so that it must exiD in nite time.

2. 1fD =( ¥;Wmin) [ (Wmax+¥) (A,B: resonator or mixed regime), then there can only be
phasic spikind= (Wmin) > Wmax Otherwise tonic spiking is possible.

When tonic spiking (or bursting) is possible, then the masdddistable (it can be turned on or off
with current pulses).

4 Discussion

The adaptive exponential integrate-and- re model [Brettel Gerstner(2005)] is able to reproduce
many electrophysiological features seen in real neuroitk, anly two variables and four free pa-
rameters. Besides, its parameters have a direct physalogiterpretation. In the framework of
this model, we can de ne aelectrophysiological clasas a set of dynamical properties for different
values of the input (for given parameter values). In this paper, we tried to fife\a classi cation

of the parameter space as complete as possible, which is atinea for subthreshold dynamics
in Fig. 3. The subthreshold dynamics depends only on the ddttime constantst{,=t\,) and on
the ratio of conductancesfg, ), but is already non-trivial. The model can have excit&pitype

I or Il depending whether it leaves the resting state throagiaddle-node or an Andronov-Hopf
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