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Abstract: Self-optimization through dynamic resource provisioning is an
appealing approach to tackle load variation in Internet services. It allows to
assign or release resources to/from Internet services according to the varying
load. However, dynamic resource provisioning raises several challenges among
which: (i) How to plan a good capacity of an Internet service, i.e. a necessary and
sufficient amount of resource to handle the Internet service workload, (ii) How to
manage both gradual load variation and load peaks in Internet services, (iii) How
to prevent system oscillations in presence of potentially concurrent dynamic
resource provisioning, and (iv) How to provide generic self-optimization that
applies to different Internet services such as e-mail services, streaming servers
or e-commerce web systems.

This paper precisely answers these questions. It presents the design prin-
ciples and implementation details of a self-optimization autonomic manager.
It describes the results of an experimental evaluation of the self-optimization
manager with a realistic e-commerce multi-tier web application running in a
Linux cluster of computers. The experimental results show the usefulness of
self-optimization in terms of end-user’s perceived performance and system’s op-
erational costs, with a negligible overhead.
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2 Taton & Bouchenak & de Palma & Hagimont

1 INTRODUCTION

1.1 Context and challenges

A large variety of Internet services exists, ranging from web servers to email
servers, streaming media services, enterprise servers, and database systems.
These services are usually based on the client-server architecture, where a server
provides some online service (such as reading web pages, sending emails or buy-
ing the content of a shopping cart), and clients concurrently access that service.
Internet services may face a large amount of load in terms of number of clients
that concurrently request the service at the same time. To tackle this load,
classical techniques such as replication and partitioning are applied to allow the
service to scale with its load [39]. For example, in a replicated service, the load
is balanced among several replicas of the same service, allowing the service to
globally process more client requests than with a single-instance service. In such
systems, the amount of resources (i.e. computers) needed by an Internet service
depends on the current load the service needs to process. Ideally an Internet
service should be assigned the necessary and sufficient amount of resources to
handle its current load. The necessary amount of resources would allow the
Internet service to absorb the load while guaranteeing acceptable performance
and Service Level Agreement (SLA) requirements to end-users. On the other
hand, restricting Internet service resources to the minimal and sufficient amount
allows a saving of resources, and thus reduces powering and cooling costs of the
Internet service. The former objective is usually presented as the end-user’s
point of view, while the latter objective is seen as the system administrator’s
point of view. Combining these two antagonist criteria in order to plan the
ideal capacity of an Internet service is challenging. This trade-off is particularly
important in the context of physical platforms consisting of a set of resources
(e.g. clusters or grids) that are shared by several Internet services such as in
case of ASPs (Application Service Providers).

Moreover since the load of an Internet service may vary over time, a challeng-
ing task for an Internet service administrator is to well provision the service with
the good (i.e. necessary and sufficient) amount of resources. A first approach,
the pessimistic approach, assigns to the service a fixed amount of resources which
corresponds to the resources needed by the service in its worst case (i.e. in its
highest load scenario). This approach clearly results in resource wasting, be-
cause most of the time, the service is provisioned with much more resources
than its instantaneous needs. Another approach is based on resource overbook-
ing and may result in situations where the Internet service does not have its
necessary amount of resources [59]. Thus, dynamic resource provisioning is an
appealing approach to face load variations in Internet services. However it raises
several open issues among which dynamic load variation, system oscillations and
genericity that we detail in the following.

Load variation. The workload of an Internet service usually varies over time
from a light workload to a heavier workload and vice versa. Roughly speaking,
in contrast to a light workload, a heavy workload involves a large amount of
concurrent client requests and/or requests that require long processing times.
This workload variation in an Internet service reflects different client usages
at different times. For instance, an e-mail service is likely to face a heavier
workload in the morning than in the rest of the day, since people usually consult
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Self-Optimization of Internet Services 3

their e-mails when arriving at work. Moreover the load of an Internet service
may vary at different speeds, in the sense that it may vary gradually or it
may have the form of load spikes that occur suddenly. While in the former
case the dynamic addition and removal of a single resource at a time may be
sufficient to absorb load variations, in the latter case a challenging issue is
to determine the amount of resources to be (un-)provisioned before actually
performing the (un-)provisioning in a single step. Thus, a challenging issue in
Internet service resource provisioning is to efficiently tackle both situations of
gradual load variations and load peaks.

System oscillations. If not addressed carefully, dynamic resource provision-
ing of an Internet service may induce multiple concurrent provisioning opera-
tions that are actually not necessary, but only triggered because the system is
in a temporarily instable state. This would, for instance, result in first adding
more resources than strictly necessary, and then later on removing the unnec-
essary resources. As a result these oscillations would hurt the overall Internet
service performance. This problem is made harder by the fact that two concur-
rent provisioning operations do not always act on the same parts of an Internet
service but may apply to different parts of the same Internet service. For in-
stance, in a three-tier e-commerce Internet service consisting of a front-end tier
of replicated web servers, a middle tier of replicated application servers, and a
back-end tier of replicated database servers; the back-end tier may become the
bottleneck which results in an under-load of the front-end tier (which simply
waits for responses from the back-end tier). In such a situation, a provisioning
operation may be triggered on the set of replicas of the back-end tier (because of
its over-load) while an un-provisioning operation may be triggered on the set of
replicas of the front-end tier. Obviously, the latter un-provisioning operation on
the front-end tier is not necessary, and is only triggered because the back-end
tier of the Internet service is in an instable state. Thus, one of the issues of
Internet service resource provisioning is to prevent system oscillations due to
unnecessary (un-)provisioning operations.

Genericity. Dynamic resource provisioning solutions may be tied to a par-
ticular Internet service (such as a database server [46]). This is the case when
the underlying provisioning mechanism is specific to a particular service and
implemented as part of that service. Such an approach makes the provisioning
system hard to be directly applied to other Internet services (e.g. web servers or
streaming media servers). Thus, generic resource provisioning is an appealing
approach to handle the broad diversity of Internet services. However a generic
approach to resource provisioning needs to be careful about providing a too
general solution that does finally not apply to any specific and realistic Internet
service. Thus an important question to address here is the following: is a generic
approach to resource provisioning able to capture the specificities of individual
Internet services in an efficient way?

1.2 Research contributions

This paper describes our experience in designing, implementing and evaluating
self-optimizing Internet services through dynamic resource provisioning. The
proposed self-optimization solution aims at allocating at least the necessary
amount of resources in order for end-users to obtain good performance, and
at most the sufficient amount of resources to reduce the operating costs of the
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4 Taton & Bouchenak & de Palma & Hagimont

system. Thus, to plan the capacity of an Internet service, both criteria (provide
the minimal and maximal resource amount) need to be met. We translate these
criteria to an objective function based on minimum and maximum thresholds.
This function aims at keeping the Internet service between acceptable minimum
and maximum resource usage that respectively represent the limits under which
the system is sub-optimal and over which the system is over-loaded. The design
principles of the proposed dynamic resource provisioning solution are precisely
motivated by the above-mentioned issues, that are addressed as follows.

Load wvariation. In order to face dynamic variation of the load of an Inter-
net service, we propose a self-optimization system that continuously monitors
the Internet service resource usage, recalculates its capacity planning and per-
forms dynamic resource (un-)provisioning accordingly. Moreover, in order to
tackle both situations of gradual load variations and load spikes, we enriched
the capacity planning policy with heuristics that allow to determine the amount
of resources that need to be (un-)provisioned according to the Internet service
load.

System oscillations. Internet services are usually built as distributed systems
that consist of several parts. In this context, load variations and system insta-
bilities in some parts of the Internet service may have temporary side-effects
on other parts of the system. Thus, dynamic resource provisioning on different
parts of an Internet service should be conducted carefully to prevent system
oscillations. For that purpose, we follow an architecture-based approach for
self-optimizing Internet services. More precisely, the different parts composing
a distributed Internet service are materialized in a view of the system, and the
direct and indirect communication and cooperation dependencies between these
parts are exhibited. Then, based on this knowledge of the system architecture
and in order to prevent system oscillations, concurrent dynamic resource pro-
visioning operations are inhibited if they occur on inter-dependent parts of the
same Internet service. For instance, in case of a multi-tier e-commerce Internet
service, the front-end tier and the back-end tier are automatically identified as
inter-dependent, and thus concurrent provisioning operations on these two parts
are automatically inhibited to prevent system oscillations.

Genericity. As discussed earlier, the resource provisioning policy that un-
derlies the proposed self-optimization system is built upon an objective function
that is based on minimum and maximum thresholds for resource usage. A re-
source, as a computer, can be seen as a coarse-grain resource which consists in
several finer-grain hardware resources such as CPU, memory, disk or network
bandwidth. The proposed resource provisioning policy makes use of this view of
finer-grain hardware resources to determine if a coarse grain resource is under-
utilized or over-loaded in order to (un-)provision resources. Thus, the proposed
policy is based on general hardware resource usage which makes it generic and
applicable to any Internet service.

Finally, we implemented a self-optimization autonomic manager as a dy-
namic resource provisioning system that follows the design principles intro-
duced earlier ; we integrated this self-optimization manager to the Jade au-
tonomic management framework [8]. This helps building self-optimizing Inter-
net services. In this paper, we illustrate the feasibility of the proposed policy
and describe its appliance in different use cases ranging from e-mail servers to
streaming services and e-commerce web systems. Furthermore, we experimen-
tally evaluated the self-optimization system in a realistic e-commerce multi-tier
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web application running in a Linux cluster of computers. The results of the ex-
perimental evaluation show the usefulness of self-optimization in terms of end-
user’s perceived performance and system’s operational costs with a negligible
overhead.

1.3 Paper roadmap

The remainder of the paper is organized as follows. Section Zldescribes the con-
sidered system model. Section [ illustrates the appliance of dynamic resource
provisioning to different Internet services. Section [ describes the design prin-
ciples and implementation details of the proposed self-optimization autonomic
manager through dynamic resource provisioning, and section [Bl presents the re-
sults of its experimental evaluation. Finally, the related work is discussed in
section [6] and section [7] draws our conclusions.
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6 Taton & Bouchenak & de Palma & Hagimont

2 SYSTEM MODEL

The term resource is used throughout this paper to designate a node, i.e. a com-
puter, a machine. We consider a collection of resources interconnected through
a local area network. The resources are homogeneous in the sense that they
have the same physical architecture and operating system, as it is typically the
case in clusters of computers. A distributed application is a software computing
system that runs on a set of resources. An application may dynamically acquire
or release resources from a global set of resources (i.e. a cluster): a resource is
either free or exclusively used by an application. In other words two applications
do not share the same resource at the same time. We consider, in particular,
the case of client-server Internet applications where concurrent clients connect
to a server which provides them with some online service, e.g. streaming videos
in a video-on-demand service, reading e-mails in an e-mail service, etc.

Moreover, the application may be seen as a monolithic entity or as a set of
several entities. For instance, an e-mail service may be seen as a monolithic
entity represented by the e-mail server. While a three-tier e-commerce appli-
cation may be seen as a collection of three entities: the web server entity, the
application server entity and the database server entity. Here, an application
entity is any part of the distributed application that can be hosted by a distinct
resource.

Furthermore, the architecture of a distributed application, i.e. the way its en-
tities are organized may have different forms. We distinguish between pipelined
systems and partitioned systems. In a pipelined system, the entities composing
the system are organized in series (see Figure [[}a) and each entity may take part
to the building of the response to the client. For instance, in a multi-tier web ap-
plication consisting of three entities (the database server, the application server
and the web server), the three entities cooperate in order to produce the overall
web client response: the database server performs queries on the database, the
enterprise server uses these results to compute the web application logic whose
results are then used by the web server in order to be formatted in HTML pages.
On the contrary, in a partitioned system, the entities composing the system are
organized in parallel (see Figure I}b) and do not interact with each other for
client requests processing. For instance, in case of an application which consists
of N different entities (i.e. servers), each one being responsible of processing re-
quests of a particular class C; (1 <14 < N), client requests are spread among the
different entities depending on their classes, and each client request is processed
by a unique entity. Internet services may be a combination of several pipelined
and partitioned systems.

Finally for scalability purposes, in order to process more client requests, ap-
plication entities may be replicated on several resource instances (see Figure 2)).
This is coupled with a load balancer which distributes the load among replicas.
Different load balancing algorithms may be used (see [16, 10]). In the fol-
lowing we consider a load balancer that equally balances the load (in terms of
resource consumption) between the replicas.
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3 USE CASES

3.1 E-malil server

An e-mail service is an online service that is used for sending and receiving
digital posts via the Internet. An e-mail server follows the classical client-server
architecture where clients send requests to the server, which processes them be-
fore sending back a response. Figure [3a illustrates an e-mail client interface,
that allows a client to access its e-mails. The Simple Mail Transfer Protocol
(SMTP) usually underlies the sending of e-mails to an e-mail server [22]. While
the Internet Message Access Protocol (IMAP) or the Post Office Protocol Ves-
rion 3 (POP3) are used to retrieve e-mails from an e-mail server [19]. For
instance, when a client wants to send an e-mail, it uses several SMTP commands
such as the RCPT command that allows the client to specify the recipient of
the e-mail to send, and the DATA command that sends the e-mail content to
the server. When a client wants to read its e-mails, it may use IMAP or POP3
commands such as the LIST command that asks the server to list the received
e-mails, and the POP3 RETR command that asks the server to retrieve a given
e-mail.
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8 Taton & Bouchenak & de Palma & Hagimont

Sendmail, Microsoft Exchange Server, Postfix and Qmail are examples of
e-mail servers [42], [49] [60], 4]. Instances of e-mail client software are Microsoft
Outlook and Mozilla Thunderbird [28, B3]. Some e-mail services provide the
users a web interface to access their e-mails, such as Gmail, Yahoo and Hot-

mail [17] [65] 29].

Replicated email

Email clients

£ [SWHLD) L ECOWSDT Eurap. Cont, on Web Services - inbox fae datee Sitngton. net - ... [< [B IR

.D'Mp-ﬁmwﬂ‘.ﬁ-'.ﬂz = —
— s eas 282 9

o e Seren e

(a) E-mail application (b) Replicated e-mail servers

Figure 3: E-mail application and replicated servers

For scalability purposes, an e-mail server may be replicated as a set of mul-
tiple entities with appropriate consistency management policies [5l [4T], [62]. Fig-
ure Blb illustrates the architecture of a replicated e-mail service, in which client
requests are spread among the different replicas of the service. In this context,
and since the e-mail service may be more or less stressed over time depend-
ing on the varying client workload, dynamic resource provisioning would allow
the system to provide good performance to end-users while requiring minimum
resources.

3.2 Video-on-demand service

A video-on-demand (VoD) service allows users to interactively select and watch
video data over the network. This provides users with streaming multimedia
capabilities and, for instance, the ability to start, stop or rewind the streamed
video. A video-on-demand system follows the classical client-server architecture
where clients send requests to the server, which processes them before sending
back a response. The Real Time Streaming Protocol (RT'SP) usually underlies
streaming media systems [20]. It controls on-demand delivery of real-time data
such as audio and video. For instance, clients may send RTSP PLAY requests
to play the accessed media stream or RTSP PAUSE requests to temporarilly
interrupt the media stream.

Apple QuickTime Streaming Server, Microsoft Windows Media Services and
Alcatel/Lucent’s pvServer Streaming module are examples of RTSP-based VoD
server software [25], 27, [30]. Apple’s QuickTime, RealPlayer and VLC media
player are examples of VoD client software [24] [61] [40]. Instances of streaming
media services are YouTube and Dailymotion [60], (see Figure @ta).

In this context, partitioning and replication are classical techniques used to
build scalable VoD services [26, 1], T4 68] (see Figure[db). Here, partitioning
may be mapped to categories of videos provided by the VoD server. Client
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Figure 4: Video streaming application and VoD servers organization

requests are directed to the appropriate VoD service partition depending on the
category of the video requested by the client. Client requests are then balanced
between the different replicas of the served video for scalability purposes. Here,
dynamic resource provisioning would allow to tackle the varying workload by
dynamically allocating the necessary and sufficient resources to the VoD service.

3.3 E-commerce web server

A plenty of e-commerce web servers exists, such as online shopping sites (e.g. the
Amazon.com shopping site [I], the Ebay.com auction site depicted in Figure B+
a [15]), online banking services (e.g. PayPal [36], Moneybookers [32]) and online
booking sites (e.g. the Booking.com hotel booking site [7], the Momondo.com
plane ticket reservation site [31]). More generally, an e-commerce web server
provides users with several features, such as the ability to consult the pro-
vided products and services, the ability to perform online transactions to buy
a product or a service, etc. E-commerce sites are based on the client-server
architecture and make use of the HyperText Transfer Protocol (HTTP) [21].
HTTP is a communication protocol that allows web clients to interact with web
servers and exchange hypermedia information. For instance, an HTTP GET
request, the most frequently used web request type, allows a client to access a
web resource available on the server. While an HTTP PUT request uploads the
specified web resource on the server.

For scalability issues of e-commerce sites, the classical simple client-server ar-
chitecture where the server consists of a single entity was extended to a pipelined
system also known as the multi-tier architecture [48]. In a multi-tier architec-
ture, the server is organized as a series of tiers. Such systems start with requests
from web clients that flow through a front-end web server and provider of static
content, then to a middle-tier enterprise server to execute the business logic
of the application and generate web pages on-the-fly, and finally to a back-end
database that stores non-ephemeral data. However, the complexity of multi-tier
architectures and their low rate for delivering dynamic web documents (often
one or two orders of magnitudes slower than static documents) place a signif-
icant burden on servers [I§]. To face high loads and provide higher service
scalability, a commonly used approach is to replicate servers (see Figure B-b).
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Figure 5: E-commerce application and server organization

Replication-based clustering solutions are responsible of dynamically balancing
the load among replicas, and managing replica consistency [51,[9] [10]. However,
determining the right amount of resources that are needed by each tier of a
multi-tier e-commerce service to handle its variable load is a challenging task.
Dynamic resource provisioning makes all sense in the context of these complex

distributed systems.
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4 SELF-OPTIMIZATION OF INTERNET SER-
VICES

4.1 Architecture and Design principles

In the following, we describe the main architecture and design principles of self-
optimization of Internet services. A self-optimization manager is responsible
of applying a given self-optimization policy on an Internet service. The self-
optimization policy described here is based on dynamic resource provisioning,
i.e. on-line addition and removal of resources to and from an Internet service. A
self-optimization manager is associated with each set of replicated entities of an
Internet service. For instance in the Internet service described in Figure ] a self-
optimization manager will be associated with the set of replicated e-mail servers.
In the Internet service described in Figure[d], a self-optimization manager will be
associated with each partition of the VoD service. And in the Internet service
described in Figure Bl a self-optimization manager will be associated with each
tier of the multi-tier e-commerce web application. A self-optimization manager
is organized as follows. It observes the behavior of a set of replicated entities and
triggers resource provisioning or un-provisioning according to its observations.

A self-optimization manager applies a resource usage threshold-based policy
to a set of managed entities (e.g. replicated entities). When the resource usage
of the underlying set of replicated entities reaches a maximum threshold, that
means that the system is over-loaded and thus the self-optimization manager
provisions the set of managed entities with additional resources. Symmetrically,
when the resource usage of the set of managed entities goes below a minimum
threshold, that corresponds to an under-utilization of the system. In this case,
the self-optimization manager removes resources from the set of managed enti-
ties. A self-optimization manager is organized in three main parts: (i) system
observation, (ii) self-optimization policy, and (iii) system reorganization.

The first part is responsible of observing the behavior of the underlying
managed system in terms of resource consumption. Here, resource consumption
refers to hardware resources such as cpu, memory, disk or network. System ob-
servation may have the form of an on-line resource monitoring system that per-
forms real-time monitoring of the system, or it may have the form of predictions
of future resource usage of the system. The former is used to implement reactive
self-optimization, while the latter applies in case of proactive self-optmization.
On-line resource monitoring consists in resource usage indicators (i.e. sensors).
Self-optimization is triggered when a sensor reports a value which violates
some minimum or maximum thresholds. High-level sensors may aggregate and
filter many lower-level sensors to provide meaningful resource usage indica-
tions. Aggregation allows to consolidate grouped resource usage information
(e.g. partition-wide resource usage as shown in Figure[Ga), while filtering tar-
gets monitoring data quality such as stability, responsiveness. Aggregation is
usually achieved through mathematical computations such as summing, aver-
aging, minimum finding, etc; this depends on the nature of the information to
measure and to report. Filtering generally targets the removal of meaningless
artifacts for stability purpose through smoothing over time (e.g. raw average or
EWMA), flip-flop filters, etc. Filtering effects are illustrated in Figure Blb.

RR n°® 6575



12 Taton & Bouchenak & de Palma & Hagimont

Partition wide . . . . . . .
sensor CPU load without filtering
/) CPU load with filtering

"“ H‘W\

il
LA J‘\ Il
| / M' I

= o= Mo |
a g (s g g o . . . . . . .
II R II R II 0 100 200 300 400 500 600 700 800 900
Time (s)

(a) Aggregation and filtering of sensors (b) Filtering of monitoring data

=
o
s}

®
o

CPU load (%)
(2]
o

Aggregate

N
o

Figure 6: Aggregation and filtering of sensors

Add
ressources
Remove
ressources
Replica

Maximum
threshold
exceeded?

Minimum
threshold
violated?

System
observation

Figure 7: Dynamic provisioning control-loop and policy design

The central part of the self-optimization manager is its policy. Its general
functioning is briefly described in Figure [] and Algorithm [II Here, the self-
optimization policy is a control-loop that reacts to events received from the
system observation part. Each time an event is notified, it is analyzed to check
if the underlying managed system is over-loaded or under-utilized. If one of
the observed resources exceeds its maximum threshold, that means that the
managed system faces a bottleneck and is over-loaded. In this case the system
is provisioned with additional nodes. Symmetrically, if all observed resources
use less than their minimum threshold, that means that the overall system is
under-utilized. Thus nodes are removed from the managed system. Addition
and removal of nodes is done through system reorganization operations, the
third part of the self-optimization manager.

This latter part of the self-optimization manager provides operations that
actually perform the dynamic provisioning or un-provisioning of nodes to the
managed system. Such operations consist in assigning new free nodes to the
managed system, releasing nodes from the managed system, installing on a new
node the software needed by the managed system when necessary, configuring
the software and starting the software.

More generally, Figure [§] depicts a general example of how self-optimization
applies in an Internet service. An Internet service may be organized as parti-
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Algorithm 1 Algorithm for a dynamic provisioning policy

on Receive(event: MonitoringEvent):
if (event.consumption; > max_threshold;)
or (event.consumption, > max_thresholds)
or ...
or (event.consumption, > max_threshold,) then
// System is overloaded and need more resources
AddResourcesToSystem()
else if (event.consumption; < min_threshold;)
and (event.consumption, < min_thresholds)
and ...
and (event.consumption, < min_threshold,) then
// System is underloaded and wastes resources
RemoveResourcesFromSystem()
end if

Self-optimization

=
BB
(( 3 1 B
3,0 0,3

Self-optimization

Self-optimization

X

Self-optimization

B X
B8 (8.8

Self-optimization

8., B

Figure 8: Architecture of self-optimized Internet services

tioned and pipelined sub-systems, where the partitioned and pipelined entities
may be sets of replicated entities (S; to S7 in Figure[§). In this context, a
self-optimization manager is associated with each set of replicated entities. It
is responsible of dynamically provisioning resources to that set of replicated
entities. Moreover, the self-optimization managers of the Internet services co-
operate in order to provide a global consistent behavior (e.g. preventing system
oscillations as discussed in section A3)).

In the following, we detail how the self-optimization manager tackles different
types of load variation, and how it prevents system oscillations.
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Figure 9: Gradual load variation v.s. sudden load variation

4.2 Managing load variation

Load variations may happen following different schemes. A common scenario
consists in a gradual change of the load which will progressively induce an under-
load or an overload in the system. Another common scenario often happens at
the occasion of big events and consists in sudden load variations also commonly
referred to as load spikes or flash crowds.

Whether a load variation is considered as gradual or sudden is related to
the relative difference between the speed of load variation and the speed of
system reorganization. Gradual load variation corresponds to load variation
that happens slower than the system reorganization speed (see Figure [ha).
In this case, simple system reorganizations such as single resource addition or
removal (i.e. at the granularity of one resource at a time) are sufficient to absorb
the load variation. On the contrary, sudden load variation happens when the
load variation is faster than the system reorganization speed (see Figure [
b). In this case, fine-grain heuristics are required to determine the optimal
capacity planning of the system, in order to accelerate the process of system
reorganization towards an optimum state. In case of sudden load variation,
it is necessary to determine the amount of resources to (un-)provision, before
actually performing the (un-)provisioning in a single step. In the following, we
present two mechanisms to address both types of load variations.

Gradual Load Variations. In a system undergoing gradual load variations,
the capacity planning of the system can be continuously adjusted through sys-
tem reorganizations as simple as adding or removing resource units one at a
time. Indeed, the gradual load variation assumption ensures that the system
provisioning will be updated promptly enough to absorb and follow the load
variation. We implemented a self-optimization manager able to handle gradual
load variations. The manager relies on low-level resource usage system observa-
tions (such as cpu, memory, disk or network) and, based on these observations,
triggers single node addition or removal to the system. We experimented and
evaluated this manager on a clustered Internet service implementing a multi-tier
e-commerce web application that was submitted to gradual load variation. The
Internet service was able to self-optimize its behavior according to the changing
workload (see section B.27T]).
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Sudden Load Variations. In a system submitted to sudden load variations,
updates to the system capacity planning may require addition or removal of
multiple resources at a time, so as to absorb the load peaks. In case of sudden
load variation, it is preferable to factorize and parallelize system reorganiza-
tion operations, thus increasing the overall speed of system reorganization. The
challenge here is to determine as accurately as possible how many nodes to
add or remove in one step. We implemented a self-optimization manager that
copes with sudden load variations. It is based on low-level resource system
observations (cpu, memory, disk and network) as well as higher application-
level observations (such as the number of concurrent transactions running in a
server). Application-level observations allow the construction of heuristics func-
tions to determine the optimum capacity planning of the system. We identified
a heuristics function that calculates the optimum capacity planning as being lin-
early proportional to concurrent transactions in the system. Then based on the
result of this function, multiple nodes are assigned or released in parallel. We
implemented this self-optimization policy and applied it to a cluster of Internet
services that implements an e-commerce web application. In the presence of
load spikes, the e-commerce web application was able to efficiently self-optimize

(see section [£.2.9).

4.3 System oscillation management

Another issue of self-optimization is that it may introduce system instabilities
during which sensors may report meaningless information. Thus, interpreting
these signals is likely to be irrelevant and leads to erroneous decisions. Indeed,
dynamic resource provisioning of an Internet service may induce multiple con-
current provisioning operations that are actually not necessary and would, as a
result, hurt the overall Internet service performance. For instance, in a multi-
tier Internet service composed of a front-end web server and a database back-end
organized as a pipelined system, the database back-end might become a bot-
tleneck and induce an underload on the frontend web server (which then waits
for responses from the back-end tier). In such a situation, the self-optimization
could trigger provisioning operations, increasing the amount of resources on
the database back-end tier on one hand, while reclaiming unused resources on
the front-end tier. Obviously, the latter un-provisioning on the front-end tier
is a consequence of the dependency between the front-end web server and the
database back-end that leads to un-necessary operations, and therefore to sys-
tem oscillations. To prevent system oscillations, we introduce a technique that
(i) first automatically calculates inter-dependencies between sub-parts of the
system, and then (ii) automatically prevents system oscillation occurrence.

The system oscillation management relies on a description of the system
that allows the manager to determine dependencies between parts of the sys-
tem. More precisely, the manager is given a representation of the system in
terms of pipelined and partitioned sub-systems (see Figure [[). Thanks to this
knowledge, the manager infers a dependency function defined as follows: (i) a
sub-system S; depends on a sub-system S; if S; and S; are parts of a pipelined
system, and (ii) a sub-system S; always depends on itself. Indeed, a pipeline
materializes the dependency between sub-systems, while a partition materializes
their independency.
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Notice that in pipelined sub-systems, the workload of one of the sub-systems
may have a side-effect on another sub-system in pipeline. This is due to the
fact that client request processing may flow through all or part of the pipelined
sub-systems. While in case of partitioned sub-systems, the workload of the
different sub-systems are independent from each other; each partition being re-
sponsible of processing requests independently from the other partitions. Thus,
based on the inter-dependency function and the knowledge of the system archi-
tecture, the self-optimization manager is able to automatically identify inter-
dependent parts of the Internet service. To prevent oscillations from occurring,
the self-optimization manager ensures that during a self-optimization operation
on a part of the system, self-optimization is inhibited on any inter-dependent
part (during a given delay). Once the inhibition delay has expired, new self-
optimization operations are allowed for execution again.

We implemented the system oscillation management for a self-optimized e-
commerce web application hosted by a two-tier Internet service where each tier
of the Internet service was replicated and dynamically provisioned. The two
tiers of the Internet service were identified as a pipelined system. Thus, all
system reorganization happening on the first or the second tier of the system
triggered an inhibition that blocked any new reorganization on the first and the
second tier (see section [5.2)).

4.4 Discussion

The proposed self-optimization approach based on resource usage observations
and on simple system reorganization is attractive thanks to its simplicity. Its
basic design confers the self-optimization approach a generic behavior, thus al-
lowing its appliance to many different Internet services with minimal effort.
Indeed, since self-optimization is based on low-level resource monitoring, it
can apply to different Internet services. Of course, the genericity is reduced
when self-optimization makes use of application-level heuristics, like it was the
case for tackling sudden load variations (such observations being application-
dependent).

However, a major open issue of this work concerns tuning and configuring the
self-optimization manager itself. Indeed, configuration parameters may have the
form of min and max thresholds used to guide dynamic resource provisioning,
inhibition delays used to prevent system oscillation. The configuration of these
parameters must be carried carefully since it conditions the efficiency of the self-
optimization manager. In our experiments, we manually tuned these parameters
of the self-optimization manager, based on an observation of the behavior of the
underlying Internet service. The proposed self-optimization manager takes in
charge dynamic optimization and resource provisioning in an Internet service;
However, techniques that would assist, and possibly automate, the configuration
of the parameters of the self-optimization manager would make the usage of self-
optimization easier.
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Figure 10: Experimental dynamic J2EE infrastructure

5 EXPERIMENTAL EVALUATION

5.1 Experimental environment

Hardware environment. Experimentations have been conducted on a cluster of
x86-compatible machines with bi-1.8GHz Xeon CPUs and 1GB RAM, connected
via a 100Mb/s Ethernet LAN.

Software environment. The cluster nodes have been installed with Linux
2.4 kernels and with the following J2EE middleware: Apache HTTPD 1.3.9
as the web server [50], Jakarta Tomcat 3.3.2 as the enterprise server [52],
MySQL 4.0.17 as the database server [34], PLB 0.3 as the web server clustering
solution [37], Tomcat clustering as the enterprise server clustering solution [52]
and c-jdbc 2.0.2 as the database server clustering system [10].

Application. The evaluation has been realized with the Rubis multi-tier
J2EE application benchmark which implements an auction site [2]. Rubis de-
fines several web interactions (e.g registering new users, browsing, buying or
selling items); and it provides a benchmarking tool that emulates web client
behaviors and generates a tunable workload. Rubis comes with two mixes: a
browsing mix in which clients execute 100% read-only requests and a bidding
mix composed of 85% read-only interactions. This benchmarking tool gath-
ers statistics about the application. Rubis was deployed as a cluster-based
replicated multi-tier system, consisting of a cluster of replicated web/enterprise
servers as a front-end, and a cluster of replicated database servers as a backend.
The cluster hosting this instance of Rubis has been enhanced so as to provide
dynamic provisioning abilities (see figure[0). Indeed the experimental cluster
allowed us to dynamically adapt the resource provisioning of the web/enterprise
servers and the resource provisioning of the replicated database, while provid-
ing meaningful resource usage sensors. We used the Rubis 1.4.2 version of the
multi-tier J2EE application running the middleware platform described above.

5.2 Experimental results

We present here the main results obtained after experimenting various scenarios
on the environment described previously.

Protocol. The purpose of the following experimental evaluation is to demon-
strate the correctness and the effectiveness of the proposed dynamic provisioning
technique. To achieve this all conducted experiments include a comparison of
the dynamic provisioning algorithm behavior with the standard static provision-
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Figure 11: Generated workload to simulate gradual variations

ing practice. The reference statically provisioned infrastructure corresponds to
the J2EE infrastructure presented in figure [[Q] with a single Tomcat server and
a single MySQL server.

5.2.1 Handling gradual load variations

We present here an experiment demonstrating the dynamic provisioning for
gradual load variations. Therefore we expose the Rubis web application hosted
on the cluster described previously to a workload with gradual variations in-
tending to demonstrate the ability of our dynamic provisioning mechanism to
adapt and follow the changing workload appropriately.

The workload (see figure[[1]) starts lightly by simulating 80 clients and slowly
increases up to 500 clients by steps of 20 new clients every minute. After this
the workload symmetrically decreases from 500 clients down to 80 clients. This
dynamic workload corresponds to the scenario of a normal service day where the
number of clients increases in the morning up to a maximum in the afternoon
and then decreases in the evening.

Figure [[2}a (resp. figure [2}b) present the aggregated resource usageEl of
the database servers (resp. the application servers) hosting Rubis during the
experiment. Both the behavior of the statically provisioned and the dynami-
cally prosioned systems are represented on these figures. Moreover the figures
display the minimum and maximum thresholds driving the dynamic provision-
ing control-loops. Finally the figures also present the current number of nodes
provisioned for the specific part of the system they represent.

When configuring the hosting cluster to be statically provisioned for Rubis,
we observe that the service gets quickly overloaded with its aggregated resource
being saturated. In comparison when enabling dynamic provisioning on the
hosting cluster, the violation of the maximum threshold by the monitored re-
source usage triggers the increase of the current provisioning of the system part
by one node. This induces a decrease of the aggregated resource usage that

n the present experiments, the CPU was the unique bottleneck resource. For simplicity
and space constraints, we only present CPU usage.
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Figure 12: Behavior of Rubis entities in response to gradual load variations

allows the service to keep functioning while the statically provisioned system is
thrashing.

The dynamic provisioning mechanism is triggered three times during the
workload increase: the two first activations of the dynamic provisioning lead to
two additions of one node to the clustered database, thus shifting the bottleneck
on the application server which then also takes advantage of one node addition.
Symmetrically as the load decreases, the aggregated resource usage drops and
eventually violates the minimum threshold. The threshold violation leads to
resource unprovisioning as expected.

5.2.2 Handling load spikes

This section details an experimentation which aims at demonstrating the effec-
tiveness of our dynamic provisioning algorithm in case of sudden load variation.
To this end Rubis is then exposed to a load spike that widely exceeds the current
capacity of the system.

As shown in figure the workload starts moderately by simulating 100
clients. After three minutes (at time 180s) the workload instantaneously jumps
to 500 clients, thus generating a load spike which cannot be handled correctly
by the current system configuration. Figure[[3] presents the resulting behaviour
of the system in response to the generated load spike, both in case of static and
dynamic provisioning. The behaviour is here depicted through the response
times to requests as perceived by clients. More precisely a dot on this figure
represents one client request which has been submitted at the time the dot is
located at (its x-axis), and which took as many seconds to be served as its y-axis
location.

The initial moderate workload directed to the system is satisfied before the
load spike, which translates to low request latencies. Just after the load spike
happens the request response times jump very quickly. This reveals a thrashing
of the underlying system which is actually unable to serve requests decently any-
more. When the system is statically provisioned the thrashing is very strong so
that many requests submitted after the spike are given a response after the end
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Figure 13: Sudden load variations

of the experiment. For example requests submitted at time 200 seconds after the
beginning of the experiment have response times which exceeds 1400 seconds,
meaning that the response have been issued at time 1600s. In comparison to a
dynamically provisioned system, the load spike is quickly detected through its
resulting thrashing. The control-loop handles this event and provisions the sys-
tem with two more database servers. Once these servers are integrated into the
running system, the client requests get served correctly as before, as figure [3]
shows low latencies again after time 300s.

5.2.3 Performance overhead

In order to measure the possible performance overhead induced by the self-
management framework, we compared two executions of the same multi-tier
system: when it is run over Jade and when it is run without Jade. During the
experiments, the managed application has been submitted to a medium work-
load so that its execution under the control of Jade induced no self-optimization.

Throughput Resp. time | CPU  usage | Memory  usage
(req./s) (ms) (%) (%)
Self-optimized 12 89 12.74 20.1
Non optimized 12 87 12.42 17.5

Table 1: Performance overhead

The results presented in Table (.23 show no significant overhead in terms
of application response times and throughput. We can notice a slight memory
overhead (20.1% vs. 17.5%) that can be linked with the creation of internal
software components by Jade. However, Jade does not induce a perceptible
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overhead on CPU usage; this is due to the fact that Jade does not intercept
application communications but only configuration/management operations.
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6 RELATED WORK

Past work on resource management of Internet services falls in different cate-
gories. A first category has focused on studying strategies to manage and share
a given and fixed set of resources [64), [63] 38|, 59} 57, 44, [43), [6].

In [64, 63], the authors experiment graceful degradation in case of overloads.
They achieve this thanks to a framework that helps the design of staged event-
driven software allowing a fine-grained control over the resource sharing among
the various stages. This provides a good level of performance isolation between
concurrent applications as well as a salient resistance to overloads as the im-
posed design prevents thrashing. Moreover an overload controller minimizes
the amount of dropped requests as a result of admission control while provid-
ing guarantees on the associated response times. Some controllers have been
developed to dynamically adapt the resource allocated to a stage in response to
load changes. However this approach requires all applications to be specifically
(re-)designed according to the framework.

In [38], the authors explore an approach specifically targeting Web servers
to provide adaptation to changing workloads. In this approach the Web server
concurrently processes many QoS classes and adjusts their respective resource
share through a two-level control-loop: system-wide adaptations determine an
operating mode and derive classes resource shares, while local adaptations trade
resources between classes to enforce the QoS requirements. To keep the system
stable and prevent oscillations local adaptations are committed gradually.

In [59], the authors describe a provisioning technique based on a controlled
resource overbooking that yields improved resource usages while guaranteeing
a statistically controlled resource overload level. Hosted applications are be-
ing profiled to derive their respective resource requirements. These information
drive an application placement algorithm which implements the overbooking.
Applications are then isolated through low-level QoS kernel mechanisms. Sharc
extends this preliminary study and provides dynamic provisioning through adap-
tations of the reservations allocated to applications parts on nodes [57]. Inter-
esting features of Sharc and Resource Overbooking are their ability to manage
multiple resources simultaneously (CPU and Network bandwidth) and their
genericity as demonstrated through their experiments on applications with dif-
ferent profiles. However resources are being wasted in case of general underload.

Neptune achieves dynamic provisioning thanks to an elaborated two-level
load-balancer and class-based differentiation 4] [43]. The load-balancing first
applies at the cluster level and spread the load equally between the nodes,
and then applies at the node level to select the best request to serve next.
Thus load variability is handled by an indirect admission control mechanism
which discriminates requests based on their estimated revenue. While Neptune
requires application to be (re-)designed according to their given framework,
Quorum essentially reimplements Neptune and removes this last constraint [6].

Another category of work on resource management of Internet services has
considered the management of a dynamically extensible set of resources, where
the infrastructure can dynamically grow or shrink [3], [35], 46, b3].

Ocano provides an adaptive hosting environment with a dynamic partition-
ing of the resources among the running applications [3]. This dynamism allows
the system to react to load peaks by increasing the partition size of the con-
cerned application and to shift unused resources from under-loaded applications
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to the others. The main issue in this work seems to be the node allocation delay.
That explains why the platform assumes that some application parts cannot be
dynamically and are thus statically allocated and configured (e.g. the database
tier). OnCall is similar to Ocano but specifically targets fast handling of load
spikes thanks to an approach based on virtual machines which can be promptly
activated when required [35]. In case of load spikes extra nodes are allocated to
applications willing to pay more, based on a free market of nodes. Contrary to
Ocano this project does not assume any statically allocated resources and looks
more generic with respect to the managed applications though this aspect has
not been demonstrated. Finally none of these projects takes system oscillations
of the dynamic provisioning into account.

In [45] [46], the authors propose a self-optimized dynamic provisioning algo-
rithm that specifically targets a cluster of databases. Regarding load spikes the
system always provisions a set of unused nodes with database instances kept
within a given range of freshness with respect to the active database instances.
This contributes to improve the latency of provisioning operations. Further-
more oscillations are explicitly prevented as a result of a delay-aware allocation
mechanism of database replica.

Cataclysm is a hosting platform for Internet service which features dynamic
provisioning through a dynamic partitioning of nodes between the running ap-
plications and a adaptive size-based admission control mechanism which takes
advantage of a request classifier to optimally degrades the service quality in
case of overloads [58]. The provisioning algorithm is based on a basic model
of clustered network services. Cataclysm has been specially designed to absorb
extreme overloads: the size-based admission controller prevents the system from
thrashing as a result of accepting too many requests, additionally taking advan-
tage of a request classifier to maximize the revenue during overloads, while the
dynamic provisioning algorithm adds extra resources in case of overloads. The
provisioning algorithm relies on a coarse-grained modeling of simple Internet
services. The strength of Cataclysm is the cooperation of admission control and
dynamic provisioning as components of an integrated resource management sys-
tem. It assumes simple Internet services structures where the database back-end
is statically provisioned.

Finally, besides the above-mentioned heuristics-based approaches, another
category of work on resource management of Internet services has studied math-
ematical characterization and analytical modeling of the systems [56], 53] T2, [67]

a7].

For instance, in [53] [B4], authors propose a model for multi-tier Internet
applications. This model captures the structure and the behavior of Internet
applications built as cooperative entities (i.e. entities in series) thanks to a net-
work of queues. Transitions between queues standing for two connected tiers are
probabilistic. Indeed this allows the model to capture requests processing paths
(including caching mechanisms) through appropriate values for these transition
probabilities. Replication and load-balancing, concurrency limits and requests
classification and differentiation are taken into account as enhancements over
the baseline model. The effectiveness of the model to achieve accurate capacity
planning is demonstrated in a dynamic provisioning scenario in which parame-
ters of the model are determined by mean-value analysis.
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7 CONCLUSION

Internet services, such as e-mail services, streaming servers and multi-tier e-
commerce web services, have to deal with a varying workload, ranging from
stable workload to a large amount of concurrent users accessing the service. Such
services usually need to deal with two antagonist objectives: providing good
performance to end-users while minimizing operational costs of the Internet
services.

In this paper, we presented a self-optimization system for Internet ser-
vices. We described the design principles and implementation details of a self-
optimization manager that we integrated to the Jade autonomic management
framework. This self-optimization manager adapts the Internet service by dy-
namically (un-)provisioning resources to the service, according to its changing
workload. The main results of the self-optimization manager are three-fold:
(i) its ability to tackle both situations of gradual load variations and load spikes,
(ii) its ability to automatically prevent system oscillations that may result from
dynamic resource provisioning, and (iii) its genericity and applicability to dif-
ferent types of Internet services.

We applied self-optimization to a realistic e-commerce web system, consisting
of web and application servers and database servers, running in a Linux cluster.
The experimental results show that the Internet service is able to dynamically
and successfully adapt the amount of resources it uses to its varying workload,
and to provide good performance to end-users while minimizing its operational
cost.
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