
HAL Id: inria-00293505
https://inria.hal.science/inria-00293505

Submitted on 4 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Navigating Dynamic Environments Using Trajectory
Deformation

Vivien Delsart, Thierry Fraichard

To cite this version:
Vivien Delsart, Thierry Fraichard. Navigating Dynamic Environments Using Trajectory Deformation.
IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, Sep 2008, Nice, France. �inria-00293505�

https://inria.hal.science/inria-00293505
https://hal.archives-ouvertes.fr

Navigating Dynamic Environments
Using Trajectory Deformation

Vivien Delsart† and Thierry Fraichard†

Abstract— Path deformation is a technique that was intro-
duced to generate robot motion wherein a path, that has
been computed beforehand, is continuously deformed on-line
in response to unforeseen obstacles. In an effort to improve
path deformation, this paper presents a trajectory deformation
scheme. The main idea is that by incorporating the time dimen-
sion and hence information on the obstacles’ future behaviour,
quite a number of situations where path deformation would
fail can be handled. The trajectory represented as a space-time
curve is subject to deformation forces both external (to avoid
collision with the obstacles) and internal (to maintain trajectory
feasibility and connectivity). The trajectory deformation scheme
has been tested successfully on a planar robot with double
integrator dynamics and a car-like vehicle.

Index Terms— Autonomous navigation; Motion deformation;
Collision avoidance; Dynamic environments.

I. I NTRODUCTION

Where to move next?is a key question for an autonomous
robotic system. This fundamental issue has been largely
addressed in the past forty years. Many motion determination
strategies have been proposed (see [1] for a review). They can
broadly be classified intodeliberativeversusreactivestrate-
gies: deliberative strategies aim at computing a complete
motion all the way to the goal, whereas reactive strategies
determine the motion to execute during the next few time-
steps only. Deliberative strategies have to solve a motion
planning problem. They require a model of the environment
as complete as possible and their intrinsic complexity is
such that it may preclude their application in dynamic
environments. Reactive strategies on the other hand can
operate on-line using local sensor information: they can be
used in any kind of environment whether unknown, changing
or dynamic, but convergence towards the goal is difficult to
guarantee.

To bridge the gap between deliberative and reactive ap-
proaches, a complementary approach has been proposed
based uponmotion deformation. The principle is simple: a
complete motion to the goal is computed first using a priori
information. It is then passed on to the robotic system for
execution. During the course of the execution, the still-to-
be-executed part of the motion is continuously deformed
in response to sensor information acquired on-line, thus
accounting for the incompleteness and inaccuracies of the
a priori world model. Deformation usually results from the
application of constraints both external (imposed by the
obstacles) and internal (to maintain motion feasibility and
connectivity). Provided that the motion connectivity can be
maintained, convergence towards the goal is achieved.

†INRIA, CNRS-LIG & Grenoble University, France.

Fig. 1: Path deformation problem: in response to the ap-
proach of the moving disk, the path is increasingly deformed
until it snaps (like an elastic band).

The different motion deformation techniques that have
been proposed [2], [3], [4], [5], [6] all performspath de-
formation. In other words, what is deformed is a geometric
curve, ie the sequence of positions that the robotic system
is to take in order to reach its goal. The problem with path
deformation techniques is that, by design, they cannot take
into account the time dimension of a dynamic environment.
For instance in a scenario such as the one depicted in Fig. 1,
it would be more appropriate to leave the path as it is and
adjust the velocity of the robotic system along the path so as
to avoid collision with the moving obstacle (by slowing down
or accelerating). To achieve this, it is necessary to depart
from the path deformation paradigm and resort totrajectory
deformationinstead. A trajectory is essentially a geometric
path parametrized by time. It tells us where the robotic
system should be but also when and with what velocity.
Unlike path deformation wherein spatial deformation only
takes place, trajectory deformation features bothspatial and
temporaldeformation meaning that the planned velocity of
the robotic system can be altered thus permitting to handle
gracefully situations such as the one depicted in Fig. 1.

The first trajectory deformation scheme has been proposed
by one of the authors in [7]. It operates in two stages
(collision avoidance and connectivity maintenance stages)
and was geared towards manipulator arms. The contribution
of this paper is a new trajectory deformation scheme, hence-
forth calledTeddy (for Trajectory Deformer). It operates in
one stage only and is designed to handle arbitrary robotic
systems.
Teddy is designed to be one component of an other-

wise complete autonomous navigation architecture. A motion
planning module is required to provideTeddy with the
nominal trajectory to be deformed.Teddy operates peri-
odically with a given time period. At each cycle,Teddy
outputs a deformed trajectory which is passed to a motion
control module that determines the actual commands for the
actuators of the robotic system. The paper focuses onTeddy

IEEE-RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Sept. 2008, Nice (FR)

only. It is organised as follows:Teddy is overviewed in§II
Its application to the case of a planar robot with double
integrator dynamics is detailed in§III whereas§IV addresses
the case of a car-like vehicle. Simulation results are then
presented in§V

II. OVERVIEW OF THE APPROACH

A. Notations and Definitions

Let A denote a robotic system operating in a workspace
W (IR2or IR3). q ∈ C denote a configuration ofA. The
dynamics ofA is described by a differential equation of the
form:

ṡ = f(s, u)

wheres ∈ S is the state ofA, ṡ its time derivative andu ∈ U

a control.C, S andU respectively denote the configuration
space, the state space and the control space ofA. Let ξ :
[0, tf [−→ U denote a control input,ie a time-sequence of
controls. Starting from an initial states0 (at time 0) and under
the action of a control inputξ, the state ofA at time t is
denoted byξ(s0, t). A couple(s0, ξ) defines a trajectory for
A, ie a curve inS × T whereT denotes the time dimension.

For the sake of trajectory deformation, a trajectory is
discretized in a sequence of nodes. A node is a state-time,
it is denoted byni = (si, ti). The discrete trajectory ofA
is Γ0 = {n0, n1 · · ·nN} with n0 (resp.nN) the initial (resp.
final) node of the trajectory.

B. Trajectory Deformation Principle

Algorithm 1 : Teddy.

Input : Γk = {nk, nk+1 · · ·nN}, workspace model
Output : Γk+1 = {nk

′, nk+1
′ · · ·nN

′}

Γk+1 = ∅;1

// Apply forces to each node
foreach ni ∈ Γk do2

ni
′ = Fext(ni) + Fint(ni);3

Γk+1 = Γk+1 ∪ ni
′;4

end5

// Resample trajectory
Γk+1 = Resample(Γk+1);6

// Check trajectory validity
if not Valid (Γk+1) then7

Invoke Motion Planner;8

end9

return Γk+1;10

The main steps ofTeddy are outlined in Algorithm 1.
Teddy operates periodically with a time period of duration
Tc. At time tk, it takes as input the still-to-be-executed part of
the trajectoryΓk = {nk, nk+1 · · ·nN} and an updated model
of the workspace. The workspace model includes the position
of the obstacles ofW at time tk along with information
about their future behaviour.Teddy then deformsΓk in
response to the updated position and future behaviour of
the obstacles. At timetk+1 = tk + Tc, Teddy outputs a

deformed trajectoryΓk+1 = {nk
′, nk+1

′ · · ·nN
′} with ni

′

the updated node corresponding toni.
Like a particle placed in a force field, a node is displaced

in response to the application of a force which is the
combination of two kind of forces: external and internal.
External forces (denotedFext) are repulsive forces exerted
by the obstacles of the environment, their purpose is to
deform the trajectory in order to keep it collision-free. They
are detailed in§II-C. Internal forces (denotedFint) on the
other hand are aimed at maintaining the feasibility and the
connectivity of the trajectory,ie to ensure that the deformed
trajectory still satisfies the dynamics ofA. They are detailed
in §II-D.

Now, for the sake of both collision-checking and connec-
tivity evaluation, it is desirable to maintain a regular sampling
level along the trajectory. Depending on the situation, nodes
are removed or added accordingly. This point is detailed
in §II-E.

Finally, it is important to note that, like the path deforma-
tion scheme, the trajectory deformation scheme suffers from
the following limitation: there is no guarantee that it will
produce a collision-free and connected trajectory at each time
step; both schemes are heuristic by nature. Failure to produce
a valid trajectory typically happens when the topology of
S × T changes (when a passage is blocked for instance, like
when a door is closed). At each time step, the deformed
trajectory is therefore checked for collision and connectivity.
Should it become invalid, a global motion planner must
be invoked to compute a new nominal trajectory. Strictly
speaking, the motion planner is not part ofTeddy, it is not
discussed here.

C. External Forces

External forces are repulsive forces exerted by the ob-
stacles of the environment for collision avoidance purposes.
They are derived from a potential functionVext. To explicitly
take into account the future behaviour of the moving obsta-
cles, Vext is defined in the space-timeW × T (instead of
S × T for efficiency reason). In a manner similar to [4],
a set of pointspj are selected on the body ofA. Each
node ni of the trajectoryΓk yield a set of control points
cj
i = (pj , ti) in W × T. For a control pointcj corresponding

to the configurationq and the states along the trajectory,
Vext is defined as:

Vext(c
j) =

{

kext(d0 − dwt(c
j))2 if dwt(c

j) < d0

0 otherwise
(1)

wheredwt(c
j) is the distance fromcj to the closest obstacle

in W × T. d0 is the region of influence around the obstacles
and kext is a repulsion gain.dwt is a distance function in
W × T. It is derived from the Euclidean distance by scaling
the space versus the time dimension. InIR2 for instance, the
distancedwt between(x0, y0, t0) and(x1, y1, t1) is given by:

dwt
2 = ws

2(x1 − x0)
2 + ws

2(y1 − y0)
2

+ wt
2(t1 − t0)

2 (2)

2

with ws (resp.wt) the spatial (resp. temporal) weight. The
force resulting from this potential function acting oncj is
then defined as:

F
wt
ext(c

j) = −∇Vext(c
j) = kext(d0 − dwt(c

j))
d

||d||
(3)

where d is the vector betweenc and the closest obstacle
point. Now,Fwt

ext has to be mapped intoS × T. The forces
defined inW × T by each control pointcj yield a force in
C × T defined as follows:

F
ct
ext(q, t) =

r
∑

j=1

JT

cj (q, t)F
wt
ext(c

j) (4)

whereJT

cj (q, t) represents the Jacobian at pointcj :

JT

cj (q, t) =

















∂q1

∂pj
1

· · · ∂q1

∂pj
m

0

...
.. .

...
...

∂qn

∂pj
i

· · · ∂qn

∂pj
m

0

0 · · · 0 1

















(5)

with m the dimension ofW, pj
l the lth coordinate ofpj ,

n the dimension ofC and ql the lth coordinate ofq. The
final mapping intoS × T that yieldsFext(n) = Fext(s, t)
is carried out by leaving the remaining parameters ofs
unchanged.

D. Internal Forces

The external forces defined above push each node of the
trajectory away from the obstacles if they are inside their
influence region. Internal forces are introduced to ensure that
the trajectory remains connected,ie that there exists a trajec-
tory verifying the dynamics ofA between two consecutive
nodes of the trajectory. Trajectory connectivity is related to
the concepts of forward and backward reachability. The set
of states that are reachable from a given states0 are defined
as (forward-reachability):

R(s0) = {sf ∈ S|∃ξ,∃t, s(s0, ξ, t) = sf} (6)

Likewise, the set of states from which it is possible to reach
a given states0 are defined as (backward-reachability):

R−1(s0) = {sb ∈ S|∃ξ,∃t, s(sb, ξ, t) = s0} (7)

Let n−, n andn+ denote three consecutive nodes of the
trajectoryΓk. Γk is connected atn iff n ∈ R(n−) andn+ ∈
R(n). In other words,n must belong toR(n−)∩R−1(n+).
Now, two cases arises depending on whether the intersection
R(n−) ∩ R−1(n+) is empty or not (if this intersection is
not empty, it means thatn− andn+ are connected together
also). The next two sections detail how the internal forces
are defined in both cases.

1) Case 1: n− and n+ connected: In that case, the
purpose of the internal force is to ensure thatn remains
within R(n−) ∩ R−1(n+). To that end, a virtual spring
is defined betweenn and a selected pointH belonging to
R(n−)∩R−1(n+). It yields a potential functionVint defined
in the space-timeS × T as:

Vint(n) = kintdst(n)2 (8)

wheredst(n) is the distance betweenn andH. It is defined
in a manner similar todwt. kint is an attraction gain.

Fint(n) = −∇Vint(n) = kintdst(n)
d

||d||
(9)

whered is the vector betweenn andH.
2) Case 2: n− and n+ disconnected: In that case,

R(n−)∩R−1(n+) = ∅ and it is not possible to find a point
H belonging toR(n−) ∩ R−1(n+). The solution proposed
then is aimed at restoring the connectivity withn− only. To
that end,H is simply selected withinR(n−) and Fint is
defined as in§II-D.1 above.

3) SelectingH: Depending on whethern− and n+ are
connected together (ie whetherR(n−)∩R−1(n+) is empty
or not),H should be selected withinR(n−) ∩R−1(n+) or
R(n−). In the former case, a natural choice forH would
be the centroid ofR(n−) ∩R−1(n+). In the latter case,H
could for instance be defined as the point ofR(n−) which
is the closest ton.

Other choices are possible of course but the important
thing to note is that, in theory, determiningH requires,
in the worst case, the characterization of the three sets
R(n−),R−1(n+) andR(n−)∩R−1(n+). Computing reach-
able sets for arbitrary robotic systems is a process whose
complexity is dependent upon the dimensionality of the
system considered and whether its dynamics is linear or
not (cf [8], [9]). Since Teddy has a limited timeTc only
to deform the trajectory, it is therefore critical thatTeddy
be able to computeFint(n) as efficiently as possible. To
that end, it is important to exploit as much as possible the
properties of the robotic system considered, and in some
cases, to resort to various approximation or linearization
schemes.

In the case wheren− and n+ are connected, another
possibility is to compute a feasible trajectory fromn− to n+

and to select, say its intermediate state, to defineH. Once
again, it is the particulars of the robotic systems at hand that
determines how the internal forces are actually computed.

E. Trajectory Resampling

In the course of the deformation process, the nodes of the
trajectory may either move away from their neighbours or,
on the contrary, move very close to them (whether it be in
the spatial or the temporal dimensions). For the sake of both
collision-checking and connectivity evaluation, it is desirable
to maintain a regular sampling level of the trajectoryΓk.
Depending on the situation, nodes are removed or added
accordingly.

3

Let n−, n andn+ denote three consecutive nodes of the
trajectoryΓk. A space-time distance similar todwt is used to
compute the distance between two nodes (cf (2)). To begin
with, if the distance betweenn− andn+ is less than a given
threshold,n is removed fromΓk. Then, the distance between
n− andn is computed. If is is greater than a given threshold
then a new intermediate nodeni is added toΓk. ni can
be defined as the centroid ofR(n−) ∩R−1(n). This node-
adding procedure is repeated recursively for both pair of
nodes(n−, ni) and ((ni, n) (in casen− and n are really
far from one another). The same node-adding procedure is
repeated for the nodesn andn+.

III. C ASE STUDY 1: DOUBLE INTEGRATORSYSTEM

A. Model of the System

To begin with,Teddy has been applied to the case of a
2D planar robotA with double integrator dynamics (point
mass model). A state ofA is characterized by(p, v) that
respectively denote the 2D position and velocity ofA: p =
(x, y) andv = (vx, vx). The dynamics ofA is given by:

(

ṗ
v̇

)

=

(

v
a

)

(10)

wherea denotes the acceleration control applied toA: |a| ≤
amax and |v| ≤ vmax.

B. Internal Forces Computation

Algorithm 2 : H selection (double integrator system).

Input : {n−, n, n+}
Output : H

// Check chronology
if t+ < t− then1

// Select H within R(n−)
H = ForwardSelect(n−, n);2

else3

// Compute intermediate time ti
ti = (t+ − t−)/2;4

// Compute R(n−) ∩R−1(n+) at time ti
I = R(n−, ti) ∩R−1(n+, ti);5

if I 6= ∅ then6

H = Centroid (I);7

else8

H = ForwardSelect(n−, n);9

end10

end11

return H;12

As mentioned earlier in§II-D.3, one key point in the
adaptation ofTeddy to a particular robotic systems lies in
the determination of the pointH that is used to compute the
internal forceFint. It is important thatH can be computed
efficiently. Algorithm 2 outlines the wayH is computed
in this case. The main idea is to compute bothR(n−)
and R−1(n+) for a particular time slice only, namely the

intermediate time slicet = (t+ − t−)/2. It is also taken
advantage of the fact that, it is possible for the system (10)to
compute the setsR(n−),R−1(n+) andR(n−) ∩R−1(n+)
for each spatial dimension independently.

Let us first consider how to computeR(n−) for the
time slice t (henceforth denotedR(n−, t)), and for thex-
dimension only,ie in the case wheren− = (x−, vx

−
, t−). The

y-dimension is dealt with similarly and so is the computation
of R−1(n+, t).

1) ComputingR(n−, t): First, the extremal positions
reachable at timet from n− are computed. It is easily
achieved by integrating forward (10) while applying the ex-
tremal control±amax (until ±vx

max is reached). Letpmin(t)
and pmax(t) denote these extremal positions. Then, for a
discrete set of positionspi ∈ [pmin(t); pmax(t)], the corre-
sponding extremal velocitiesvmin(pi, t) and vmax(pi, t) are
computed. Now, the convex hull of the corresponding set of
position-velocity pairs yields a 2D polygonal approximation
of R(n−, t). R−1(n+, t) is computed in a similar manner.

2) ComputingR(n−, t)∩R−1(n+, t): BothR(n−, t) and
R−1(n+, t) are represented by 2D polygons of the position-
velocity space. A straightforward polygon intersection yields
R(n−, t) ∩R−1(n+, t).

3) SelectingH: If R(n−, t) ∩ R−1(n+, t) is not empty
then its centroid is computed, it becomesH (line 10 of
Algorithm 2). Now, if R(n−, t) ∩ R−1(n+, t) is empty,H
must be selected withinR(n−) in order to try to maintain the
connectivity betweenn− and n. To that end, a discrete set
of time instantstj > t− is defined and the corresponding
reachable setsR(n−, tj) are computed as above. Their
centroidsHj are computed as well. Finally the pointHj

whose distance ton is minimal becomesH (lines 2 and 12
of Algorithm 2).

IV. CASE STUDY 2: CAR-L IKE SYSTEM

A. Model of the System

x

y

θ

φ

v

L

Fig. 2: The car-like vehicleA (bicycle model).

Teddy has then been applied to the case of a planar car-
like vehicleA. A state ofA is characterized by(x, y, θ, φ, v)
where(x, y) are the coordinates of the rear wheel,θ is the
main orientation ofA, φ is the orientation of the front wheels
(steering angle), andv is the linear velocity of the front
wheel (Fig. 2). A control ofA is defined by the couple

4

u = (a, ζ) where a is the front wheel linear acceleration
andζ the steering velocity. The dynamics ofA is given by:













ẋ
ẏ

θ̇

φ̇
v̇













=













v cos(θ)
v sin(θ)

v tan(φ)/L
ζ
a













(11)

where L is the wheelbase ofA. It is assumed thatA is
moving forward only:

v ∈ [0, vmax], |φ| ≤ φmax, |a| ≤ amax and |ζ| ≤ ζmax (12)

B. Internal Force Computation

Algorithm 3 : H selection (car-like system).

Input : {n−, n, n+}
Output : H

// Check chronology
if t+ < t− then1

// Select H within R(n−)
H = ForwardSelect(n−, n);2

else3

// Compute Trajectory from n− to n+

π = TrajectoryGeneration(n−, n+);4

if Valid (π) then5

H = IntermediateState(π);6

else7

H = ForwardSelect(n−, n);8

end9

end10

return H;11

With its 5-dimensional state space and non-linear dy-
namics, the car-like system (11) has a complexity that
prevents the efficient characterization of the reachable sets
R(n−),R−1(n+) andR(n−) ∩ R−1(n+) that are required
in order to defineH, the attraction state used in the definition
of the internal force (9).

For efficiency reason, the following approach has been
adopted instead in order to determineH (cf Algorithm 3):
a steering methodis used to compute a feasible trajectory
between (n−) and (n+). If it succeeds,ie if n− andn+ are
connected, the intermediate state of the trajectory computed
becomesH and is used in the definition ofFint(n). Should
the steering method fail to find a trajectory (whenn−

and n+ are not connected), an approximation ofR(n−) is
computed: the control space ofA is randomly sampled and
the corresponding states are computed using classical Runge-
Kutta method [10]. The sample closest ton becomesH.

The steering method used is derived from the trajectory
generation method presented in [11]. It uses parametrized
vehicle controls and nonlinear programming to search the
control space for an optimum trajectory between two given
states. It was modified in order to compute a trajectory to a
goal state with a prescribed arrival time (cf [12]). It achieves

efficiency by using fast numerical optimization techniques
and effective initial guesses for the control parameters.

V. SIMULATION RESULTS

A

Fext, Fint Γk

B1

B2

B3

xy-plane

Past

Future

Fig. 3: Teddy’s principle visualized in a scenario involving
three moving disk obstaclesBi, i=1-3. The time dimension
is pointing upward. The past lies below thexy-plane (the
present) and the future lies above. The obstacles are moving
randomly but the model of the future assumes that they
maintain a constant linear velocity. The internal and exter-
nal forces acting upon the nodes of the trajectoryΓk are
represented by vectors.

Teddy has been implemented in C++ and tested on a
desktop PC (Pentium 4@3GHz, 1GB RAM, Linux OS).
Teddy has been evaluated in different scenarios featuring up
to 40 circular obstacles moving randomly. At each time step,
Teddy is provided with a new model of the environment
that features the position and the geometry of the obstacles
along with their current linear velocity (which is altered
randomly at each time step). The model of the future is
obtained by assuming that the obstacles maintain a constant
linear velocity. This basic assumption is standard, it reflects
the information that can be given by a tracking system able
to determine the current position and speed of the moving
obstacles.Teddy can of course handle more elaborate
models of the future (using for instance long-term motion
prediction models such as the ones developed by [13] among
others). The important thing is that, at each time step,Teddy
uses an updated workspace model and deforms the trajectory
accordingly. Fig. 3 illustrates in a visual manner howTeddy
operates.

The next two sections illustrates the workings ofTeddy
for the two robotics systems considered in different scenar-
ios. The video which is attached to this paper presents similar
results in a more lively fashion.

5

(a) space view, t = 0 (b) space view, t = 10 (c) space view, t = 20

(d) time view, t = 0 (e) time view, t = 10 (f) time view, t = 20

Fig. 4: Double integrator system, “cutting” scenario (spatial deformation):A is moving from the left to the right, the obstacle
is moving downwards. The top snapshots depict the path at different time instant (x× y view). The bottom snapshots depict
the velocity profile at the same instants (x × t view).

A. Double Integrator System

To emphasize the interest of trajectory deformationvs
path deformation, a “cutting” scenario similar to the one
depicted in Fig. 1 has been considered first. This scenario
has been selected because it is problematic for classical path
deformation schemes.
Teddy relies upon a number of parameters to operate

properly: the repulsion gainkext, the attraction gainkint and
the distance functionsdwt and dst. The two examples pre-
sented below have been selected to illustrate the importance
of the distance functiondwt on the performance ofTeddy.
Recall thatdwt is used to determine the distance between a
trajectory node and the closest obstacle inW × T (cf §II-
C). In both examples, the initial trajectory had a duration of
20s and the discrete trajectory contained 320 nodes.Teddy
would run at 28Hz.

For the same scenario, two very different deformation
patterns can be obtained by properly selecting the weights
ws and wt in (2). The first example is obtained by giving
more weight tows thereby allowing more important spatial
deformations to take place (Fig. 4). In this case,A has time to
pass before the obstacle crosses its path. The path component
of the trajectory is deformed downwards for safety reasons
whereas the velocity component is only slightly modified.
The second example on the other hand is obtained by
giving more weight towt thereby allowing more important

temporal deformations to take place (Fig. 5). In this case,A
let the obstacle cross its path before proceeding. The path
component of the trajectory is only slightly modified whereas
the velocity component is largely deformed so as to allowA
to slow down and stop in order to give way to the obstacle.

These two examples have shown the influence of the
choice of the parameters in the final performance ofTeddy.
They have also illustrated the advantage of trajectory de-
formation versus path deformation. Afterwards,Teddy has
been tested on different scenarios featuring both fixed and
moving obstacles. The velocity of the moving obstacles
change randomly at each time cycle. Such a scenario is
depicted in Fig. 6. It features ten fixed and forty randomly
moving obstacles.

B. Car-Like System

In the car-like system case,Teddy has also been tested on
different scenarios featuring both fixed and moving obstacles.
Fig. 7 depicts such a scenario whereinA is placed in
an environment featuring ten fixed and twenty randomly
moving obstacles. Fig. 7 illustrates the ability ofTeddy to
deform a trajectory while keeping its curvature and curvature
derivative compatible with the dynamics ofA.

C. Performances

From a complexity point of view, the overall complexity
of Teddy grows linearly with the number of nodes and

6

(a) space view, t = 0 (b) space view, t = 10 (c) space view, t = 35

(d) time view, t = 0 (e) time view, t = 10 (f) time view, t = 35

Fig. 5: Double integrator system, “cutting” scenario (temporal deformation):A is moving from the left to the right, the
obstacle is moving downwards. The top snapshots depict the path at different time instant (x×y view). The bottom snapshots
depict the velocity profile at the same instants (x × t view).

(a) t = 0 (b) t = 5 (c) t = 10

(d) t = 20 (e) t = 25 (f) t = 30

Fig. 6: Double integrator system: the snapshots depict the path at different time instant (x × y view).

7

(a) t = 3 (b) t = 13 (c) t = 20

Fig. 7: Car-like system: the snapshots depict the path at different time instant (x × y view).

number of number of nodes
obstacles 50 100 180 250 320

1 6 11 20 27 35
3 44 48 68 70 73
10 49 88 135 199 229

TABLE I: Running time (in ms) of one deformation cycle
as a function of the number of nodes and obstacles.

the number of obstacles. Table I gives the running time for
the double integrator system of one deformation cycle for
different numbers of nodes and obstacles.

VI. CONCLUSION AND FUTURE WORKS

The paper has presentedTeddy, a trajectory deformation
scheme. Given a nominal trajectory reaching a given goal,
Teddy deforms it reactively in response to updated informa-
tion about the environment’s obstacles.Teddy can handle
robotic systems with arbitrary dynamics. It has been applied
to the case of a 2D double integrator system and a car-
like system. Because,Teddy explicitly takes into account
information on the future behaviour of the obstacles, it is
able to handle situations that are problematic for classical
path deformation schemes. In the future, it is planned to
further optimizeTeddy. Considering for instance that the
knowledge about the future behaviour is less reliable in
the distant future, it could be interesting to monotonically
decrease the influence of the obstacles with respect to time.
Last but not least,Teddy remains to be integrated within a
global navigation architecture and tested on an actual robotic
system. It is planned to do so on the architecture and the
vehicle presented in [14]

ACKNOWLEDGEMENTS

This work has been supported by the French Ministry
of Defence (DGA Doctoral Grant) and by the European
Commission contracts “Cybercars-2 FP6-IST-2004-028062”
and “Have-It FP7-IST-2007-212154”.

REFERENCES

[1] S. M. Lavalle, Planning Algorithms. Cambridge University Press,
2006.

[2] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, Atlanta, GA (US), May 1993.

[3] M. Khatib, H. Jaouni, R. Chatila, and J.-P. Laumond, “Dynamic path
modification for car-like nonholonomic mobile robots,” inProc. of the
IEEE Int. Conf. on Robotics and Automation, Albuquerque, NM (US),
Apr. 1997.

[4] O. Brock and O. Khatib, “Elastic strips: a framework for motion
generation in human environments,”Int. Journal of Robotics Research,
vol. 21, no. 12, Dec. 2002.

[5] F. Lamiraux, D. Bonnafous, and O. Lefebvre, “Reactive path deforma-
tion for nonholonomic mobile robots,”IEEE Trans. on Robotics and
Automation, vol. 20, no. 6, Dec. 2004.

[6] Y. Yang and B. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation,” inProc. of the Int. Conf.
Robotics: Science and Systems, Philadelphia PA (US), Aug. 2006.

[7] H. Kurniawati and T. Fraichard, “From path to trajectorydeformation,”
in Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems,
San Diego, CA (US), Oct. 2007.

[8] E. Asarin, T. Dang, G. Frehse, A. Girard, C. Le Guernic, and O. Maler,
“Recent progress in continuous and hybrid reachability analysis,” in
Proc. of the IEEE Int. Conf. on Computer Aided Control Systems
Design, Munich (DE), Oct. 2006.

[9] I. Mitchell, “Comparing forward and backward reachability as tools
for safety analysis,” inHybrid Systems: Computation and Control, ser.
Lecture Notes in Computer Science. Springer, 2007, no. 4416.

[10] C. Lubich, “On projected runge-kutta methods for differential-
algebraic equations,” inBIT Numerical Mathematics, vol. 31, 1991.

[11] T. Howard and A. Kelly, “Optimal rough terrain trajectory generation
for wheeled mobile robots,”Int. Journal of Robotics Research, vol. 26,
no. 2, Feb. 2007.

[12] V. Delsart and T. Fraichard, “Reactive trajectory deformation,” IN-
RIA,” Research report, In Press.

[13] D. Vasquez, T. Fraichard, O. Aycard, and C. Laugier, “Intentional mo-
tion on-line learning and prediction,”Machine Vision and Applications,
Jan. 2008.

[14] G. Chen, T. Fraichard, and L. Martinez-Gomez, “A real-time au-
tonomous navigation architecture,” inProc. of the IFAC Symp. on
Intelligent Autonomous Vehicles, Toulouse (FR), Sept. 2007.

8

