Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics.

Abstract : This work presents a multidimensional cell-centered unstructured finite volume scheme for the solution of multimaterial compressible fluid flows written in the Lagrangian formalism. This formulation is considered in the Arbitrary-Lagrangian-Eulerian (ALE) framework with the constraint that the mesh and the fluid velocity coincide. The link between the vertex velocity and the fluid motion is obtained by a formulation of the momentum conservation on a class of multi-scale encased volumes around mesh vertices. The vertex velocity is derived with a nodal Riemann solver constructed in such a way that the mesh motion and the face fluxes are compatible. Finally, the resulting scheme conserves both momentum and total energy and, it satisfies a semi-discrete entropy inequality. The numerical results obtained for some classical 2D and 3D hydrodynamic test cases show the robustness and the accuracy of the proposed algorithm.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2009, Volume 228 (Issue 3, 20 February 2009), pp.Pages 799-821. 〈10.1016/j.jcp.2008.10.012〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00290717
Contributeur : Pierre-Henri Maire <>
Soumis le : jeudi 26 juin 2008 - 11:45:18
Dernière modification le : lundi 22 janvier 2018 - 10:08:40
Document(s) archivé(s) le : vendredi 28 mai 2010 - 22:52:09

Fichier

article_bph.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pierre-Henri Maire, Boniface Nkonga. Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics.. Journal of Computational Physics, Elsevier, 2009, Volume 228 (Issue 3, 20 February 2009), pp.Pages 799-821. 〈10.1016/j.jcp.2008.10.012〉. 〈inria-00290717〉

Partager

Métriques

Consultations de la notice

185

Téléchargements de fichiers

155