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DIRECTIONALLY CONVEX ORDERING OF RANDOM MEA-SURES, SHOT NOISE FIELDS AND SOME APPLICATIONS TOWIRELESS COMMUNICATIONSBART LOMIEJ B LASZCZYSZYN,� INRIA/ENS and Math. Inst. University of Wro
 lawD. YOGESHWARAN,�� INRIA/ENS Abstra
tDire
tionally 
onvex (d
x) ordering is a tool for 
omparison of dependen
estru
ture of random ve
tors that also takes into a

ount the variability of themarginal distributions. When extended to random �elds it 
on
erns 
omparisonof all �nite dimensional distributions. Viewing lo
ally �nite measures asnon-negative �elds of measure-values indexed by the bounded Borel subsetsof the spa
e, in this paper we formulate and study the d
x ordering ofrandom measures on lo
ally 
ompa
t spa
es. We show that the d
x orderis preserved under some of the natural operations 
onsidered on randommeasures and point pro
esses, su
h as deterministi
 displa
ement of points,independent superposition and thinning as well as independent, identi
allydistributed marking. Further operations su
h as position dependent markingand displa
ement of points are shown to preserve the order on Cox pointpro
esses. We also examine the impa
t of d
x order on the se
ond momentproperties, in parti
ular on 
lustering and on Palm distributions. Comparisonsof Ripley's fun
tions, pair 
orrelation fun
tions as well as examples seem toindi
ate that point pro
esses higher in d
x order 
luster more.As the main result, we show that non-negative integral shot-noise �eldswith respe
t to d
x ordered random measures inherit this ordering from themeasures. Numerous appli
ations of this result are shown, in parti
ular to
omparison of various Cox pro
esses and some performan
e measures of wirelessnetworks, in both of whi
h shot-noise �elds appear as key ingredients. We alsomention a few pertinent open questions.Keywords: sto
hasti
 ordering, dire
tional 
onvexity, random measures, ran-dom �elds, point pro
esses, wireless networks2000 Mathemati
s Subje
t Classi�
ation: Primary 60E15Se
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1. Introdu
tionPoint pro
esses (p.p.) have been at the 
entre of various studies in sto
hasti
geometry, both theoreti
al and applied. Most of the work involving quantitativeanalysis of p.p. have dealt with Poisson p.p.. One of the main reasons being that
hara
teristi
s of Poisson p.p. are amenable to 
omputations and yield ni
e 
losedform expressions in many 
ases. Computations have been diÆ
ult in great many 
ases,even for Cox (doubly sto
hasti
 Poisson) p.p..Comparison of point pro
esses To improve upon this situation, qualitative, 
om-parative studies of p.p. have emerged as useful tools. The �rst method of 
omparisonof p.p. has been 
oupling or sto
hasti
 domination (see [18,20,32℄). In our terminology,these are known as strong ordering of p.p.. When two p.p. 
an be 
oupled, one turnsout to be a subset of the other. This ordering is very useful for obtaining various boundsand proving limit theorems. However, using it one 
annot 
ompare two di�erent p.p.with same mean measures. An obvious example is an homogeneous Poisson p.p. anda stationary Cox p.p. with the same intensity. The question arises of what orderingis suitable for su
h p.p.? This is an important question sin
e it is expe
ted that by
omparing p.p. of the same intensity one should a
hieve a tighter bound than by
oupling. For some more details on strong ordering of p.p. and need for other orders,see remarks in [29, Se
tion 5.4 and Se
tion 7.4.2℄.From 
onvex to d
x order Two random variables X and Y with the same meanE(X) = E(Y ) 
an be 
ompared by how "spread out" their distributions are. Thisstatisti
al variability (in statisti
al ensemble) is 
aptured to a limited extent by thevarian
e, but more fully by 
onvex ordering, under whi
h X is less than Y if andonly if for all 
onvex f , E(f(A)) � E(f(B)). In multi-dimensions, besides di�erentstatisti
al variability of marginal distributions, two random ve
tors 
an exhibit dif-ferent dependen
e properties of their 
oordinates. The most evident example here is
omparison of the ve
tor 
omposed of several 
opies of one random variable to a ve
tor
omposed of independent 
opies sampled from the same distribution. A useful toolfor 
omparison of the dependen
e stru
ture of random ve
tors with �xed marginals isthe supermodular order. The d
x order is another integral order (generated by a 
lassof d
x fun
tions in the same manner as 
onvex fun
tions generate the 
onvex order)that 
an be seen as a generalization of the supermodular one, whi
h in addition takesinto a

ount the variability of the marginals (
f [29, Se
tion 3.12℄). It 
an be naturallyextended to random �elds by 
omparison of all �nite dimensional distributions.2



The d
x order of random measures In this paper we make an obvious furtherextension that 
onsists in d
x ordering of lo
ally �nite measures (to whi
h belongp.p.) viewed as non-negative �elds of measure-values on all bounded subsets of thespa
e. We show that the d
x order is preserved under some of the natural operations
onsidered on random measures and point pro
esses, su
h as independent superpositionand thinning. Also, we examine the impa
t of d
x order on the se
ond momentproperties, in parti
ular on 
lustering, and Palm distributions.Integral shot-noise �elds Many interesting 
hara
teristi
s of random measures,both in the theory and in appli
ations have the form of integrals of some non-negativekernels. We 
all them integral shot-noise �elds. For example, many 
lasses of Coxp.p., with the most general being L�evy based Cox p.p. (
f. [14℄), have sto
hasti
intensity �elds, whi
h are shot-noise �elds. They are also key ingredients of the re
entlyproposed, so-
alled \physi
al" models for wireless networks, as we will explain in whatfollows (see also [1, 8, 11℄). It is thus parti
ularly appealing to study the shot-noise�elds generated by d
x ordered random measures.Sin
e integrals are linear operators on the spa
e of measures, and knowing that alinear fun
tion of a ve
tor is trivially d
x, it is naturally to expe
t that the integralshot-noise �elds with respe
t to d
x ordered random measures will inherit this orderingfrom the measures. However, this property 
annot be 
on
luded immediately from the�nite dimensional d
x ordering of measures. The formal proof of this fa
t that isthe main result of this paper involves some arguments from the theory of integration
ombined with the 
losure property of d
x order under joint weak 
onvergen
e and
onvergen
e in mean.Ordering in queueing theory and wireless 
ommuni
ations The theory ofsto
hasti
 ordering provides elegant and eÆ
ient tools for 
omparison of random obje
tsand is now being used in many �elds. In parti
ular in queueing theory 
ontext, in [33℄,Ross made a 
onje
ture that repla
ing a stationary Poisson arrival pro
ess in a singleserver queue by a stationary Cox p.p. with the same intensity should in
rease theaverage 
ustomer delay. There have been many variations of these 
onje
tures whi
hare now known as Ross-type 
onje
tures. They triggered the interest in 
omparisonof queues with similar inputs ( [6, 25, 31℄). The notion of a d
x fun
tion was partiallydeveloped and used in 
onjun
tion with the proving of Ross-type 
onje
tures ( [21,22,34℄). Mu
h earlier to these works, a 
omparative study of queues motivated by neuron-�ring models 
an be found in [16℄. Also 
omparison of varian
es of point pro
esses and�bre pro
esses was studied in [36℄ and hen
e it 
an be 
onsidered as a forerunner to ourarti
le. The appli
ability of these results has generated suÆ
ient interest in the theory3



of sto
hasti
 ordering as 
an be seen from the diverse results in the book of M�ullerand Stoyan ( [29℄). As most works on ordering of p.p. were motivated by appli
ationsto queueing theory, results were primarily fo
used on one-dimensional point pro
esses.An attempt to re
tify the la
k of work in higher dimensions was made in [24℄, where
omparison results for shot-noise �elds of spatial stationary Cox p.p. were given. Theresults of [24℄ are the starting point of our investigation.Our interest in ordering of point pro
esses, and in parti
ular in the shot-noise�elds they generate, has roots in the analysis of wireless 
ommuni
ations, where theseobje
ts are primarily used to model the so 
alled interferen
e that is the total powerre
eived from many emitters s
attered in the plane or spa
e and sharing the 
ommonHertzian medium. A

ording to a new emerging methodology, the interferen
e-awaresto
hasti
 geometry modeling of wireless 
ommuni
ations provides a way of de�ningand 
omputing ma
ros
opi
 properties of large wireless networks by some averagingover all potential random patterns for node lo
ations in an in�nite plane and radio
hannel 
hara
teristi
s, in the same way as queuing theory provides averaged responsetimes or 
ongestion over all potential arrival patterns within a given parametri
 
lass.These ma
ros
opi
 properties will allow one to 
hara
terize the key dependen
ies ofthe network performan
e 
hara
teristi
s in fun
tion of a relatively small number ofparameters.In the above 
ontext, Poisson distribution of emitters/re
eiver/users is often toosimplisti
. Statisti
s show that the real patterns of users exhibits more 
lusteringe�e
ts (\hots spots") than observed in an homogeneous Poisson point pro
esses. Onthe other hand, good pa
ket-
ollision-avoidan
eme
hanisms s
heme should 
reate some\repulsion" in the pattern of nodes allowed to a

ess simultaneously to the 
hannel.This rises questions about the analysis of non-Poisson models, whi
h 
ould be to someextent ta
kled on the ground of the theory of sto
hasti
 ordering. Interestingly, weshall show that there are 
ertain performan
e 
hara
teristi
s in wireless networks thatimprove with more variability in the input pro
ess.The remaining part of the arti
le is organized as follows. In the next se
tion,we will present the main de�nitions and state the main results 
on
erning d
x orderingof the integral shot-noise �elds. Se
tion 3 will explore the various 
onsequen
es ofordering of random measures. The proofs of the main results are given in Se
tion 4.Examples illustrating the use and appli
ation of the theorems shall be presented inSe
tion 5. Se
tion 6 will sket
h some of the possible appli
ations of results in the
ontext of wireless 
ommuni
ations. Finally, we 
on
lude with some remarks andquestions in Se
tion 7. There is an Appendix (Se
tion 8) 
ontaining some propertiesof sto
hasti
 orders and their extensions that are used in the paper.4



2. De�nitions and the Main ResultThe order� on Rn shall denote the 
omponent-wise partial order, i.e., (x1; : : : ; xn) �(y1; : : : ; yn) if xi � yi for every i.De�nition 2.1. � We say that a fun
tion f : Rd ! R is dire
tionally 
on-vex (d
x) if for every x; y; p; q 2 Rd su
h that p � x; y � q and x+ y = p+ q,f(x) + f(y) � f(p) + f(q):� Fun
tion f is said to be dire
tionally 
on
ave (d
v) if the inequality in the aboveequation is reversed.� Fun
tion f is said dire
tionally linear (dl) if it is d
x and d
v.Fun
tion f = (f1; : : : ; fn) : Rd ! Rn is said to be d
x(d
v) if ea
h of its 
omponentfi is d
x(d
v). Also, we shall abbreviate in
reasing and d
x by id
x and de
reasingand d
x by dd
x. Similar abbreviations shall be used for d
v fun
tions. Moreover, weabbreviate non-negative and id
x by id
x+.In the following, let F denote some 
lass of fun
tions from Rd to R. The dimensiond is assumed to be 
lear from the 
ontext. Unless mentioned, when we state E(f(X))for f 2 F and X a random ve
tor, we assume that the expe
tation exists, i.e., for ea
hrandom ve
tor X we 
onsider the sub-
lass of F for whi
h the expe
tations exist withrespe
t to (w.r.t) X .De�nition 2.2. � Suppose X and Y are real-valued random ve
tors of the samedimension. Then X is said to be less than Y in F order if E(f(X)) � E(f(Y )) forall f 2 F (for whi
h both expe
tations are �nite). We shall denote it as X �F Y .� Suppose fX(s)gs2S and fY (s)gs2S are real-valued random �elds, where S isan arbitrary index set. We say that fX(s)g �F fY (s)g if for every n � 1 ands1; : : : ; sn 2 S, (X(s1); : : : ; X(sn)) �F (Y (s1); : : : ; Y (sn)):In the remaining part of the paper, we will mainly 
onsider F to be the 
lass of d
x,id
x and id
v fun
tions; the negation of these fun
tions give rise to d
v; dd
v and dd
xorders respe
tively. If F is the 
lass of in
reasing fun
tions, we shall repla
e F by st(strong) in the above de�nitions. These are standard notations used in literature.As 
on
erns random measures, we shall work in the set-up of [17℄. Let E be alo
ally 
ompa
t, se
ond 
ountable Hausdor� (LCSC) spa
e. Su
h spa
es are polish,i.e., 
omplete and separable metri
 spa
e. Let B(E) be the Borel �-algebra and Bb(E)be the �-ring of bounded, Borel subsets (bBs). Let M = M (E ) be the spa
e of non-negative Radon measures on E . The Borel �-algebraM is generated by the mappings� 7! �(B) for all B bBs. A random measure � is a mapping from a probability spa
e5



(
;F ;P) to (M ;M). We shall 
all a random measure � a p.p. if � 2 �N , the subset of
ounting measures in M . Further, we shall say a p.p. � is simple if a.s. �(fxg) � 1 forall x 2 E . Throughout, we shall use � for an arbitrary random measure and � for ap.p.. A random measure � 
an be viewed as a random �eld f�(B)gB2Bb(E) : With thisviewpoint and the previously introdu
ed notion of ordering of random �elds, we de�neordering of random measures.De�nition 2.3. Suppose �1(�) and �2(�) are random measures on E . We say that�1(�) �d
x �2(�) if for any I1; : : : ; In bBs in E ,(�1(I1); : : : ;�1(In)) �d
x (�2(I1); : : : ;�2(In)): (1)The de�nition is similar for other orders, i.e., when F is the 
lass of id
x=id
v=dd
x=dd
v=stfun
tions.De�nition 2.4. Let S be any set and E a LCSC spa
e. Given a random measure � onE and a measurable (in the �rst variable alone) response fun
tion h(x; y) : E�S ! �R+where �R+ denotes the 
ompletion of positive real-line with in�nity, the (integral) shot-noise �eld is de�ned as V�(y) = ZE h(x; y)�(dx): (2)With this brief introdu
tion, we are ready to state our key result that will be provedin Se
tion 4.1.Theorem 2.1. 1. If �1 �id
x (resp. id
v) �2, then fV�1(y)gy2S �id
x (resp. id
v)fV�2(y)gy2S.2. Let E(V�i(y)) <1, for all y 2 S, i = 1; 2: If �1 �d
x �2, then fV�1(y)gy2S �d
xfV�2(y)gy2S.The �rst part of the above theorem for the one-dimensional marginals of boundedshot-noise �elds generated by lower semi-
ontinuous response fun
tions is proved in [24℄for the spe
ial 
ase of spatial stationary Cox p.p.. It is 
onspi
uous that we havegeneralized the earlier result to a great extent. This more general result will be used inmany pla
es in this paper, in parti
ular to prove ordering of independently, identi
allymarked p.p. (Proposition 3.2), Ripley's fun
tions (Proposition 3.4), Palm measures(Proposition 3.5), independently marked Cox pro
esses (Proposition 3.7), extremalshot-noise �elds (Proposition 4.1). Apart form these results, Se
tions 5 and 6 shallamply demonstrate examples and appli
ations that shall need Theorem 2.1.6



3. Ordering of Random Measures and Point Pro
essesWe shall now give a suÆ
ient 
ondition for random measures to be ordered, namelythat the 
ondition (1) in De�nition 2.3 needs to be veri�ed only for disjoint bBs. Thene
essity is trivial. This is a mu
h easier 
ondition and will be used many times in theremaining part of the paper.Proposition 3.1. Suppose �1(�) and �2(�) are two random measures on E . Then�1(�) �d
x �2(�) if and only if 
ondition (1) holds for all mutually disjoint bBs. Thesame results holds true for id
x and id
v order.Proof. We need to prove the 'if' part alone. We shall prove for d
x order andthe same argument is valid for f being id
x or id
v. Let 
ondition (1) be satis�edfor all mutually disjoint bBs. Let f : Rn+ ! R be d
x fun
tion and B1; : : : ; Bn bebBs. We 
an 
hoose mutually disjoint bBs A1; : : : ; Am su
h that Bi = [j2JiAj forall i. Hen
e �(Bi) = Pj2Ji �(Aj): Now de�ne g : Rm+ ! Rn+ as g(x1; : : : ; xm) =(Pj2J1 xj ; : : : ;Pj2Jn xj): Then g is idl and so f Æ g is d
x. Moreover, f(�(B1); : : : ;�(Bn)) = f Æ g(�(A1); : : : ;�(Am)) and thus the result for d
x follows. �3.1. Simple Operations Preserving OrderPoint pro
esses are spe
ial 
ases of random measures and as su
h will be subje
tto the 
onsidered ordering. It is known that ea
h p.p. � on a LCSC spa
e E 
an berepresented as a 
ountable sum � =Pi "Xi of Dira
 measures ("x(A) = 1 if x 2 A and0 otherwise) in su
h a way that Xi are random elements in E . We shall now show thatall the three orders d
x; id
x; id
v preserve some simple operations on random measuresand p.p., as deterministi
 mapping, independent identi
ally distributed (i.i.d.) thinningand independent superposition.Let � : E ! E 0 be a measurable mapping to some LCSC spa
e E 0 . By the image ofa (random) measure � by � we understand �0(�) = �(��1(�)). Note that the image ofa p.p. � by � 
onsists in deterministi
 displa
ement of all its points by �.Let � = Pi "xi . By i.i.d. marking of �, with marks in some LCSC spa
e E 0 ,we understand a p.p. on the produ
t spa
e E � E 0 , with the usual produ
t Borel�-algebra, de�ned by ~� = Pi "(xi;Zi), where fZig are i.i.d. random variables (r.v.),so 
alled marks, on E 0 . By i.i.d. thinning of �, we understand � = Pi Zi"xi , whereZi are i.i.d. 0-1 Bernoulli random variables r.v.. The probability PfZ = 1g is 
alledthe retention probability. Superposition of p.p. is understood as addition of (
ounting)measures. Measures on Cartesian produ
ts of LCSC spa
es are always 
onsidered withtheir 
orresponding produ
t Borel �-algebras.Proposition 3.2. Suppose �i; i = 1; 2 are random measures and �i; i = 1; 2 are p.p..7



Assume that �1 �d
x (resp. id
x; id
v) �2 and �1 �d
x (resp. id
x; id
v) �2.1. Let �0i be the image of �i, i = 1; 2, by some mapping � : E ! E 0 . Then�01 �d
x (resp. id
x; id
v) �02. As a spe
ial 
ase, the same holds true for the dis-pla
ement of points of �i's by �.2. Let �i; i = 1; 2, be simple p.p. and ~�i; i = 1; 2, be the 
orresponding i.i.d. markedp.p. with the same distribution of marks. Then ~�1 �d
x (resp. id
x ;id
v) ~�2.3. Then �i be i.i.d. thinning of �i, i = 1; 2, with the same retention probability.Then �1 �d
x (resp. id
x ;id
v) �2.4. Let �01 and �02 be two random measures su
h that �01 �d
x (resp. id
x; id
v) �02.Assume that �0i's are independent of �i's. Then �1 + �01 �d
x (resp. id
x; id
v)�2 +�02, where + is understood as the addition of measures.5. Suppose the random measures are on the produ
t spa
e E � E 0 . Then �1(E ��) �d
x (resp. id
x; id
v) �2(E � �), provided the respe
tive proje
tions are Radonmeasures.Proof. 1. The result follows immediately from the De�nition 2.3.2. We shall prove ~�1 �d
x ~�2 and the proof for the other orders is similar. Sin
e Eis a LCSC spa
e, there exists a null-array of partitions fBn;j � Egn�1;j�1 , i.e.,fBn;jgj�1 form a �nite partition of E for every n and maxj�1fjBn;j jg ! 0 asn ! 1 where j � j denotes the diameter in any �xed metri
 (see [17, page 11℄).For every x 2 E , let j(n; x) be the unique index su
h that x 2 Bn;j(n;x). Let Z =fZn;jgn�1;j�1 be a family of E 0 -valued i.i.d. random variables with distributionF (�). De�ne marked p.p. ~�ni = PXk2�i "(Xk ;Zn;j(n;Xk)) for i = 1; 2. We shallnow verify that the sequen
es ~�ni 's satisfy the assumption of Lemma 8.2 withlimits ~�i's respe
tively.Firstly let B1; : : : ; Bm � E � E 0 be bBs and g : Rm ! R be a 
ontinuousbounded fun
tion. Sin
e Bi's are bounded and �i's are simple, given �i; i = 1; 2,there exists a.s. N(�i) 2 N su
h that for n � N(�i), the indi
es j(n;Xk) 6=j(n;Xl) for Xk 6= Xl, Xk; Xl 2 �i \ (B1 [ : : : [ Bm). Hen
e for n � N(�i),E(g(~�ni (B1); : : : ; ~�ni (Bm))j�i) = E(g(~�i(B1); : : : ; ~�i(Bm))j�i) and in 
onsequen
eE(g(~�ni (B1); : : : ; ~�ni (Bm))j�i) ! E(g(~�i(B1); : : : ; ~�i(Bm))j�i) a.s. as n ! 1.Sin
e g is bounded, by dominated 
onvergen
e theorem we have that E(g(~�ni (B1);: : : ; ~�ni (Bm))) ! E(g(~�i(B1); : : : ; ~�i(Bm))). Thus (~�ni (B1); : : : ; ~�ni (Bm)) D�!(~�ni (B1); : : : ; ~�ni (Bm)). Se
ondly it is easy to 
he
k that for B1 = B0 � B00 , wehave E(~�ni (B1)) = E(�i(B0))F (B00) = E(~�i(B1)) and hen
e by an appropriateapproximation E(~�ni (B1)) = E(~�i(B1)) for any bBs B1.8



Finally for any bBs B � E�E 0 and any realization Z = z = fzn;jgn�1;j�1, de�neV zi (B) := RE 1[(x; zn;j(n;x)) 2 B℄�i(dx). Sin
e zn;j(n;�) is a pie
ewise 
onstantfun
tion, 1[(x; zn;j(n;x)) 2 B℄ is a measurable fun
tion in x and so V zi 's areintegral shot-noise �elds (as per De�nition 2.4) indexed by bBs of E � E 0 . Thusfrom Theorem 2.1, we have that for any d
x fun
tion f ,E(f(~�n1 (B1); : : : ; ~�n1 (Bm))jZ = z) = E(f(V z1 (B1); : : : ; V z1 (Bm)))� E(f(V z2 (B1); : : : ; V z2 (Bm))) = E(f(~�n2 (B1); : : : ; ~�n2 (Bm))jZ = z)Now, taking further expe
tations we get (~�n1 (B1); : : : ; ~�n1 (Bm)) �d
x (~�n2 (B1);: : : ; ~�n2 (Bm)). Sin
e the approximation satis�es the assumption of Lemma 8.2,the proof follows.3. We need to prove E(f(�1(A1); : : : ;�1(An))) � E(f(�2(A1); : : : ;�1(An))) ford
x (resp. id
; id
v) fun
tion f and mutually disjoint Ak, k = 1; : : : ; n; 
f. Propo-sition 3.1. Note that given �(Ak) = nk, we have �(Ak) = Pnki=1 Zki , where Zkiare i.i.d. 
opies of the Bernoulli thinning variable. Thus the result follows fromthe �rst statement of Lemma 8.3.4. Using the following fa
t from [29℄: X �d
x (resp. id
x; id
v) Y impliesX+Z �d
x (resp. id
x; id
v)Y + Z provided Z is independent of X and Y one 
an easily show that �1 +�01 �d
x (resp. id
x; id
v) �2 + �01 assuming �01 independent of �2. The sameargument shows that �2 + �01 �d
x (resp. id
x; id
v) �2 + �02. The result followsby the transitivity of the order.5. This result follows easily from Lemma 8.2 using an in
reasing approximation ofE by bBs. �3.2. Impa
t on Higher Order PropertiesWe will state now some results involving ordering of moments of random measuresand draw some 
on
lusions 
on
erning the so 
alled se
ond order properties. Theselatter ones make it possible to 
hara
terize the 
lustering in p.p..By the n th power of random measure �, we understand a random measure �k onthe produ
t spa
e Ek given by �k(A1 � : : : � Ak) = Qkj=1 �(Aj). Its expe
tation,�k(�) = E(�k(�)) is 
alled the k th moment measure. The �rst moment measure �(�) =�1(�) is 
alled the mean measure.Proposition 3.3. Consider random measures �1 �id
x �2. Then �k1 �id
x �k2 and�k1(�) � �k2(�). Moreover, if �1 �d
x �2 then �1(�) = �2(�).9



Proof. By the standard arguments, one 
an approximate any bBs set Ci, i = 1; : : : ; nin Ek by in
reasing unions of re
tangles. By Lemma 8.2 and using a similar argumentabout 
omposition of a id
x and idl fun
tion as in the proof of Proposition 3.1, to provethe �rst statement, it is enough to show the respe
tive inequality for id
x fun
tionf : Rn ! R taken of the values of the moment measures on n re
tangles in Ek . In this
ontext, 
onsider g : Rm ! R given byg(y1; : : : ; ym) = f� Yj2J1 yj ; : : : ; Yj2Jn yj� ;where J1; : : : ; Jn are k-element subsets of the set f1; : : : ;mg. Note for non-negativearguments that if f is id
x then g is id
x.The se
ond statement follows easily from the �rst one by the fa
t that f(x) = x isid
x. For the �rst moment (mean measure) note that both f(x) = x and f(x) = �xare d
x. �We shall explore now the relation between d
x ordering and 
lustering of points ina p.p. One of the most popular fun
tions for the analysis of this e�e
t is the Ripley'sK fun
tion K(r) (redu
ed se
ond moment fun
tion); see [35℄. Assume that � is astationary p.p. on Rd with �nite intensity � = �(B), where B is a bBs of Lebesguemeasure 1. Then K(r) = 1�jGj E� XXi2�\G(�(BXi (r)) � 1)� ;where Bx(r) is the ball 
entered at x of radius r and jGj denotes the Lebesgue measureof a bBs G; due to stationarity, the de�nition does not depend on the 
hoi
e of G.Proposition 3.4. Consider two stationary p.p. �i, i = 1; 2, with same �nite intensityand denote by Ki(r) their Ripley's K fun
tions. If �1 �d
x �2 then K1(�) � K2(�).Proof. Denote Ii = E�PXj2�i\G(�i(BXj (r)) � 1)�, i = 1; 2. By the equality ofmean measures (Proposition 3.3), it is enough to prove that I1 � I2. Note that Ii 
anbe written as the value of some shot noise evaluated with respe
t to �2i , the se
ondprodu
t of the p.p.. Ii = XXj ;Xk2�i 1[Xj 2 G℄1[0 < jXk �Xj j � r℄ ;where 1[�℄ denotes the indi
ator fun
tion. Thus, the result follows from Proposition 3.3and Theorem 2.1.Another useful 
hara
teristi
 is the pair 
orrelation fun
tion de�ned on R2 as g(x; y) =�2(x;y)�1(x)�1(y) ; where �k is the k th produ
t intensity, equal (outside the diagonals) to the10



density of the k th moment measure �k with respe
t to the Lebesgue measure.We avoid dis
ussion on questions su
h as existen
e et
. The following result followsfrom Proposition 3.3.Corollary 3.1. Consider p.p. su
h that �1 �d
x �2. Then their respe
tive pair
orrelation fun
tions satisfy g1(x; y) � g2(x; y) almost everywhere with respe
t to theLebesgue measure.3.3. Impa
t on Palm MeasuresFor the following de�nitions and results regarding Palm distributions of randommeasures see [17, Se
tion 10℄.De�nition 3.1. For a �xed measurable f su
h that 0 < E(RE f(x)�(dx)) < 1, thef -mixed Palm version of �, denoted by �f 2 M , is de�ned as having the distributionP(�f 2M) = E(RE f(x)�(dx)1[� 2M ℄)E(RE f(x)�(dx)) ; M 2M:In 
ase � (say on the Eu
lidean spa
e E = Rd) has a density f�(x)gx2Rd, we de�ne forea
h x 2 Rd the Palm version �x of � by the formulaP(�x 2M) = E(�(x)1[� 2M ℄)E(�(x)) ; M 2 M:Palm versions �x 
an be de�ned for a general random measure via some Radon-Nikodym derivatives. However, we shall state our result for �x as de�ned above aswell as for mixed Palm versions �f in order to avoid the arbitrariness related to thenon-uniqueness of Radon-Nikodym derivatives.Proposition 3.5. Suppose �i; i = 1; 2 are random measures.1. If �1 �d
x �2 then (�1)f �id
x (�2)f for any non-negative measurable fun
tion fsu
h that 0 < RE f(x)�(dx) <1, where � is the (
ommon) mean measure of �i,i = 1; 2.2. Suppose that �i has lo
ally �nite mean measure and almost surely (a.s.) lo
allyRiemann integrable density �i, i = 1; 2. If f�1(x)g �d
x f�2(x)g, then �1 �d
x�2 and for every x 2 Rd , (�1)x �id
x (�2)x.Proof. 1. Denote Ii = RE f(x)�i(dx), i = 1; 2. By Proposition 3.3, �1 �d
x �2implies that the mean measures are equal and thus E(I1) = E(I2). It remains toprove E(g(�1(B1); : : : ;�1(Bn))I1) � E(g(�2(B1); : : : ;�2(Bn))I2)11



for id
x fun
tion g. This follows from Theorem 2.1 and the fa
t that h(x0; x) =x0g(x) : Rn+1 ! R is id
x, for non-negative argument x0.2. The �rst part follows immediately from the se
ond statement of Lemma 8.4. Forthe se
ond part, use the same argument about h(x0; x) = x0g(x) as above. �Remark 3.1. Compared to earlier results where d
x ordering led to d
x ordering, onemight tend to believe that the loss here (as d
x implies id
x only) is more te
hni
al.However the following illustrates that it is natural to expe
t so: 
onsider a Poisson p.p.� and its (deterministi
) intensity measure �(�) (i.e., its mean measure �(�) = E(�(�)).Using the 
omplete independen
e property of the Poisson p.p. and the fa
t that ea
hd
x fun
tion is 
omponent-wise 
onvex, one 
an show that for disjoint bBs A1; : : : ; Anand any d
x fun
tion f , f(�(A1); : : : ; �(An)) � E(f(�(A1); : : : ;�(An)). Thus � �d
x�. It is easy to see that �f (�) = �(�) (mixed Palm version of a deterministi
 measureis equal to the original measure). Take f(x) = 1[x 2 A℄ for some bBs A. ThenE(�f (A)) = E((�(A))2)=�(A) = �(A) + 1 sin
e �(A) is a Poisson r.v.. Thus �f (A) <E(�f (A)) disproving �f (A) �d
x �f (A). Another 
ounterexample involving Poisson-Poisson 
luster p.p. will be given in Remark 5.2.3.4. Cox Point Pro
essesWe will 
onsider now Cox p.p. (see e.g. [35, III 5.2℄), known also as doubly sto
hasti
Poisson p.p., whi
h 
onstitute a ri
h 
lass often used to model patterns whi
h exhibitmore 
lustering than in Poisson p.p..Re
all that a Cox (�) p.p. �� on E generated by the random intensity measure�(�) on E is de�ned as having the property that �� 
onditioned on �(�) is a Poissonp.p. with intensity �(�). Note that Cox p.p. may be seen as a result of an operationtransforming some random (intensity) measure into a point (Cox) p.p..One 
an easily show that this operation preserves our orders.Proposition 3.6. Consider two ordered random measures �1 �d
x (resp. id
x; id
v) �2.Then ��1 �d
x (resp. id
x; id
v) ��2 .Proof. Taking a d
x (resp. id
x; id
v) fun
tion �, assuming (by Proposition 3.1)mutually disjoint bBs Ak, k = 1; : : : ; n, using the de�nition of Cox p.p. and the se
ondstatement of the Lemma 8.3 one shows for i = 1; 2 that that the 
onditional expe
tationE(�(��i (A1); : : : ;��i(An))j�i)given the intensity measure �i is a d
x (resp. id
x; id
v) fun
tion of (�i(A1); : : : ;�i(An)).The result follows thus from the assumption of the measures �i being d
x ordered. �12



We will show now using Theorem 2.1 that d
x; id
x; id
v ordering of Cox intensitymeasures is preserved by independent (not ne
essarily identi
ally distributed) markingand thinning, as well as independent displa
ement of points of the p.p..By independent marking of p.p. � on E with marks on some LCSC spa
e E 0 , weunderstand a p.p. ~� = Pi "(xi;Zi) su
h that given � = Pi "xi , Zi are independentrandom elements in E 0 , with distribution PfZi 2 �j� = Pi "xig = Fxi(�) given bysome probability (mark) kernel Fx(�) from E to E 0 . The fa
t that Fx(�) may dependon x (in 
ontrast to i.i.d. marking) is sometimes emphasized by 
alling ~� a \positiondependent" marking. Independent thinning 
an be seen as the proje
tion on E of thesubset ~�(�; f1g) of the independently marked p.p. ~� where the marks Zi 2 f0; 1g = E 0 ,are independent Bernoulli thinning variables Zi = Zi(x), whose distributions maybe dependent on xi. Similarly, the proje
tion of an independently marked p.p. ~� =Pi "(xi;Zi) on the spa
e of marks E 0 ; i.e., ~�(E��) =Pi "Zi 
an be seen as independentdispla
ement of points of � to the spa
e E 0 . Spe
ial examples are i.i.d. shifts of pointsin the Eu
lidean spa
e, when Zi = xi + Yi, where Yi are i.i.d.Proposition 3.7. Suppose �i; i = 1; 2, are two Cox (�i) p.p.. Assume that theirintensity measures are ordered �1 �d
x (resp. id
x; id
v) �2. Let ~�i; i = 1; 2 be the
orresponding independently marked p.p. with the same mark kernel Fx(�). Then~�1 �d
x (resp. id
x; id
v) ~�2.From the above Proposition, the following 
orollary follows immediately by the laststatement of Proposition 3.2.Corollary 3.2. Independent thinning and displa
ement of points preserves d
x (resp.id
x; id
v) order of the intensities of Cox p.p..Proof. (Prop. 3.7) Let �i be Cox (�i) i = 1; 2 respe
tively. Assume �1 �d
x(id
x;id
v)�2. It is known that independent marking of Cox (�i) p.p. is a Cox (~�i) p.p. withintensity measure ~�i on E � E 0 given by ~�i(�) = RE RE0 1[(x; y) 2 �℄Fx(dy)�i(dx);
f. [35, Se
s 4.2 and 5.2℄. Let S be the family of bBs in E � E 0 ; for x 2 E andbBs C � E � E 0 
onsider h(x;C) = RE0 1[(x; y) 2 C℄Fx(dy). Then the integral shotnoise V�i (C) = RE h(x;C) �i(dx) satis�es V�i (C) = ~�i(C) for all bBs C. Thus, byTheorem 2.1 ~�1 �dx
 (resp. id
x; idxv) ~�2 and the result follows from Proposition 3.6. �If �(�) 2 M (Rd ) a.s has a density f�(x)gx2Rd with respe
t to Lebesgue measure thenthe density is referred to as the intensity �eld of the Cox p.p., whi
h will be 
alled inthis 
ase Cox (�) p.p. and denoted by ��.It is known that Cox p.p. is over-dispersed with respe
t to the Poisson p.p., i.e.,Var(�1(B)) � Var(�2(B)) where �1;�2 are, respe
tively, Poisson and Cox p.p. withthe same mean measure. Hen
e, it is 
lear that a Cox p.p. 
an only be greater in d
x13



order than a Poisson p.p. with the same mean measure. Indeed, in Se
tion 5 we willshow several examples when this stronger result holds, namely Cox p.p. that are d
xordered (larger) with respe
t to the 
orresponding Poisson p.p., as well as Cox p.p.d
x ordered with respe
t to ea
h other.3.5. Alternative De�nition of d
x OrderWe viewed a random measure as a random �eld and have de�ned ordering from thisviewpoint. Alternatively, one 
an 
onsider a randommeasure as an element of the spa
eof Radon measures M and de�ne ordering between two M -valued random elements.This 
an be done on
e we de�ne what is a d
x fun
tion on M . The d
x order 
an bede�ned on more general spa
es; [22℄ extends the notion of d
x ordering to latti
e orderedAbelian semigroups with some 
ompatibility 
onditions between the latti
e stru
tureand the Abelian stru
ture (LOAS+). The spa
e M 
an be equipped with the followinglatti
e and algebrai
 stru
ture. Consider the following partial order: for �; � 2 M , wesay � � � if �(B) � �(B) for all bBs B in E and addition (�+ �)(B) = �(B) + �(B).Under this de�nition, the spa
e M forms a LOAS+ as required by [22℄. Then one 
ande�ne a dire
tionally 
onvex fun
tion on M as in De�nition 2.1. Call it a d
x1 fun
tion.This gives rise to d
x1 order of random measures analogously to the �rst part of theDe�nition 2.2.Now we have two reasonable de�nitions of ordering of random measures. It is easy tosee that d
x1 ordering implies d
x ordering. In light of Example 5.1.7 of [29℄, existen
eof a 
ounterexample to the 
onverse looks plausible, though we failed in our attemptsto 
onstru
t one. However, the result of [3℄ proves that 
onvex ordering of real valuedsto
hasti
 pro
ess fXngn2N implies 
ontinuous, 
onvex ordering of the 
orrespondingelements of the in�nite-dimensional Eu
lidean spa
es RN . This suggests that d
x ofrandommeasures may imply a d
x1� order indu
ed by some sub
lass of d
x1 fun
tionalsof random measures, whi
h are regular in some sense. Leaving this general questionas an open problem, we remark only that the integral shot-noise �elds studied in thenext se
tion 
an be seen as some parti
ular 
lass of fun
tionals of random measures,whi
h are d
x1 (in fa
t linear on M ) and regular enough for their means to satisfy therequired inequality provided the random measures are d
x ordered. It is natural thusto have them in the suggested d
x1� 
lass.Re
all also that for strong order of p.p. there is the full equivalen
e between thesetwo de�nitions, and both imply the possibility of a 
oupling of the ordered p.p. su
hthat the smaller one is a.s. a subset of the greater one; 
f [32℄.14



4. Ordering of Shot-Noise FieldsIn this se
tion we will prove Theorem 2.1 
on
erning d
x ordering of integral shot-noise �elds, whi
h is the main result of this paper. We will also 
onsider the so 
alledextremal shot-noise �elds.4.1. Integral Shot-Noise FieldsUsually shot-noise �elds are de�ned for p.p. as the following sum (thus sometimes
alled additive shot-noise �elds) V�(y) = PXn2� h(Xn; y) where � = Pn "Xn andh is a non-negative response fun
tion. In de�nition 2.4 we have made a signi�
antbut natural generalization of this de�nition. It is pretty 
lear as to why we 
all thisgeneralization integral shot-noise �eld. The extension to unbounded response fun
tionsis not just a mathemati
al generalization alone. It shall provide us a simple proof ofordering for extremal-shot-noise �elds for p.p..Now, we shall prove Theorem 2.1. The proof is inspired by [24℄.Proof. (Theorem 2.1) We shall prove the se
ond statement �rst. The ne
essarymodi�
ations for the proof of the �rst statement shall be indi
ated later on.2. We need to show that (V 1(y1); : : : ; V 1(ym)) �d
x (V 2(y1); : : : ; V 2(ym)) for yi 2S; 1 � i � m and V j(�) = V�j (�), j = 1; 2. The proof relies on the 
onstru
tionof two sequen
es of random ve
tors (V jk (y1); : : : ; V jk (ym)), k = 1; 2: : : :, j = 1; 2satisfying the assumptions of Lemma 8.2.Choose an in
reasing sequen
e of 
ompa
t setsKk, k � 1 in E , su
h thatKk % E .Sin
e h is measurable in its �rst argument, we know that there exists a sequen
eof simple fun
tions hk(�; yi); k 2 N su
h that as k ! 1, hk(�; yi) " h(�; yi) for1 � i � m. They 
an be written down expli
itly as follows:hk(�; yi) = 
k1[fx 2 Kk : h(x; yi) =1g℄+ 
kXn=1 n� 12k 1[fx 2 Kk : n� 12k � h(x; yi) < n2k g℄(�)for 1 � i � m, where 
k = k2k. Put I ikn = fx 2 Kk : n�12k � h(x; yi) < n2k g andI ik1 = fx 2 Kk : h(x; yi) =1g for 1 � i � m and 1 � n � 
k. Note that all I iknn = 1; : : : ;1 are bBs and the sequen
e of random ve
tors we are looking for isV jk (yi) = ZE hk(x; yi)�j(dx) = 
k�j(I ik1) + 
kXn=1 n� 12k �j(I ikn);for j = 1; 2. By the de�nition of integral, it is 
lear that for j = 1; 2 as k !1, (V jk (y1); : : : ; V jk (ym)) " (V j(y1); : : : ; V j(ym)) a.s. and hen
e in distribution.15



By monotone 
onvergen
e theorem, the expe
tations, whi
h are �nite by theassumption, also 
onverge. What remains to prove is that for ea
h k 2 N, theve
tors are d
x ordered.Fix k 2 N. Now observe that for j = 1; 2, i = 1; : : : ;m, V jk (yi) are in
reasinglinear fun
tions of the ve
tors (�j(I ikn) : n = 1; : : : ; 
k;1), j = 1; 2. Thelatter are d
x ordered by the assumptions. And sin
e 
omposition of d
x within
reasing linear fun
tions is d
x, it follows that (V 1k (y1); : : : ; V 1k (ym)) �d
x(V 2k (y1); : : : ; V 2k (ym)):1. For ve
tors (V jk (y1); : : : ; V jk (ym)), k = 1; 2: : : :, j = 1; 2 de�ned as above,f(V jk (y1); : : : ; V jk (ym)) " f(V j(y1); : : : ; V j(ym)) a.s. for f id
x (resp. id
v) andhen
eE(f(V jk (y1); : : : ; V jk (ym))) " E(f(V j(y1); : : : ; V j(ym))), j = 1; 2. The proof is
omplete by noting that E f(V 1k (y1); : : : ; V 1k (ym)) � E(f(V 2k (y1); : : : ; V 2k (ym))for all k � 1 and f id
x (resp. id
v). �4.2. Extremal Shot-Noise FieldsWe re
all now the de�nition of the extremal shot-noise, �rst introdu
ed in [13℄.De�nition 4.1. Let S be any set and E a LCSC spa
e. Given a p.p. � on E anda measurable (in the �rst variable alone) response fun
tion h(x; y) : E � S ! R, theextremal shot-noise �eld is de�ned asU�(y) = supXi2�fh(Xi; y)g: (3)In order to state our result for extremal shot-noise �elds, we shall use the lowerorthant (lo) order.De�nition 4.2. Let X and Y be random Rd ve
tors. We say X �lo Y if P(X � t) �P(Y � t) for every t 2 Rd .On the real line, this is the same as strong order (i.e., when F 
onsists of in
reasingfun
tions) but in higher dimensions it is di�erent. Obviously st order implies lo orderand examples of random ve
tors whi
h are ordered in lo but not in st are known;see ( [29℄). Thus, it is 
lear that the following proposition is a generalization of the
orresponding one-dimensional result in [24℄ where the proof method was similar tothe proof of the ordering of integral shot-noise �elds. We shall give a mu
h simplerproof using the already proved result. 16



Proposition 4.1. Let �1 �id
v �2. Then fU�1(y)gy2S �lo fU�2(y)gy2S.Proof. The probability distribution fun
tion of the extremal shot-noise 
an be ex-pressed by the Lapla
e transform of some 
orresponding (additive) one as follows. Letfx1; : : : ; xmg � S and (a1; : : : ; am) 2 Rm. ThenP(U(yi) � ai; 1 � i � m) = E(Yi 1[supn fh(Xn; yi) � aig℄)= E(Yi Yn 1[h(Xn; yi) � ai℄)= E(Yi Yn elog 1[h(Xn;yi)�ai℄)= E(Yi e�Pn� log 1[h(Xn;yi)�ai℄)= E(e�Pi Û(yi))where Û(yi) = Pn� log1[h(Xn; yi) � ai℄ is an additive shot-noise with responsefun
tion taking values in [0;1℄: The response fun
tion is 
learly non-negative andmeasurable. The fun
tion f(x1; : : : ; xm) = e�Pi xi is a dd
x fun
tion on (�1;1℄.The result follows by the �rst statement of Theorem 2.1. �The extremal shot-noise �eld 
an be used to de�ne the Boolean model. Given a(generi
) random 
losed set (RACS; see [35, Ch. 6℄) G, let h((x;G); y) = 1[y 2 x+G℄.De�nition 4.3. By a Boolean model with the p.p. of germs � and the typi
al grainG we 
all the random set C(�; G) = fy : U~�(y) > 0g where ~� = Pi "(Xi;Gi) is i.i.d.marking of � with the mark distribution equal to this of G.We shall 
all G a �xed grain if there exists a 
losed set B su
h that G = B a.s.. Weshall demonstrate in Se
tion 6.1 as to how one 
an obtain 
omparison results for theBoolean model using the results of this se
tion.5. Examples of d
x Ordered Measures and Point Pro
essesIn this se
tion, we shall provide some examples of d
x ordered measures and p.p.on the Eu
lidean spa
e E = Rd . The examples are intended to be illustrative and noten
y
lopaedi
. The purpose of the examples is to show that there are d
x ordered p.p.as well as demonstrate some methods to prove that two p.p. are d
x ordered. Manyof the examples seem to indi
ate that p.p. higher in d
x order 
luster more, at leastfor Cox p.p.. 17



5.1. Ising-Poisson Cluster Point Pro
essesLet f�(s)gs2Rd be a stationary random intensity �eld. De�ne a new �eld, whi
h israndom but 
onstant in spa
e f�m(s) = �(0)g and deterministi
 
onstant �eld f�h(s) =E(�(0))g. Cox(�m) is known as mixed Poisson p.p. and Cox(�h) is just the well-knownhomogeneous Poisson p.p.. Denote the random intensity measures of the Cox, mixedand homogeneous Poisson p.p., by �;�m and �h respe
tively (i.e., �(dx) = �(x) dx,et
.) It is proved in [24℄ that � �d
x �m and when f�(s)g is a 
onditionally in
reasing�eld, �h �d
x �. Re
all that a random �eld fX(s)g is a 
onditionally in
reasing �eldif for any k and s1; : : : ; sk 2 Rd the expe
tation E(f(X(s1))jX(sj) = aj 8 2 � j � k) isin
reasing in aj for all in
reasing f . However, no example of a 
onditionally in
reasing�eld was given in [24℄. Now we 
onstru
t one.Consider the d-dimensional latti
e Zd. Let fX(z)gz2Zd be i.i.d. random variablestaking values in f+1;�1g. Call fX(z)g a (random) 
on�guration of spins. In order toobtain a stationary �eld 
onsider a random shift of the origin of Zd to U with uniformdistribution on [0; 1℄d (U independent of fX(z)g). Let the latti
e shifted by U bedenoted by Zd�. Pi
k two numbers �2 � �1: For s 2 Rd , de�ne �(s) = �11[X( _s) =1℄+�21[X( _s) = �1℄ where _s represents the unique \lower left" point in Zd� nearest to s.The intensity �eld is 
learly stationary. We shall now show that f�(s)g is 
onditionallyin
reasing. Note thatf(�(s)) = 1[x( _s) = 1℄(f(�1)� f(�2)) + f(�2) (4)From Theorem 1.2.15 of [29℄, it is suÆ
ient to show the 
onditional in
reasing property
onditioned on U , the random origin of the latti
e Zd�. Hen
e it is enough for the Isingmodel to possess the following property:P(X(z1) = 1jX(z2) = �1; X(zj) = aj ; j = 3; : : : ; k)� P(X(z1) = 1jX(z2) = 1; X(zj) = aj ; j = 3; : : : ; k);where ai 2 f+1;�1g and zi 2 Zd; i = 1; : : : ; k. This follows easily from the fa
t thatthe spins are i.i.d.We 
all the Cox p.p. generated by the above 
onditionally in
reasing �eld f�(s)gthe Ising-Poisson 
luster p.p. By the arguments presented in [24℄, it is d
x largerthan the homogeneous Poisson p.p. with the same intensity. Note that intuitively theIsing-Poisson 
luster p.p. \
lusters" its points more than a homogeneous Poisson p.p.In what follows, we will see more examples of 
luster (Cox) p.p. whi
h are d
x largerthan the 
orresponding homogeneous Poisson p.p..18



5.2. L�evy Based Cox Point Pro
esses (LCPs)This 
lass of p.p. is being introdu
ed in [14℄. One 
an �nd many examples of LCPsin the above mentioned paper. In simple terms, a LCP is a p.p. whose intensity �eldis an integral shot-noise �eld of a L�evy basis. A random measure L 2 M (Rd ) is said tobe a non-negative L�evy basis if� for any sequen
e fAng of disjoint, bBs of Rd , L(An) are independent randomvariables (
omplete independen
e ) and L(SAn) = PL(An) a.s. provided [Anis also a bBs of Rd .� for every bBs A of Rd , L(A) is in�nitely divisible.We shall 
onsider only non-negative L�evy bases, even though there exist signed L�evybases too (see [14℄). Hen
e, we shall omit the referen
e to non-negativity in future.A Cox p.p. � is said to be a LCP, if its intensity �eld is of the form�(y) = ZRd k(x; y)L(dx);where L is a L�evy basis and the kernel k is a non-negative fun
tion su
h that k(x; y)is a.s. integrable with respe
t to L and k(:; y) is integrable with respe
t to Lebesguemeasure. In [14℄ the response fun
tion k and the L�evy basis L is 
hosen su
h thatRB �(y) dy <1 a.s. for all bBs B, for whi
h a suÆ
ient 
ondition is RB E(�(y)) dy <1.In our 
onsiderations, in order to be able to use Lemma 8.4, we will require that �(y)is a.s. lo
ally Riemann integrable.Remark 5.1. Note that a suÆ
ient 
ondition for this is that �(y) is a.s. 
ontinuous,for whi
h, in turn, it is enough to assume that k is 
ontinuous in its se
ond argumentand that for all x 2 Rd , there existBx(�x), �x > 0 su
h that RRd supz2Bx(�x) k(z; y)�(dx)<1 for all y, where �(B) = E(L(B)), the mean measures of the L�evy bases; (
f [1℄).Lemma 5.1. Let L1 and L2 be L�evy bases with mean measure �i. Let �i; i = 1; 2 beLCPs with L�evy bases Li; i = 1; 2 respe
tively.1. L1 �d
x (resp. id
x; id
v) L2 if and only if L1(A) �
x (resp. i
x; i
v) L2(A) for all bBsA of Rd , where 
x; i
x; i
v stands, respe
tively for 
onvex, in
reasing 
onvex andin
reasing 
on
ave.2. If L1 �d
x (resp. id
x; id
v) L2, then �1 �d
x (resp. id
x; id
v) �2 provided the intensity�elds �i(y) of LCP �i is a.s. lo
ally Riemann integrable with these integrals, in
ase of d
x, having �nite means.3. �i �d
x Li. 19



Proof. The �rst part is due to Proposition 3.1 and the 
omplete independen
e prop-erty of L�evy bases. As for the se
ond part, it is a simple 
onsequen
e of Theorem 2.1,Lemma 8.4 and Proposition 3.6. The third part follows from 
omplete independen
eand Jensen's inequality. �We shall now give some examples of d
x ordered L�evy basis.Example 5.1. Let fxig be a lo
ally �nite deterministi
 
on�guration of points in Rd .Let fXji gi�1; j = 1; 2 be i.i.d sequen
e of in�nite divisible random variables su
h thatX11 �
x X21 . (For example, X11 
an be sum of two independent exponential r.v. withmean 1=2 and X21be an exponential r.v. with mean 1.) De�ne the L�evy bases asfollows: Lj(A) = Xxi2AXji ;where A is a bBs of Rd and j = 1; 2. By Lemma 5.1 and the fa
t that X11 �
x X21 itfollows that L1 �d
x L2:Example 5.2. Let ~� = Pi "(xi;Zi) be an homogeneous Poisson p.p. on Rd inde-pendently marked by random variables fZig with mean �0. Consider two randommeasures �1 =P(xi;Zi)2~� �0"xi and �2 =P(xi;Zi)2~� Zi"xi . Note that Li, i = 1; 2 areLevy basis. By Lemma 5.1 and the fa
t that �0 �
x Zi, 
onditioning on the numberof points and using the same argument as in the proof of the se
ond statement ofProposition 3.2 one 
an prove that �1 �d
x �2.5.3. Poisson-Poisson Cluster Point Pro
essesBy Poisson-Poisson 
luster p.p., we understand a LCP with the Levy basis being aPoisson p.p. This 
lass deserves a separate mention due to the generality of the orderingresults that are possible. For rest of the se
tion, assume that h(x) is a non-negativemeasurable fun
tion su
h that RRd h(x)dx = �0 <1:We shall now give an example of a parametri
 family of d
x ordered Poisson-Poisson
luster p.p.. Fix � > 0. Let �
; 
 > 0 be a family of homogeneous Poisson p.p. on Rdof intensity 
�. Let a non-negative fun
tion h : Rd � Rd ! R be given and 
onsidera family of shot noise �elds �
(y) = RRd (h(x; y)=
) �
(dx), whi
h are assumed a.s.lo
ally Riemann integrable with RB E(�
(y)) dy <1 for bBs B.Proposition 5.1. The family of shot-noise �elds f�
(y)gy2Rd is de
reasing in d
x,i.e., for 0 < 
1 � 
2 we have f�
2(y)g �d
x f�
1(y)g. Consequently Cox(�
2)�d
xCox(�
1).Proof. Note that f�
(x)g 
an be seen as a shot-noise �eld generated by the responsefun
tion h and the Levy basis L
 = (1=
)��
. By Lemma 5.1 and Theorem 2.1, it is20



enough to prove that L
2(A) �
x L
1(A) for A bBs and 
2 > 
1 > 0.Sin
e, X �
x Y implies that aX �
x aY for all s
alars a > 0, it suÆ
es to prove thatL
a(A) �
x La(A) for A bBs and 
 > 1; a > 0. This essentially boils down to provingthat N
a �
x 
Na; 
 > 1; a > 0, where Na stands for a Poisson r.v. with mean a.Let fXni g1�i�n and fY ni g1�i�n; n � 1 be i.i.d. sequen
es of Bernoulli r.v's withprobability of su

ess 
a=n and a=n, respe
tively, with n � 
a. Let Xn =Pni=1Xni andY n =Pni=1 
Y ni . It is well known that Xn; Y n 
onverge weakly toN
a; Na respe
tively,as n ! 1. As 
onvex order preserves weak 
onvergen
e, we need to only provethat Xn �
x 
Y n. By the independen
e of summands, it is enough to prove thatXni �
x 
Y ni , whi
h we shall do in what follows. Let f be a 
onvex and di�erentiablefun
tion. De�ne g(
) := E f(Xni )�E f(
Y ni ) = anf
(f(1)� f(0))� f(
) + f(0)g. Notethat g(1) = 0. Hen
e, our proof is 
omplete if we show that g is de
reasing in 
 > 1.Indeed, g0(
) = anf(f(1)� f(0))� f 0(
)g= anff 0(b)� f 0(
)g � 0; (b < 
)where b 2 (0; 1) by mean-value theorem and f 0 is in
reasing due to 
onvexity. �Poisson-Poisson 
luster p.p. 
an be also d
x 
ompared to a homogeneous Poissonp.p.. Let � and �0 be homogeneous Poisson p.p. with intensities � < 1 and � � �0respe
tively. De�ne �(y) =PXi2� h(Xi � y). Let �00 be Cox(�(x)).Proposition 5.2. Let �;�0, f�(y)g be as above. Assume that �(y) is a.s. lo
allyRiemann integrable and E(�(y)) = E(�(0)) <1. Then �0 �d
x �00.Proof. By the last statement of Lemma 5.1 we have � dx �d
x �(dx). Note that� � �0 = RRd h(x � y)�dx and thus by the se
ond statement of Theorem 2.1 (notethe assumption E(�(y)) < 1) f� � �0g �d
x f�(y)g, where the d
x smaller �eldis a deterministi
, 
onstant. The result follows now from the se
ond statement ofLemma 8.4 by assumption that �(y) is a.s. Riemann integrable and observing thatE(RA �(y) dy) = E(�(0)) RA dy <1 for all bBs A. �Remark 5.2. Consider Poisson p.p. �0 and Cox(�) as in Proposition 5.2. It is knownthat the Palm version (given a point at the origin) of �0 
an be 
onstru
ted taking�0 + "0. By [27, Proposition 2℄, analogously, Palm version of Cox(�) 
an be taken asCox(�) + "0 + �00, where �00 is an independent of Cox(�) Poisson p.p. with intensityh(y � �) where � is sampled from the distribution h(dx)= R h(y)dy. This shows thatone 
annot expe
t d
x ordering of the Palm versions of �0 and Cox(�).21



5.4. Log Cox Point Pro
essesThis 
lass of p.p. are de�ned by the logarithm of their intensity �elds.An extension of LCP studied in [14℄ is Log-L�evy driven Cox pro
ess (LLCPs). Underthe notation of the previous subse
tion, a p.p. � is said to be a LLCP if its intensity�eld is given by �(y) = exp�ZRd k(x; y)L(dx)� :[14℄ allows for negative kernels and signed L�evy measures but they do not �t into ourframework. Suppose that L1 �id
x L2, then �1 �id
x �2 where �i; i = 1; 2 are therespe
tive LLCPs of Li; i = 1; 2 with kernel k(:; :). These are simple 
onsequen
es ofTheorem 2.1 and the exponential fun
tion being i
x.Another 
lass is the Log-Gaussian Cox pro
ess (LGCPs)(see [26℄). A p.p. � issaid to be a LGCP if its intensity �eld is �(y) = expfX(y)g where fX(y)g is aGaussian random �eld. Suppose fXi(y)g; i = 1; 2 are two Gaussian random �elds,then fX1(y)g �id
x fX2(y)g if and only if E(X1(y)) � E(X2(y)) for all y 2 Rd and
ov(X1(y1); X1(y2)) � 
ov(X2(y1); X2(y2)) for all y1; y2 2 Rd : From the 
ompositionrules of id
x order, it is 
lear that id
x ordering of Gaussian random �elds impliesid
x ordering of the 
orresponding LGCPs. An example of parametri
 d
x orderedGaussian random �eld is given in [24, Se
 4℄.5.5. Generalized Shot Noise Cox Pro
esses (GNSCPs)This 
lass of Cox p.p. was �rst introdu
ed and its various statisti
s were studiedin [28℄. In simple terms, these are Cox p.p. whose random intensity �eld is a shot-noise �eld of a p.p. We say a Cox p.p. is GNSCP if the random intensity �eldf�(y)gy2Rd driving the Cox p.p. is of the following form : �(y) = Pj 
jkbj (
j ; y)where (
j ; bj ; 
j) 2 �, a p.p. on Rd � (0;1) � (0;1). Also we impose the following
ondition on the kernel k : kbj (
j ; y) = k1(
j=bj ;y=bj)bdj where k1(
j ; :) is a density withrespe
t to the Lebesgue measure on Rd . We shall denote the GNSCP driven by � as�G. This 
lass in
ludes various known p.p. su
h as Neyman-S
ott p.p., Thomas p.p.,Mat�ern Cluster p.p. among others. The 
ase when bj 's are 
onstants and f(
j ; 
j)g isa Poisson p.p. is 
alled as Shot Noise Cox pro
ess (See [27℄). Shot Noise Cox pro
essare also LCPs. Suppose two p.p. �1 �d
x (resp. id
x; id
v) �2, then from Theorem 2.1,we infer that �G1 �d
x (resp. id
x; id
v) �G2 .5.6. Ginibre-Radii Like Point Pro
essLet f�igi�0 be an i.i.d. family of p.p. on R+ . So, the points of ea
h p.p. �i 
anbe sequen
ed based on their distan
e from the origin. Let � be the p.p. formed bypi
king the ith point of �i for i � 1. We shall from now on abbreviate �([0; b℄) by �(b)22



for b > 0 and similarly for other p.p. used. Note the following representation for �(b)and �0(b): �(b) =Xk�1 1[�k(b) � k℄ ; �0(b) =Xk�1 1[�0(b) � k℄:Let �m(b) = mXk�11[�k(b) � k℄ ; �m0 (b) = mXk�11[�0(b) � k℄:By Lorentz's inequality (see [29, Th. 3.9.8℄), it follows that (�1(b); : : : ;�m(b)) �sm(�0(b); : : : ;�0(b)), where sm stands for supermodular (see [29, x 3.9℄). De�ne thef : Nm ! R as follows : f(n1; : : : ; nm) = Pk�1 1[nk � k℄. It is easy to verify thatboth f and �f are sm and f(n ^ m) � f(n); f(m) � f(n _ m). In 
onsequen
eg Æ f is sm provided g is 
x and E(g(�m(b))) = E(g Æ f(�1(b); : : : ;�m(b))) � E(g Æf(�0(b); : : : ;�0(b))) = E(g(�m0 (b))). Hen
e �m(b) �
x �m0 (b) and using Lemma 8.2,we get that �(b) �
x �0(b). To 
omplete the proof � �d
x �0, one would requirea multi-variate generalization of Lorentz's inequality whi
h we have been unable toprove.We shall now explain the reasons for 
onsidering the above p.p. �. If we assumethat �i above are Poisson, then � is know to be a representation of the p.p. of thesquared radii j�Gj2 = fjXnj2 : Xn 2 �Gg of the Ginibre pro
ess �G (see [4, 19℄). Ithas been observed in simulations that this determinental p.p. exhibits less 
lusteringthan the homogeneous Poisson p.p. Our result 
an be seen as a �rst step towards aformal statement of this property.6. Appli
ations to Wireless Communi
ation NetworksFrom the point of view of appli
ations of our main result, what remains is examplesof interesting d
x fun
tions. In what follows, we will provide su
h fun
tions arisingin the 
ontext of wireless networks. In many of the models we have assumed orderedpoint pro
esses with i.i.d. marks. However due to Propnosition 3.7, the results holdfor independently marked Cox p.p. provided the respe
tive intensity measures areordered.6.1. Coverage Pro
ess with Independent GrainsThe Boolean model C(�; G) de�ned earlier (see De�nition 4.3) is the main obje
tof analysis in the theory of Coverage pro
esses (see [12℄). The per
olation propertiesof the Boolean model has been studied in [23℄ while the 
onne
tivity properties of theBoolean model has been studied in [30℄. For ~� as in the De�nition 4.3 of the Booleanmodel, denote by V (y) = P(Xi;Gi)2~� 1[y 2 Xi + Gi℄ the number of grains 
overing23



y 2 Rd . Denote by  (s1; : : : ; sn) the joint probability generating fun
tional (p.g.f) of thenumber of grains 
overing lo
ations y1; : : : ; yn 2 Rd  (s1; : : : ; sn) = E�Qnj=1 sV (yj)j �,sj � 0, j = 1; : : : ; n. Note that the fun
tion g(v1; : : : ; vn) =Qnj svjj is id
x when sj � 1for all j = 1; : : : ; n and is dd
x when 0 � sj � 1 for all j.Thus the following result follows immediately from Theorem 2.1, Proposition 3.2and Proposition 3.7.Corollary 6.1. Let �i, i = 1; 2 be a simple p.p. (of germs) on Rd . Consider the 
or-responding Boolean models with the typi
al grain G and, as above, denote the respe
tive
overage number �elds by fVi(y)g and and their p.g.f by  i. If �1 �d
x (resp. id
x; id
v) �2then fV1(y)g �d
x (resp. id
x; id
v) fV2(y)g, with the result for d
x holding providedE(Vi(y)) < 1 for all y. In parti
ular, if �1 �id
x �2 then E(V1(y)�) � E(V2(y)�)for all � � 1. If �1 �id
x (resp. dd
x) �2 then  1(s1; : : : ; sn) �  2(s1; : : : ; sn) for sj � 1(resp. sj � 1) j = 1; : : : ; n.Note that 1� (0; : : : ; 0) represents the expe
ted 
overage measure, i.e.,the probabilitywhether the lo
ations y1; : : : ; yn are 
overed by at least one grain. In [12, Se
tion 3.8℄it is shown that expe
ted one-point 
overage (or volume fra
tion in 
ase of stationaryp.p.) for a stationary Cox p.p. and some 
lustered p.p. is lower than that of astationary, homogeneous Poisson p.p..Coverage pro
esses arise in various appli
ations. In parti
ular, in wireless 
ommu-ni
ations the points of the p.p. (germs) usually represent lo
ations of antennas andtheir grains the respe
tive 
ommuni
ation regions. In this 
ontext V (y) is the numberof antennas 
overing the point y and the 
overage measure is the indi
ator that at leastone of them is able to rea
h y. The appli
ation of the Boolean model to the modelingof wireless 
ommuni
ations dates ba
k to the arti
le of Gilbert [10℄ in 1961.6.2. Random Geometri
 Graphs (RGGs)This 
lass of graphs has in
reasingly found appli
ations in spatial networks. Fora detailed study of these graphs, see [30℄. A random geometri
 graph is de�ned asa graph with � as the vertex set and the edge-set E = ffXi; Xjg : jXi � Xj j � rg.Clearly this is related to the Boolean model de�ned in the previous subse
tion. Oneof the obje
ts of interest in a RGG is the typi
al degree. Under the notation of theprevious subse
tion, the typi
al degree (deg(�; G)) for a RGG formed by a stationaryp.p. � and grain distribution G is deg(�; G) = 1�jAjPXi;Xj2� 1[Xi 2 A℄1[Xi 6=Xj ℄1[(Xi + Gi) \ (Xj + Gj) 6= ;℄, where A is a bBs. If G = B0(r); r > 0, thenE(deg(�; G)) = K(r) is the Ripley's K fun
tion de�ned in Se
tion 3.2. The followingresult follows easily from Theorem 2.1, Proposition 3.3 and Proposition 3.7.Corollary 6.2. Suppose that simple p.p. �1 �d
x �2, then deg(�1; G) �id
x deg(�2; G).24



6.3. Interferen
e in Wireless Communi
ationsThe Boolean model is not suÆ
ient for analyzing wireless networks as it ignores thefa
t that in radio 
ommuni
ations signal re
eived from one parti
ular transmitter isjammed by the signals re
eived from the other transmitters. A

ording to informationtheory as well as existing te
hnology, the quality of a given radio 
ommuni
ation link isdetermined by the so 
alled signal to interferen
e and noise ratio (SINR) at the re
eiverof this link. a mathemati
al point of view, the interferen
e in the above 
onsiderationsis just the sum of the powers of the signals re
eived from all transmitters (perhapsex
ept own transmitter(s)). It is then the shot-noise �eld of re
eived powers that playsimportant role in determining the 
onne
tivity and the 
apa
ity of the network in abroad sense. The foundations of the theory of SINR 
overage pro
esses are quite re
ent(see [1, 2, 8, 11℄). In what follows, we shall study the impa
t of stru
ture of the p.p. ofinterferers on given radio links.Consider a set of n emitters fxig and n re
eivers fyig. Suppose that the signalre
eived by yi from xk is Ski. These fSikg are assumed to be independent. Theassumption of independen
e is due to the phenomenon of fading. Let the set of addi-tional interferers be modeled by a i.i.d. marked p.p. ~� = "(Xj ;(Z1j ;:::;Znj ), independentof fSikg, where Znj is the power re
eived by the re
eiver yi from the interferer lo
atedat Xj . Denote the ba
kground noise random variable by W .We say that the signal from xi is su

essfully re
eived by yi if Sii=(W + Ii+Vi) > Twhere Ii = Pk 6=i Ski and Vi = Pj Zij is the interferen
e re
eived at yi from the setof other emitters fxk : k 6= ig and interferers in ~�, respe
tively, and T > 0 is some(assume 
onstant) required SINR threshold. If we denote by p, the probability ofsu

essful re
eption of signals from ea
h xi to yi, thenp = P(Sii > (W + Ii + Vi)T 8i = 1; : : : ; n)= E(Yi F ii(T (W + Ii + Vi))) ; (5)where F ii(s) = P(Sii � s) and the se
ond equality is due to independen
e. GivenfIi : i = 1; : : : ; ng and W , the expression under expe
tation in (5) 
an be viewed as afun
tion of the value of the shot-noise ve
tor (V1; : : : ; Vn) evaluated with respe
t to ~�.Theorem 2.1 and Proposition 3.7 implies the following result 
on
erning the impa
t ofthe stru
ture of the set of interferers on p.Corollary 6.3. Consider emitters fxig, re
eivers fygi, powers fSkig as above. Let~�u, u = 1; 2 be two simple marked p.p. of interferers. Denote by pu, u = 1; 2 the prob-ability of su

essful re
eption given by (5) in the model with the set of interferers ~�u.Assume the produ
t of tail distribution fun
tions of the re
eived powers Qni=1 F ii(si)25



be d
x. If �1 �dd
x �2 then p1 � p2.It is quite natural to assume dd
x Qni=1 F ii(si). For example the 
onstant emittedpower P , omni-dire
tional path-loss fun
tion l(r) and Rayleigh fading in the radio
hannel implies Ski = PHki=l(jxk � yij), where jHkij are i.i.d. exponential randomvariables with mean 1. In this 
ase Qni=1 F ii(si) is dd
x. (�)7. Con
lusions and Open QuestionsTo the best of our knowledge, this is the �rst study of d
x ordering of randommeasures and p.p.. We have de�ned the d
x order and 
hara
terized it by �nitedimensional distributions of the measure values on disjoint bBs of the spa
e. As themain result, we have proved that the integrals of some non-negative kernels with respe
tto d
x ordered random measures inherit this ordering from the measures. This wasshown to be a very useful tool in study of many parti
ular 
hara
teristi
s of randommeasures and in the 
onstru
tion and analysis of sto
hasti
 models.In this paper, we have also left several open questions. Here we brie
y summarizethem.� Our d
x order is de�ned via �nite dimensional distributions of random measures.This makes the veri�
ation of d
x order more easy but requires additional workwhen studying fun
tionals, whi
h 
annot be expli
itly expressed in terms of thevalues of the measure on some �nite 
olle
tion of bBs as, e.g., an integral of themeasure. Considering a d
x1� order on the spa
e of measures 
ould fa
ilitate theformer task. However, the pre
ise regularity 
onditions of the d
x1� fun
tionalon the spa
e of measures whi
h would guarantee the equivalen
e between thesetwo approa
hes are not known (
f Se
tion 3.5).� Comparisons of Ripley's fun
tions (see Proposition 3.4) and pair 
orrelationfun
tions (Corollary 3.1) seem to indi
ate that the higher in d
x order pro
esses
luster their points more. We have shown examples of p.p., whi
h are largerthan Poisson one, namely Cox p.p., whi
h indeed exhibit more 
lustering thanin Poisson p.p.. It would be interesting to show examples of p.p. whi
h are d
xsmaller than Poisson one, and whi
h exhibit less 
lustering than it. Mat�ern \hard(�) Re
ently in [9℄, under the assumption of Rayleigh fading, dire
t analyti
al methods havebeen used to 
ompare the probability of su

essful re
eption in Poisson p.p. and a 
lass of Poisson-Poisson 
luster p.p. known as Neyman-S
ott p.p. for both stationary and Palm versions. Theseresults relay on expli
it expressions for this probability known in the 
onsidered 
ases. Further, it isshown that for a 
ertain 
hoi
e of parameters, Palm version of the Poisson-Poisson 
luster p.p. has aworser probability of su

essful re
eption than the Poisson p.p.. In our terminology, it simply meansthat the 
orresponding Palm versions aren't dd
x ordered as the 
onne
tivity probability is a dd
xfun
tion (Eqn. 5) of the integral shot-noise �elds of the 
orresponding Palm versions. This strengthensRemark 5.2 by showing that id
x ordering of Palm versions is the best one 
an obtain in full generality.26




ore" p.p. and Ginibre p.p. are some natural 
andidates for this.� We have studied d
x order that takes into a

ount the dependen
e stru
ture andthe variability of the marginals or random measures. It seems plausible to studyin a similar manner other orders su
h as 
onvex, 
omponent-wise 
onvex orderet
. Note however that the supermodular order does not seem to be a reasonableone in the 
ontext of random measures. The reason is that it allows to 
ompareonly measures with the same �nite dimensional distributions, and thus a Poissonp.p. 
an only be (trivially) 
ompared in this order to itself. Indeed, Poisson �nitedimensional distributions imply total independen
e property and thus uniquely
hara
terize Poisson p.p. (
f [7, Lemma 2.3.I℄).8. AppendixIn order to make the paper more self-
ontained, we shall re
all now some basi
results on sto
hasti
 orders used in the main stream of the paper. The following twolemmas 
an be found in [29, Chapter 3℄.Lemma 8.1. 1. A twi
e di�erentiable fun
tion f is dire
tionally 
onvex if and onlyif �2�xi�xj f(x) � 0; for all x; 1 � i; j � n:2. The sto
hasti
 order relation �d
x is generated by in�nitely di�erentiable d
xfun
tions.Due to the above lemma, at some pla
es we only prove that two random ve
tors areordered with respe
t to twi
e di�erentiable d
x fun
tions and 
on
lude that they ared
x ordered.We denote by D�! 
onvergen
e in distribution (weak 
onvergen
e).Lemma 8.2. Let (X(k) : k = 1; : : :) and (Y (k) : k = 1; : : :) be sequen
es of randomve
tors. Suppose X(k) �d
x Y (k) for all k 2 N. If X(k) D�! X and Y (k) D�! Y and ifmoreover E(X(k))! E(X) and E(Y (k))! E(Y ), then X �d
x Y .The following result is from Lemmas 2.17 and 2.18 of [21℄.Lemma 8.3. 1. For i = 1; : : : ;m let (Sij : j = 1; : : :) be independent sequen
es ofi.i.d. non-negative random variables. Suppose f is d
x (resp. id
x; id
v), theng(n1; : : : ; nm) = E(f(Pn1j=1 S1j ; : : : ;Pnmj=1 Smj )) is also d
x (resp. id
x; id
v).2. Let Ni; i = 1; : : : ; k denote k mutually independent Poisson r.v. where the meanof Ni is �i. If � : Nk ! R is d
x (resp. id
x; id
v), then g(�1; : : : ; �k) =E(�(N1; : : : ; Nk)) is also d
x (resp. id
x; id
v).27



The �rst part of the following lemma is an easy extension of the one-dimensional versionin [21℄. The se
ond part, whi
h we prove in what follows, is a further extension of it.Lemma 8.4. Suppose fX(s)gs2Rd and fY (s)gs2Rd are two non-negative real-valuedand a.s. lo
ally Riemann integrable random �elds. For some n � 1 and disjoint bBsI1; : : : ; In denote J iX = RIi X(s)ds, J iY = RIi Y (s)ds.1. If fX(s)g �id
x (resp. id
v) fY (s)g, then (J1X ; : : : ; JnX) �id
x (resp. id
v) (J1Y ; : : : ; JnY ).for any n and for any I1; : : : ; In disjoint bBs.2. Suppose further that E(RAX(x)dx) < 1 for all bBs A in Rd and similarly forfY (x)g. If fX(x)g �d
x (d
v)fY (x)g, then (J1X ; : : : ; JnX) �d
x(d
v) (J1Y ; : : : ; JnY ).Proof. (2) We shall prove for d = 1 and as 
an be seen from the proof, thegeneralization is fairly straightforward.We need to prove that (RI1 X(s)ds; : : : ; RIn X(s)ds) �d
x (RI1 Y (s)ds; : : : ; RIn Y (s)ds);for Ii; i = 1; : : : ; n disjoint bBs. We shall give an approximation satisfying the assump-tions of Lemma 8.2. Let Ii = [ai; bi℄; ai; bi 2 R; i = 1; : : : ; n. Let f(timj)1�j�km ; i =1; : : : ; ng be the sequen
es of mth nested partition of ea
h interval. The middleRiemann sum 
an be given as follows : Xm(Ii) = Pj X(timj)(tim(j+1) � timj); i =1; : : : ; n; k 2 N and similarly for Y (x). These are the variables satisfying the approxi-mation as in Lemma 8.2. As X(s) is Riemann integrable,(Xm(I1); : : : ; Xm(In))! (J1X ; : : : ; JnX)a.s. and hen
e in distribution. It is also 
lear the middle Riemann sums of X(�) andY (�) are ordered. What remains to prove is that EXm(Ii) ! E J iX . In the last term,by Fubini, we 
an inter
hange the expe
tation and integral and hen
e it suÆ
es toprove EXm(Ii)! RIi EX(s)ds. Our assumption implies that this is true. �A
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