4-D Tensor Voting Motion Segmentation for Obstacle Detection in Autonomous Guided Vehicle

Abstract : Creating an obstacle detection system is an important challenge to improve safety for road vehicles. A way to meet the industrial cost requirements is to gather a monocular vision sensor. This paper tackles this problem and defines an highly parallelisable image motion segmentation method for taking into account the current evolution of multi processor computer technology. A complete and modular solution is proposed, based on the Tensor Voting framework extended to the 4D space (x, y, dx, dy), where surfaces describe homogeneous moving areas in the image plan.Watershed segmentation is applied on the result to obtain closed boundaries. Cells are then clustered and labeled with respect to planar parallax rigidity constraints. A visual odometry method, based on texture learning and tracking, is used to estimate residual parallax displacement.
Type de document :
Communication dans un congrès
Intelligent Vehicles Symposium, Jun 2008, Eindhoven, Netherlands. pp.379-384, 2008, 〈10.1109/IVS.2008.4621203〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00292702
Contributeur : Yann Dumortier <>
Soumis le : mercredi 2 juillet 2008 - 14:26:12
Dernière modification le : mercredi 29 novembre 2017 - 15:51:17
Document(s) archivé(s) le : vendredi 28 mai 2010 - 19:47:39

Fichier

iv08_Dumortier.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Yann Dumortier, Isabelle Herlin, André Ducrot. 4-D Tensor Voting Motion Segmentation for Obstacle Detection in Autonomous Guided Vehicle. Intelligent Vehicles Symposium, Jun 2008, Eindhoven, Netherlands. pp.379-384, 2008, 〈10.1109/IVS.2008.4621203〉. 〈inria-00292702〉

Partager

Métriques

Consultations de la notice

545

Téléchargements de fichiers

216