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Abstract

In this paper is given a constructive algorithm that transforms a linear system

with unknown inputs into a novel observability form. This form is useful to derive

finite time observers even if the system does not satisfy some matching conditions

usually required for the design of unknown input observers. The practical example of

an aircraft subject to actuator faults is provided to show the efficiency of the approach.
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1 Introduction

It is of interest in many applications to design observers that provide both estimation of
the state and the unknown inputs. Some of these applications are classical ones as fault
detection and isolation (Chen et al. (1996); Floquet et al. (2004)), whereas other ones are
more ‘exotic’ such as for example decoding an encrypted message (Barbot et al. (2003)).
The application domains have an important consequence on the assumptions claimed on the
unknown inputs. For example in fault detection, they are considered as piecewise constants,
while in decoding an encrypted message they are assumed to be piecewise constant or
continuous functions.

This paper deals with the design of a state observer and input estimator for a linear
time-invariant system subject to unknown inputs:

ẋ = Ax + Bu + Dw (1)

y = Cx (2)

where x ∈ R
n is the state vector, y ∈ R

p1 is the output vector, u ∈ R
q represents the known

inputs and w ∈ R
m stands for the unknown inputs. A, B, C and D are known constant
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matrices of appropriate dimension. It is assumed that the pair (C, A) is observable, that
m ≤ p1 and, without loss of generality, that rank C = p1 and rank D = m.

Many works in the literature have provided various techniques for designing unknown
input observers. Some of them are based on linear methods (namely Luenberger like ob-
servers) and a necessary condition for the existence of such observers was given (see e.g.
Kudva et al. (1980); Hou and Müller (1992); Darouach et al. (1994)):

rank CD = rank D = m. (3)

Other ways of investigation for robust state reconstruction are based on the use of sliding
mode observers. Actually, condition (3) has also to be satisfied in order to design such
observers (see Utkin (1992), Edwards and Spurgeon (1994), Edwards and Spurgeon (1998)
and the references therein). In this case, it is called observer matching condition, and it
is the analogue of the well-known matching condition for a sliding mode controller to be
insensitive to matched perturbations.

In both approaches, if the unknown input observer exists, it is straightforward under mild
assumptions to obtain an estimation of the unknown inputs (see Hou and Müller (1992) for
the linear observer case). In particular, the unknown inputs can be explicitly reconstructed
using sliding mode observers by considering the so-called equivalent output injection (which
is the counterpart of the equivalent control in the design of sliding mode control). This
method has been used for fault detection and isolation in Edwards et al. (2000).

In this paper, it is aimed at deriving a new observability form well suited for the design
of unknown input observers (that also gives an estimation of the unknown inputs) even if
the condition (3) is not fulfilled. By the means of an algorithm, a structural analysis of the
system allows to conclude at the possibility to estimate in finite time both the state and the
unknown inputs. This estimation can be achieved using some existing finite time observers
such as, for instance, numerical (Diop et al. (1999, 2000)) or sliding mode differentiators
(Barbot et al. (1996), Levant (1998)). Finite time convergence property is often desirable
in the framework of observation, fault detection or identification problems, and in general
to solve in finite time the problem of left inversion and state observation.

This work is organized as follows. In the next Section is given the constructive algorithm
that gives rise to a change of coordinates that put the system into a suitable observable form.
In Section 3 is detailed how to recover the state and the unknown inputs by the means of
finite time observers. Lastly, the algorithm is applied to the real problem of state estimation
for an aircraft subject to actuator faults.

2 Output Information Algorithm

The aim of this algorithm is to find, by introducing suitable auxiliary outputs, a change of
coordinates such that the system (1)-(2) is transformed in a set of block observable triangular
forms.

Iteration 1: Consider the vector of outputs y1 , Cx.

a. Without loss of generalities, reorder the components of y1 as following

y1 =
[

CT
1 · · · CT

η1
CT

η1+1 · · · CT
p1

]T
x
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where C1,..., Cη1
are satisfying for all j ≤ η1

CjA
kD = 0, for all k ∈ N (4)

and where Cη1+1,..., Cp1
are such that for 1 ≤ j ≤ p1 − η1, there exists an integer r1

j

such that:

Cη1+jA
kD = 0, for all k < r1

j − 1

Cη1+jA
r1
j−1D 6= 0. (5)

Note that the outputs y1
j = Cjx, j ≤ η1, are not affected by the unknown inputs and

that the p1 − η1 remaining outputs are affected by the disturbance vector.

b. Compute the set of row vectors

Φ1 = span
{

C1, ..., C1A
n−1, C2, ..., C2A

n−1, ..., Cη1
, ..., Cη1

An−1
}

and note ϕ1 = rank Φ1.

Find η1 integers ϕ1
1, . . . , ϕ

1
η1

such that

I1 =
{

C1, ..., C1A
ϕ1

1
−1, C2, ..., C2A

ϕ1
2
−1, ..., Cη1

, ..., Cη1
Aϕ1

η1
−1

}

is a basis of Φ1. One has ϕ1 = ϕ1
1 + . . . + ϕ1

η1
. If ϕ1 = n, the algorithm is stopped.

Actually, this is the case when the state is not affected by any disturbance, i.e. D = 0.

c. Compute the set of row vectors

Υ1 = span
{

Cη1+1, ..., Cη1+1A
r1
1
−1, ..., Cp1

, ..., Cp1
Ar1

p1−η1
−1

}

and note ρ1 the integer such that ϕ1 + ρ1 = rank (Φ1 ∪ Υ1).

Find p1 − η1 integers ρ1
1, ..., ρ

1
p1−η1

such that the set I1 ∪ D1, where

D1 =
{

Cη1+1, ..., Cη1+1A
ρ1
1
−1, ..., Cp1

, ..., Cp1
Aρ1

p1−η1
−1

}

is a basis of Φ1 ∪ Υ1. One has ρ1
1 + .. + ρ1

p1−η1
= ρ1.

If ϕ1 + ρ1 = n, quit the algorithm.

d. Define the matrix

Γ1 =







Cη1+1A
r1
1
−1D

...

Cp1
Ar1

p1−η1
−1D







and note d1 = rank Γ1. If d1 < p1 − η1, there exists a matrix Λ1 ∈ R
p2×(p1−η1), where

p2 = p1 − η1 − d1, such that Λ1Γ1 = 0.

Define the auxiliary variable (or fictitious output)

y2 = Λ1







Cη1+1A
r1
1

...

Cp1
Ar1

p1−η1






x , C2x, C2 =







C2
1
...

C2
p2






. Note that C2 is not necessarily full

rank.
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Iteration 2: The Output Information Algorithm is applied to the new vector of fictitious
outputs y2 ∈ R

p2 .

a. After possible reordering of the components of y2, by analogy with Step 1.a, define
the integers η2 and r2

j , 1 ≤ j ≤ p2 − η2.

b. Write ϕ1 + ρ1 + ϕ2 = rank (Φ1 ∪ Υ1 ∪ Φ2) where

Φ2 = span
{

C2
1 , ..., C

2
1A

n−1, C2
2 , ..., C

2
2A

n−1, ..., C2
η2

, ..., C2
η2

An−1
}

.

Then define the integers ϕ2
j , 1 ≤ j ≤ η2 and the related set I2 such that I1 ∪ D1 ∪ I2

is a basis of Φ1 ∪ Υ1 ∪ Φ2.

If ϕ1 + ρ1 + ϕ2 = n, stop the algorithm.

c. By analogy with Step 1.c, define the sets Υ2 and D2 and the related integers ρ2 and
(ρ2

1, ..., ρ
2
p2−η2

). If ϕ1 + ρ1 + ϕ2 + ρ2 = n, the algorithm stops. If ϕ1 + ρ1 + ϕ2 + ρ2 < n

and D2 = ∅, the algorithm is also stopped.

d. Define the matrix

Γ2 =











Γ1

C2
η2+1A

r2
1
−1D

...

C2
p2

Ar2
p2−η2

−1D











and note d2 = rank Γ2. If d2 < (p1 − η1) + (p2 − η2), one can find a matrix Λ2 ∈
R

p3×((p1−η1)+(p2−η2)), where p3 = (p1 − η1) + (p2 − η2) − d2, such that Λ2Γ2 = 0. Then
the Output Information Algorithm is applied to the new fictitious outputs

y3 = Λ2





















Cη1+1A
r1
1

...

Cp1
Ar1

p1−η1

C2
η2+1A

r2
1

...

C2
p2

Ar2
p2−η2





















x , C3x.

Repeating this procedure, one has:
Iteration k: The fictitious output yk ∈ R

pk , that has been defined in step k − 1, is
considered.

a. Set the integers ηk and rk
j , 1 ≤ j ≤ pk − ηk.

b. Compute the set of row vectors

Φk = span
{

Ck
1 , ..., Ck

1 An−1, Ck
2 , ..., Ck

2 An−1, ..., Ck
ηk

, ..., Ck
ηk

An−1
}
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and write
k−1
∑

i=1

(

ϕi + ρi
)

+ ϕk = rank

((

k−1
∪

i=1
Φi ∪ Υi

)

∪ Φk

)

.

Find ηk integers ϕk
1, . . . , ϕ

1
ηk

such that

(

k−1
∪

i=1
Ii ∪ Di

)

∪ Ik, where

Ik =
{

Ck
1 , ..., Ck

1 Aϕk
1
−1, ..., Ck

ηk
, ..., Ck

ηk
Aϕk

ηk
−1

}

,

is a basis of

(

k−1
∪

i=1
Φi ∪ Υi

)

∪ Φk.

c. Compute the set of row vectors

Υk = span
{

Ck
ηk+1, ..., C

k
ηk+1A

rk
1
−1, ..., Ck

pk
, ..., Ck

pk
A

rk
pk−ηk

−1
}

and write
k

∑

i=1

(ϕi + ρi) = rank

(

k
∪

i=1
Φi ∪ Υi

)

.

Find pk − ηk integers ρk
1, ..., ρ

k
pk−ηk

such that
k
∪

i=1
(Ii ∪ Di), where

Dk =
{

Ck
ηk+1, ..., C

k
ηk+1A

ρk
1
−1, ..., Ck

pk
, ..., Ck

pk
A

ρk
pk−ηk

−1
}

,

is a basis of
k
∪

i=1
(Φi ∪ Υi).

d. Define

Γk =











Γk−1

Ck
ηk+1A

rk
1
−1D

...

Ck
pk

A
rk
pk−ηk

−1
D











and assume that dk = rank Γk. If dk <
k

∑

s=1

(ps − ηs), let us set pk+1 =
k

∑

s=1

(ps − ηs)−dk.

There exists a matrix Λk ∈ R
pk+1×(

k
P

s=1

(ps−ηs))
such that ΛkΓk = 0.

Define a new fictitious output:

yk+1 = Λk



























Cη1+1A
r1
1

...

Cp1
Ar1

p1−η1

...

Ck
ηk+1A

rk
1

...

Ck
pk

A
rk
pk−ηk



























x , Ck+1x.
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Stop the algorithm if:

1. there exists a µ ∈ N, such that ϕ1 + ρ1 + . . . + ϕµ + ρµ < n and

{

Dµ = ∅ or dµ =

µ
∑

s=1

(ps − ηs)

}

,

2. there exists a k⋆ ∈ N such that
k⋆
∑

i=1

(ϕi + ρi) = n.

The number of iterations is finite (≤ n− p1). In case 1, it is not possible to estimate the
state of system (1-2) with the method described in this work. In case 2, one can define the
following nonsingular (n × n) matrix

T =















Ī1

D̄1
...

Īk⋆

D̄k⋆















where Īi =







































Ci
1
...

Ci
1A

ϕi
1
−1

Ci
2
...

Ci
2A

ϕi
2
−1

...
Ci

ηi

...

Ci
ηiA

ϕi
ηi
−1







































and D̄i =







































Ci
ηi+1
...

Ci
ηi+1A

ρi
1
−1

Ci
ηi+2
...

Ci
ηi+2A

ρi
2
−1

...
Ci

pi

...

Ci
pi
A

ρi
pi−ηi

−1







































. Then, let us set the change of

coordinates

x = T−1















σ1

χ1

...
σk⋆

χk⋆















where, for 1 ≤ i ≤ k⋆, σi =







σi
1
...

σi
ηi






, σi

j ∈ IR ϕi
j , 1 ≤ j ≤ ηi, and where χi =







χi
1
...

χi
pi−ηi






,

χi
j ∈ IR ρi

j , 1 ≤ j ≤ pi − ηi.
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Then the system (1-2) becomes, for 1 ≤ i ≤ k⋆:

σ̇i
j = ∆σ

i,jσ
i
j + Ξσ

i,jx + Bσ
i,ju, 1 ≤ j ≤ ηi (6)

χ̇i
j = ∆χ

i,jχ
i
j + Ξχ

i,jx + Θχ
i,jw + B

χ
i,ju, 1 ≤ j ≤ pi − ηi (7)

∆σ
i,j =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















ϕi
j×ϕi

j

, Ξσ
i,j =











0
...
0

CjA
ϕi

j











ϕi
j×n

∆χ
i,j =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















ρi
j×ρi

j

, Ξχ
i,j =











0
...
0

Cηi+jA
ρi

j











ρi
j×n

, Θχ
i,j =











0
...
0

Cηi+jA
ρi

j−1D











ρi
j×m

.

Bσ
i,j and B

χ
i,j are a

(

ϕi
j × q

)

and a
(

ρi
j × q

)

-matrix, respectively. The system is put in a set
of block triangular observable forms.

The following proposition summarizes the main result of the paper.

Proposition 1 Consider the system (1)-(2) and apply the Output Information Algorithm.

If there exists a k⋆ ∈ N such that
k⋆
∑

i=1

(ϕi + ρi) = n, then:

(i) rank Γk∗ = m;
(ii) the state and the unknown inputs can be estimated in finite time.

Proof: (i) From the definitions of the matrices Īi and D̄i, and since
k⋆
∑

i=1

(ϕi + ρi) = n:

rank Γk⋆ = rank



























Cη1+1A
r1
1
−1

...

Cp1
Ar1

p1−η1
−1

...

Ck⋆

ηk⋆+1A
rk⋆

1
−1

...

Ck⋆

pk⋆
A

rk⋆

pk⋆−ηk⋆
−1



























D

= rank















Ī1

D̄1
...

Īk⋆

D̄k⋆















D = m.

(ii) This point is shown in the next Section.
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3 State and unknown input estimation

In this section, it is shown how to recover in finite time the state and the unknown inputs
using the observability form defined in (6-7).

It can be noticed that, for 1 ≤ i ≤ k⋆, each subsystem of (6-7) is in a form similar to
the following so-called triangular observable form:

ξ̇ =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















l×l

ξ +











0
...
0
Θ











z + Bξu, (8)

y =
[

1 0 · · · 0
]

ξ (9)

where ξ =
[

ξ1 · · · ξl

]T
∈ IR l is the state vector, y ∈ IR is the output vector, u is the

known output and z ∈ IR m stands for some unknown inputs or uncertainties and where
Θ ∈ IR 1×m. Several finite time observers for system (8-9) can be found in the literature.
For instance, one can cite design methods based on step-by-step sliding mode techniques
(Barbot et al. (1996); Drakunov (1992); Floret-Pontet and Lamnabhi-Lagarrigue (2001);
Utkin (1992); Drakunov and Utkin (1995)), higher order sliding modes (Levant (1998)) or
numerical issues (Diop et al. (1999), Diop et al. (2000)). Such observers allows for estimating
the state ξ but also the last component in (8). This implies that one can also recover ξ̇l = Θz

in finite time.
The design of such observers is left to the reader, since they are straightforward applica-

tions of existing results and since it is beyond the scope of this paper (which is dedicated to
the obtention of an observability form). Thus the observation method is not detailed here
but it is worth mentioning that, depending on the choice of the observer, some assumptions
have to be introduced. For instance, in all the previously mentioned works, the unknown
input w has to be at least bounded.

3.1 Convergence of the state variables

We shall start with the first subsystem in (6-7), that is to say i = 1, where the available
measurements appear. Using a finite time observer, one gets a finite time estimation of the
states σ1 and χ1, and the last component of each subsystem in (7). Thus, for 1 ≤ j ≤ p1−η1,
the following terms V 1

j are also known:

V 1
j = Cη1+jA

ρ1
j x + Cη1+jA

ρ1
j−1Dw. (10)

It can be noted that in the subsequent subsystems (2 ≤ i ≤ k∗), the information injections
are not directly available since they are linear combination of some unknown states. Nev-
ertheless, one can obtain the fictitious output y2 in the following way. Let us introduce the
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auxiliary variable:

ỹ1 = Λ1







Cη1+1A
r1
1
−1

...

Cp1
Ar1

p1−η1
−1






x. (11)

Note that, from the construction of the set {I1 ∪ D1}, one can write that







Cη1+1A
r1
1
−1

...

Cp1
Ar1

p1−η1
−1






= G1

[

Ī1

D̄1

]

where G1 is a matrix of appropriate dimension. Thus ỹ1 is given by

ỹ1 = Λ1G1

[

Ī1

D̄1

]

x = Λ1G1

[

σ1

χ1

]

and is an available information. Its dynamics is given by:

dỹ1

dt
= Λ1







Cη1+1A
r1
1
−1

...

Cp1
Ar1

p1−η1
−1






(Ax + Dw) = C2x = y2.

Again, a finite time observer can be designed in order to obtain y2.

Remark 2 If ρ1
j = r1

j for all 1 ≤ j ≤ p1 − η1, y2 can be obtained without any additional
observer. Indeed, Equations (10) become:

Λ1







V 1
1
...

V 1
p1−η1






= Λ1







Cη1+1A
r1
1

...

Cp1
Ar1

p1−η1






x + Λ1Γ1w = y2.

The fictitious output y2 is henceforth available and, repeating the same procedure for
i = 2 in the observer, one obtains in finite time σ2 and χ2. Following the same scheme
step-by-step, one gets all the state σi and χi, 1 ≤ i ≤ k⋆, in a finite time tk⋆ .

3.2 Estimation of the unknown inputs

Since, after tk⋆ , the state x has been estimated, one has the knowledge of:

Si
j = V i

j − Cηi+jA
ρi

jx = Cηi+jA
ρi

j−1Dw (12)

for 1 ≤ i ≤ k⋆ and 1 ≤ j ≤ pi − ηi. Those equations can be written in compact form

S = ΘDw,

9



where S = col
(

Si
j

)

∈ R

k⋆
P

i=1

(pi−ηi)
is an available information that is computable online, and

where ΘD ∈ R

 

k⋆
P

i=1

(pi−ηi)

!

×m

is given by:

ΘD =







ΘD
1
...

ΘD
k⋆






, ΘD

i =







Cηi+1A
ρi
1
−1D

...

Cpi
A

ρi
pi−ηi

−1
D






.

Following the same arguments as in Proposition 1, one has rank ΘD = m. Thus, the
relations (12) provide a finite time estimation ŵ of the unknown inputs w:

ŵ =
(

ΘD
)+

Seq

where
(

ΘD
)+

is the pseudo-inverse of ΘD.

Remark 3 In this paper, for a sake of simplicity, the outputs are not directly subject to
unknown inputs (i.e. as in the case of noise measurement or sensor faults). Nevertheless, if
it is the case, it is possible, as in Tan and Edwards (2003), to introduce appropriate filters
of the outputs that lead to an augmented state space where the original sensor faults can be
considered as actuator faults. Then, the algorithm given in this work can be applied.

4 Example

To illustrate the effectiveness of the proposed technique, the example, taken from Mudge
and Patton (1988), of the lateral motion of an aircraft is examined. A seven-state model of
the linearized lateral dynamics is considered:

ẋ = Ax + Bu + Dw (13)

y = Cx (14)

where x = [υ, p, r, φ, ψ, ζ, ξ] is the state with υ being the sideslip velocity, p the roll rate, r

the yaw rate, φ the roll angle, ψ the yaw angle, ζ the rudder angle and ξ the aileron angle.
u is the control input with the rudder angle and the aileron angle demand. The mea-

surement outputs y are the roll rate and the yaw angle. The matrices A, B, C, D are given
by:

A =





















−0.3 0 −33 9.81 0 −5.4 0
−0.1 −8.3 3.75 0 0 0 −28.6
0.37 0 −0.64 0 0 −9.5 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 −10 0
0 0 0 0 0 0 −5




















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C =

[

0 1 0 0 0 0 0
0 0 0 0 1 0 0

]

B =

[

0 0 0 0 0 20 0
0 0 0 0 0 0 20

]T

.

An actuator fault in the rudder is considered, i.e. with D = −
[

0 0 0 0 0 20 0
]T

and w = f(t)u. f(t) = 0 denotes the actuator fault-free case, while 0 < f(t) < 1 represents
the loss of actuator effectiveness in the rudder. It can be checked that CD = 0. This
means that rank CD 6= rank D and, thus, classical observers can not be designed for this
application.

Let us show that the algorithm given in Section 2 can be useful to estimate not only the
state but also the occurrence of the fault.

Iteration 1.a: since CAD

[

0
0

]

and CA2D =

[

701.7
190

]

, one has r1
1 = r1

2 = 3.

Iteration 1.b and c: since all the outputs are affected by the unknown inputs, I1 = ∅ and
D1 = {C1, C1A,C1A

2, C2, C2A,C2A
2}.

Iteration 1.d: The matrix

Γ1 =

[

C1A
2D

C2A
2D

]

=

[

701.7
190

]

leads to the following choice of the fictitious output:

y2 =

(

190

701.7
C1A

2 − C2A
2

)

Ax = C2x

where
C2 =

[

−4.728 −155.09 66.904 2.340 3 0 70.381 −1048.5
]

.

Then, it can be checked that the matrix

T =





















C1

C1A

C1A
2

C2

C2A

C2A
2

C2





















is nonsingular. After the change of coordinates z = Tx, the system is transformed in a set
of 3 triangular observable forms:

ż = Azz + Bzu + Dzw (15)

y = Czz (16)
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where

Az =





















0 1 0 0 0 0 0
0 0 1 0 0 0 0

−1135 −237.55 13.3 0 490.57 −3.95 15
0 0 0 0 1 0 0
0 0 0 0 0 1 0

−307.04 −64.30 3.6 0 132.7 −1 3.06
2276.5 470.9 −39.79 0 −984.6 14.82 −36.51





















Dz =
[

0 0 701.7 0 0 190 −1407.6
]T

Cz =

[

1 0 0 0 0 0 0
0 0 0 1 0 0 0

]

.

It can then be concluded that the state and the fault can be estimated in finite time.

5 Conclusion

In this paper, the problem of the state and unknown input estimation for linear systems has
been considered. The main result of the paper is the obtention of a novel observability form
through a constructive algorithm. The interest of this form is twofold: (i) both the state
and the unknown input can be estimated in finite time, and (ii) this method can deal with
some class of systems that do not satisfy the observer matching condition required when
designing classical unknown input observers or sliding mode observers. Further research
are concerned with the practical realization of finite time observers for systems that can
be transformed in such a form, and with the application of the algorithm in the fields of
fault detection (a simple but illustrative example has been given in this paper) or parameter
identification.
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