W. Fan, H. Wang, and P. Yu, Active Mining of Data Streams, SIAM Conference on Data Mining (SDM), 2004.
DOI : 10.1137/1.9781611972740.46

C. Aggarwal, J. Han, J. Wang, and P. Yu, A Framework for Clustering Evolving Data Streams, Int. Conf. on Very Large Data Bases, pp.81-92, 2003.
DOI : 10.1016/B978-012722442-8/50016-1

S. Guha, N. Mishra, R. Motwani, and L. O-'callaghan, Clustering data streams, IEEE Symposium on Foundations of Computer Science, pp.359-366, 2000.

F. Cao, M. Ester, W. Qian, and A. Zhou, Density-Based Clustering over an Evolving Data Stream with Noise, SIAM Conference on Data Mining (SDM, 2006.
DOI : 10.1137/1.9781611972764.29

S. Muthukrishnan, Data Streams: Algorithms and Applications, Foundations and Trends?? in Theoretical Computer Science, vol.1, issue.2, pp.117-236, 2005.
DOI : 10.1561/0400000002

S. Papadimitriou, A. Brockwell, and C. Faloutsos, Adaptive, Hands-Off Stream Mining, Int. Conf. on Very Large Data Bases, pp.560-571, 2003.
DOI : 10.1016/B978-012722442-8/50056-2

A. Arasu and G. S. Manku, Approximate counts and quantiles over sliding windows, Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems , PODS '04, pp.286-296, 2004.
DOI : 10.1145/1055558.1055598

B. Babcock and C. Olston, Distributed topk monitoring, ACM International Conference on Management of Data, pp.28-39, 2003.

B. Frey and D. Dueck, Clustering by Passing Messages Between Data Points, Science, vol.315, issue.5814, pp.972-976, 2007.
DOI : 10.1126/science.1136800

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Frey and D. Dueck, Supporting online material of clustering by passing messages between data points, In: Science, vol.315, p.1, 2007.

S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O-'callaghan, Clustering data streams: theory and practice, IEEE Transactions on Knowledge and Data Engineering, vol.15, issue.3, pp.15-515, 2003.
DOI : 10.1109/TKDE.2003.1198387

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Page, CONTINUOUS INSPECTION SCHEMES, Biometrika, vol.41, issue.1-2, pp.41-100, 1954.
DOI : 10.1093/biomet/41.1-2.100

D. Hinkley, Inference about the change-point from cumulative sum tests, Biometrika, vol.58, issue.3, pp.509-523, 1971.
DOI : 10.1093/biomet/58.3.509

M. Leone, . Sumedha, and M. Weigt, Clustering by soft-constraint affinity propagation: applications to gene-expression data, Bioinformatics, vol.23, issue.20, p.2708, 2007.
DOI : 10.1093/bioinformatics/btm414

M. Ester, A density-based algorithm for discovering clusters in large spatial databases with noisethe uniqueness of a good optimum for k-means, International Conference on Knowledge Discovery and Data Mining(KDD, 1996.

E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana, The ucr time series classification/clustering homepage: www.cs.ucr.edu/ eamonn/time series data, KDD99: Kdd cup 1999 data, 1999.

W. Lee, S. Stolfo, and K. Mok, A data mining framework for building intrusion detection models, IEEE Symposium on Security and Privacy, pp.120-132, 1999.

X. H. Dang, W. K. Ng, and K. L. Ong, An error bound guarantee algorithm for online mining frequent sets over data streams, Journal of Knowledge and Information Systems, 2007.

J. Gama, R. Rocha, and P. Medas, Accurate decision trees for mining highspeed data streams, ACM International Conference on Management of Data, pp.523-528, 2003.
DOI : 10.1145/956804.956813

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, Finding hierarchical heavy hitters in streaming data, ACM Transactions on Knowledge Discovery from Data, vol.1, issue.4, 2008.
DOI : 10.1145/1324172.1324174

D. K. Agarwal, An Empirical Bayes Approach to Detect Anomalies in Dynamic Multidimensional Arrays, Fifth IEEE International Conference on Data Mining (ICDM'05), 2005.
DOI : 10.1109/ICDM.2005.22