a2H7@PTiBKBx iBQM Q7 AMi2 M2i a2 pB+2
_2bQm +2 S"QpBbBQMBM:
*2°BbiQT?2 h iQM-a > "Qm+?22M F-LQ H/2 S HK - .

hQ +Bi2 i?Bb p2°"bBQM,
*2°BbiQT?2 hiQM-a ~ "Qm+?2M F-LQ H/2 S HK -. MB2H > ;BKQMiX
a2 pB+2b rBi? .vM KB+ _2bQm +2 S QpBbBQMBM;X (_2b2 "+? _2TQ i
BM'B @yykN9ydR

> G A/, BM'B @yykN9ydR
?2iiTh,ff? HXBM B X7 fBM'B @yykN9ydR
am#KBii2/ QM 3 CmH kyy3

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Self-Optimization of Internet Services with Dynamic
Resource Provisioning

Christophe Taton — Sara Bouchenak — Noél de Palma — Daniel Hagimont

N° 6575
July 2008

Théme COM

ISRN INRIA/RR--6575--FR+ENG

ISSN 0249-6399

INSTITUT NATIONAL

DE RECHERCHE centre de recherche
EN INFORMATIQUE ;‘(l N RIA GRENOBLE - RHONE-ALPES

ET EN AUTOMATIQUE

Self-Optimization of Internet Services with
Dynamic Resource Provisioning

Christophe Tatonl{], Sara Bouchenak] , Noel de Palma®
Daniel Hagimontﬁ

Theme COM ,, Syst' emes communicants
Equipes-Projets Sardes

Rapport de recherche n 6575, July 2008 , 29 pages

Abstract: Self-optimization through dynamic resource provisioningis an
appealing approach to tackle load variation in Internet services. It allows to
assign or release resources to/from Ir@rnet services according to the varying
load. However, dynamic resource provisioning raises sewarchallenges among
which: (i) How to plan a good capacity of aninternet service, i.e. a necessary and
su cient amount of resource to handle the Internet service workload, (ii) How to
manage both gradual load variation and load peaks in Internéservices, (iii) How
to prevent system oscillations in presence of potentially oncurrent dynamic
resource provisioning, and (iv) How to provide generic selbptimization that
applies to di erent Internet services such as e-mail services, streaming servers
or e-commerce web systems.

This paper precisely answers these gstions. It presents the design prin-
ciples and implementation details of a self-optimization autonomic manager.
It describes the results of an experimental evaluation of tle self-optimization
manager with a realistic e-commerce multi-tier web applicéion running in a
Linux cluster of computers. The experimental results show the usefulness of
self-optimization in terms of end-useregperceived performance and systemes op-
erational costs, with a negligible overhead.

Key-words: Internet services, Dynamic resourcgrovisioning, Self-optimization,
Autonomic computing

Christophe.Taton@inria.fr, Sara.Bouchenak@inria.fr, Noel. Depalma@inria.fr,
Daniel.Hagimont@enseeiht.fr
* Institut National Polytechnique de Grenoble, France
* University of Grenoble |, Department of Computer Science, G renoble, France
§ Institut National Polytechnique de Toulouse, France

Centre de recherche INRIA Grenoble — Rhéne-Alpes

655, avenue de I'Europe, 38334 Montbonnot Saint Ismier
Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

2 Taton & Bouchenak & de Palma & Hagimont

1 INTR ODUCTION

1.1 Context and challenges

A large variety of Internet services exists, ranging from web serers to email
servers, streaming media services, eatprise servers, and database systems.
These services are usually based on the clieserver architecture, where a server
provides some online service (such as reading web pages, dielg emails or buy-
ing the content of a shopping cart), and clients concurently access that service.
Internet services may face a large amount of load in terms of numlreof clients
that concurrently request the service at the same time. To takle this load,
classical techniques such as replication and partitioningare applied to allow the
service to scale with its load[[39]. For emmple, in a replicated service, the load
is balanced among several replicas of # same service, allowing the service to
globally process more client requests than with a single-instancessvice. In such
systems, the amount of resources (i.e. anputers) needed by an Internet service
depends on the current load the serviceneeds to process. Ideally an Internet
service should be assigned the necessaaynd su cient amount of resources to
handle its current load. The necessary amount of resourcesauld allow the
Internet service to absorb the load whileguaranteeing accefable performance
and Service Level Agreement (SLA) reqirements to end-users. On the other
hand, restricting Internet service resaurces to the minimal and su cient amount
allows a saving of resources, and thus reduces powering and cimgj costs of the
Internet service. The former objective is usually presented as the end-useres
point of view, while the latter objective is seen as the systen administratores
point of view. Combining these two antagonist criteria in order to plan the
ideal capacity of an Internet service is challenging. This tade-o is particularly
important in the context of physical platforms consisting of a set of resources
(e.g. clusters or grids) that are sharedby several Internet services such as in
case of ASPs (Applicatiln Service Providers).

Moreover since the load of an Internet service may vary over timea challeng-
ing task for an Internet service administrator is to well provision the service with
the good (i.e. necessary and su cient) amount of resources. A “rst agproach,
the pessimistic approach, assigns to the service a “xed amount of resazes which
corresponds to the resources needed by ¢éhservice in its worst case (i.e. in its
highest load scenario). This approach clearly results in resource waisiy, be-
cause most of the time, the service is provisioned with much moreesources
than its instantaneous needs. Another approach is based on resourceeook-
ing and may result in situations where the Internet service des not have its
necessary amount of resource§[59]. Thus, dynamic resource provising is an
appealing approach to face load variations in Internet services. Hoewer it raises
several open issues among which dynamic load variation, siesm oscillations and
genericity that we detail in the following.

Load variation. The workload of an Internet service usually varies over time
from a light workload to a heavier workload and vice versa. Roughly speaikg,
in contrast to a light workload, a heavy workload involves a large amount of
concurrent client requests and/or requests that require long proessing times.
This workload variation in an Internet s ervice re”ects dierent client usages
at dierent times. For instance, an e-mail service is likely to face a heavier
workload in the morning than in the rest of the day, since peope usually consult

INRIA

Self-Optimization of Internet Services 3

their e-mails when arriving at work. Moreover the load of an Internet service
may vary at dierent speeds, in the sense that it may vary gradually or it

may have the form of load spikes that occur suddenly. While inthe former
case the dynamic addition and removal of a single resource at a time mayeb
su cient to absorb load variations, in the latter case a challenging issue is
to determine the amount of resources to be (un-)provisionedbefore actually
performing the (un-)provisioning in a single step. Thus, a dallenging issue in
Internet service resource provisioning is to e ciently tackle both situations of
gradual load variations and load peaks.

System oscillations If not addressed carefully, dynamic resource provision-
ing of an Internet service may induce multiple concurrent provisioning opera-
tions that are actually not necessary, but only triggered because the system is
in a temporarily instable state. This would, for instance, result in “rst adding
more resources than stricly necessary, and then later on removing the unnec-
essary resources. As a result these oscillations would huthe overall Internet
service performance. This problem is made harder by the fact thatwo concur-
rent provisioning operations do not always act on the same parts of afhnternet
service but may apply to di erent parts of the same Internet service. For in-
stance, in a three-tier e-commerce Interneservice consisting of a front-end tier
of replicated web servers, a middle tier of replicated apptation servers, and a
back-end tier of replicated database severs; the back-end tier may become the
bottleneck which results in an under-load of the front-end tier (which simply
waits for responses from the back-end tier). In such a situgbn, a provisioning
operation may be triggered on the set of replicas of the back-end tiefbecause of
its over-load) while an un-provisioning operation may be triggered on the set of
replicas of the front-end tier. Obviously, the latter un-pr ovisioning operation on
the front-end tier is not necessary, and is only triggered beause the back-end
tier of the Internet service is in an instable state. Thus, one of the issues of
Internet service resource provisioning is to prevent syste oscillations due to
unnecessary (un-)provsioning operations.

Genericity. Dynamic resource provisioning solutions may be tied to a pe
ticular Internet service (such as a database servei[46]). This is the case when
the underlying provisioning mechanism is speci“c to a partcular service and
implemented as part of that service. Sub an approach makes the provisioning
system hard to be directly applied to other Internet services (e.g. web servers or
streaming media servers). Thus, generic resource provisioning an appealing
approach to handle the broad diversity d Internet services. However a generic
approach to resource provisioning needs to be careful about providg a too
general solution that does “nally not apply to any speci“c and realistic Internet
service. Thus an important question to address here is the ftowing: is a generic
approach to resource provisioning able to capture the spetiities of individual
Internet services in an e cient way?

1.2 Research contributions

This paper describes our experience in designing, impleméng and evaluating
self-optimizing Internet services through dynamic resouce provisioning. The
proposed self-optimization solution aims at allocating at least the necessary
amount of resources in order for end-users to obtain good performancend
at most the su cient amount of resources to reduce the operating costs of the

RR n 6575

4 Taton & Bouchenak & de Palma & Hagimont

system. Thus, to plan the capacity of an internet service, both criteria (provide

the minimal and maximal resource amount) need to be met. We translate tlese
criteria to an objective function based on minimum and maximum thresholds.
This function aims at keeping the Internet service between acceble minimum

and maximum resource usage that respectively represent thiemits under which

the system is sub-optimal and over which the system is overdaded. The design
principles of the proposed dynamic resource provisioningaution are precisely
motivated by the above-mentioned issues, that are addresskas follows.

Load variation. In order to face dynamic variation of the load of an Inter-
net service, we propose a self-optimization system that continuosly monitors
the Internet service resource usage, redeulates its capacity planning and per-
forms dynamic resource (un-)provisioning accordingly. Moreove in order to
tackle both situations of gradual load variations and load spikes, we ernched
the capacity planning policy with heuristics that allow to d etermine the amount
of resources that need to be (un-)provisined according to the Internet service
load.

System oscillations Internet services are usuallybuilt as distributed systems
that consist of several parts. In this context, load variations and system insta-
bilities in some parts of the Internet service may have tempaoary side-e ects
on other parts of the system. Thus, dynamic resource provigining on di erent
parts of an Internet service should be conducted carefully @ prevent system
oscillations. For that purpose, we follow an architecturebased approach for
self-optimizing Internet services. More precisely, the dierent parts composing
a distributed Internet service are materialized in a view ofthe system, and the
direct and indirect communication and cogperation dependencies between these
parts are exhibited. Then, based on this knowledge of the syem architecture
and in order to prevent system oscillations, concurrent dyramic resource pro-
visioning operations are inhibited if they occur on inter-dependent parts of the
same Internet service. For instance, in cae of a multi-tier e-commerce Internet
service, the front-end tier and the back-end tier are automaically identi“ed as
inter-dependent, and thus concurrent provisioning operatons on these two parts
are automatically inhibited to prevent system oscillations.

Genericity. As discussed earlier, the resource provisioning policy tt un-
derlies the proposed self-optimization system is built upa an objective function
that is based on minimum and maximum thresholds for resource usage. Ae-
source, as a computer, can be seen as a coarse-grain resource which ctsis
several “ner-grain hardware resources such as CPU, memory, disk oretwork
bandwidth. The proposed resource provisioning policy maks use of this view of
“ner-grain hardware resources to determine if a coarse grairesource is under-
utilized or over-loaded in order to (un-)provision resources. Thus, the proposed
policy is based on general hardware resource usage which makes it genaaitd
applicable to any Internet service.

Finally, we implemented a self-optimization autonomic manager as ady-
namic resource provisioning system that follows the desigrprinciples intro-
duced earlier ; we integrated this self-optimization managr to the Jade au-
tonomic management framework [[8]. This helps building self-optimzing Inter-
net services. In this paper, we illustrate the feasibility d the proposed policy
and describe its appliance m di erent use cases ranging from e-mail servers to
streaming services and e-commerce webystems. Furthermore, we experimen-
tally evaluated the self-optimization system in a realistic e-commerce multi-tier

INRIA

Self-Optimization of Internet Services 5

web application running in a Linux cluster of computers. The results of the ex-
perimental evaluation show the usefulness of self-optimizationn terms of end-
useres perceived performance and systes operational costs with a negligible
overhead.

1.3 Paper roadmap

The remainder of the paper is organized as follows. Sectidd@escribes the con-
sidered system model. Sectioi]3 illustrates the appliancefalynamic resource
provisioning to di erent Internet services. Section [4 descibes the design prin-
ciples and implementation details of the proposed self-optimizattn autonomic
manager through dynamic resource provisioning, and sectiofl5 presenthe re-
sults of its experimental evaluation. Finally, the related work is discussed in
section[8, and sectiorf draws our conclusions.

RR n 6575

6 Taton & Bouchenak & de Palma & Hagimont

2 SYSTEM MODEL

The term resource is used throughout this paper to designate a node, i.e. a com-
puter, a machine. We considera collection of resourcesnterconnected through
a local area network. The resources are homogeneous in the sense thatyh
have the same physical architecture and operating system,sait is typically the
case in clusters of computers. A distributed application isa software computing
system that runs on a set of resources. An application may dyamically acquire
or release resources from a global set eésources (i.e. a cluster): a resource is
either free or exclusively used by an application. In other vords two applications
do not share the same resource at the same time. We considen particular,
the case of client-server Internet appli@ations where concurrent clients connect
to a server which provides them with someonline service, e.gstreaming videos
in a video-on-demand service, reading e-mails in an e-maiksvice, etc.

Moreover, the application may be seen as a monolithic entityor as a set of
several entities. For instance, an e-mail service may be seeas a monolithic
entity represented by the e-mail sener. While a three-tier e-commerce appli-
cation may be seen as a collection of threentities: the web server entity, the
application server entity and the database server entity. Hee, an application
entity is any part of the distributed application that can be hosted by a distinct
resource.

Furthermore, the architecture of a distributed applicatio n, i.e. the way its en-
tities are organized may have di erent forms. We distinguish between pipelined
systems and partitioned systems. In a pgbelined system, the entities composing
the system are organized in series (see Figufé 1-a) and each entity méake part
to the building of the response to the client. For instance, h a multi-tier web ap-
plication consisting of three entities (the database server, theapplication server
and the web server), the three entities cooperate in order t@roduce the overall
web client response: the database server performs querien the database, the
enterprise server uses these results to compute the web ajpgdtion logic whose
results are then used by the web server in order to be formatted itHTML pages.
On the contrary, in a partitioned system, the entities composing the system are
organized in parallel (see Figurd1l-b) and do not interact wih each other for
client requests processing. For instance, in case of an apphtion which consists
of N di erent entities (i.e. servers), each one being responsible of processing re-
quests of a particular classC; (1 i N), client requests are spread among the
di erent entities depending on their classes, and each client rquest is processed
by a unique entity. Internet services may be a combination of segral pipelined
and partitioned systems.

Finally for scalability purposes, in order to process more kient requests, ap-
plication entities may be replicated on several resource istances (see Figurgl2).
This is coupled with a load balancer which distributes the lcad among replicas.
Di erent load balancing algorithms may be used (see[[3[7._16. 10]).n the fol-
lowing we consider a load balancer thatequally balances the load (in terms of
resource consumption) between the replicas.

INRIA

Self-Optimization of Internet Services 7

)

est
oo red
Requests %_‘ o) O Entity 1
of class C1 ‘_ﬁ/ .
e | Processing

—
Client request (\

/\

Client Requests @) ® Q Entity 2

request Request Request of class C2 & .
~ @ ® Client response Processing

Ve
O ® O ® O Cl/ent reQUEsf —\

Processing Processing Processing R ¢
J \ equests .)
cngt @ ® of class C3 Cligng oo @ Entity 3
e

Reponse Reponse Processing
response

Entity 1 Entity 2 Entity 3
(a) Pipelined systems (b) Partitioned systems

Figure 1: Application organization ... pipelined versus partioned systems

(ent (e“ues‘ N
of class C1 ’_% Processing
—greseo” E}
chet
Client request e \\
/@xx
. Requests .
Client Request Request £ Cll 2 @ O Entity 2
request or class T _—| Processin
\@» @ ©) Client response el
Cligng
@] ® C ® @) [Cques; (ﬁ\
Processing Processing Processing
@ Requests _ O
Clgnt AN © Q of class C3 Clieny ,.gp @ . Entity 3
response Reponse Reponse Onse Processing
Replicated Replicated Replicated
Entity 1 Entity 2 Entity 3
(a) Pipelined systems with replication (b) Partitioned systems with
replication

Figure 2: Application organization with replication

3 USE CASES

3.1 E-mail server

An e-mail service is an online service that is used for sending andeceiving
digital posts via the Internet. An e-mail server follows the classical client-server
architecture where clients send request to the server, which processes them be-
fore sending back a response. Figurg 3-a illustrates an e-rihalient interface,
that allows a client to acces its e-mails. The Simple Mail Transfer Protocol
(SMTP) usually underlies the sending of e-mails to an e-maikerver [22]. While
the Internet Message Access ProtocollMAP) or the Post O ce Protocol Ves-
rion 3 (POP3) are used to retrieve e-mails from an e-mail sersr [23,[19]. For
instance, when a client wants to send an e-mail, it uses sevefSMTP commands
such as theRCPT command that allows the client to specify the recipient of
the e-mail to send, and the DATA command that sends the e-mail content to
the server. When a client wants to real its e-mails, it may use IMAP or POP3
commands such as the IST command that asks the sever to list the received
e-mails, and the POP3RETR command that asks the server to retrieve a given
e-mail.

RR n 6575

8 Taton & Bouchenak & de Palma & Hagimont

Sendmail, Microsoft Exchange Server, Post‘x and Qmail are gamples of
e-mail servers[[4R[49, 60.14]. Instances of e-mail client softwa@e Microsoft
Outlook and Mozilla Thunderbird [28] B3]. Some e-mail servtes provide the
users a web interface to access theie-mails, such as Gmd, Yahoo and Hot-
mail [L7, [68,29].

Replicated email
servers

Email clients

(a) E-mail application (b) Replicated e-mail servers

Figure 3: E-mail application and replicated servers

For scalability purposes, an e-mail server may be replicaté as a set of mul-
tiple entities with appropriate consistency management policies [5,[41[62]. Fig-
ure 3-b illustrates the architecture of a replicated e-mailservice, in which client
requests are spread amonghe di erent replicas of the service. In this context,
and since the e-mail service may be more or less stressed over @ndepend-
ing on the varying client workload, dynamic resource provisoning would allow
the system to provide good performance to end-users while geliring minimum
resources.

3.2 Video-on-demand service

A video-on-demand (VoD) service allowsusers to interactively select and watch
video data over the network. This provides users with streaning multimedia

capabilities and, for instance, the ability to start, stop or rewind the streamed

video. A video-on-demand system follows the classical clig-server architecture

where clients send requests to the server, which processdsein before sending
back a response. The Real Time Streaming Protocol (RTSP) usally underlies

streaming media systems[20]. It contrés on-demand delivey of real-time data

such as audio and video. For instance, clients may senBTSP PLAY requests
to play the accessed media stream oRTSP PAUSE requests to temporarilly

interrupt the media stream.

Apple QuickTime Streaming Server, Microsoft Windows Media Srvices and
Alcatel/Lucentes pvServer Streaming module are examples of RTSP-based VoD
server software [[26][2I7["30]. Appless QuickTime, RealPlayer an&/LC media
player are examples of VoD client software[[24, 61,"40]. Instancesf streaming
media services are YouTube and Dailymotion[[66, 13] (see Figuid 4-a).

In this context, partitioning and replic ation are classical techniques used to
build scalable VoD services[[26[11, 14, 68] (see Figuré 4-b). Herpartitioning
may be mapped to categories of videos provided by the VoD server. @nt

INRIA

Self-Optimization of Internet Services 9

Partitioned/Replicated
VoD server

VoD clients

(a) Video streaming application [66] (b) Partitioning and replication in VoD
servers

Figure 4: Video streaming application and VoD servers organization

requests are directed to the appropriate VoD service partition degnding on the
category of the video requested by the client. Client requests a then balanced
between the di erent replicas of the served video for scalaltity purposes. Here,
dynamic resource provisioning would allow to tackle the varying vorkload by
dynamically allocating th e necessary and su cient resources to the VoD service.

3.3 E-commerce web server

A plenty of e-commerce web servers exist such as online shopping sites (e.g. the
Amazon.com shopping site[[ll], the Ebay.com auction site depted in Figure [5-
a [15]), online banking services (e.g. PayPal[36], Moneyhakers [32]) and online
booking sites (e.g. the Booking.com hotel booking site_[7]the Momondo.com
plane ticket reservation site [31]). More generally, an e-comme&e web server
provides users with several features, such as the ability toconsult the pro-
vided products and services, the ability to perform online transactions to buy
a product or a service, etc. E-commerceites are based on the client-server
architecture and make use of the HyperText Transfer Protocol (HTTP) [ZTI].
HTTP is a communication protocol that allows web clients to interact with web
servers and exchange hypermedia infonation. For instance, an HTTP GET
request, the most frequently used web request type, allows aient to access a
web resource available on the server. While an HTTP PUT requeisuploads the
speci‘ed web resource on the server.

For scalability issues of e-commerce sites, the classicahple client-server ar-
chitecture where the server consists of a single entity wasended to a pipelined
system also known as the multi-tier archtecture [48]. In a multi-tier architec-
ture, the server is organized as a series of tiers. Such systemastwith requests
from web clients that "ow through a front-end web server and provider of static
content, then to a middle-tier enterprise server to execute he business logic
of the application and generate web pages on-the-"y, and “ndly to a back-end
database that stores non-ephemeral data. However, the comgxkity of multi-tier
architectures and their low rate for delivering dynamic web documents (often
one or two orders of magnitudes slower than static documenjsplace a signif-
icant burden on servers[[18]. To face high loads and provide pher service
scalability, a commonly used approach is to replicate servs (see Figure[®-b).

RR n 6575

10 Taton & Bouchenak & de Palma & Hagimont

Web clients Multi-tier replicated
e-commerce site

(a) E-commerce application [15] (b) Multi-tier replicated e-commerce
sites

Figure 5: E-commerce application and server organization

Replication-based clustering solutions are responsiblefaynamically balancing
the load among replicas, and managing replica consistency |51} [9,110]. Hewver,
determining the right amount of resources that are needed by each tier of a
multi-tier e-commerce service to handle its variable load $ a challenging task.
Dynamic resource provisioning makes all sense in the context of tlse complex
distributed systems.

INRIA

Self-Optimization of Internet Services 11

4 SELF-OPTIMIZATION OF INTERNET SER-
VICES

4.1 Architecture and Design principles

In the following, we describe the main architecture and degin principles of self-
optimization of Internet services. A self-optimization manager is responsible
of applying a given self-optimization policy on an Internet service. The self-
optimization policy described here is based on dynamic resoce provisioning,
i.e. on-line addition and removal of resairces to and from an Internet service. A
self-optimization manager is associated with each set of replicatedntities of an
Internet service. For instance in the Internet service desdbed in Figure 3 a self-
optimization manager will be associated with the set of replicated e-rail servers.
In the Internet service described in Figure[4, a self-optimkation manager will be
associated with each partition of the VaD service. And in the Internet service
described in Figure[®, a self-optimization manager will be asociated with each
tier of the multi-tier e-commerce web application. A self-optimization manager
is organized as follows. It observes the behavior of a set of replicadeentities and
triggers resource provisioning or un-provisioning accorohg to its observations.

A self-optimization manager applies a resource usage threshold-baseolicy
to a set of managed entities (e.g. repliated entities). When the resource usage
of the underlying set of replicated entities reaches a maximm threshold, that
means that the system is over-loaded and thus the self-optimizatio manager
provisions the set of managed entities with additional resarces. Symmetrically,
when the resource usage of the set of managed entities goes below a miam
threshold, that corresponds to an under-utilization of the system. In this case,
the self-optimization manager removes resources from the set of managjenti-
ties. A self-optimization manager is organized in three main parts: () system
observation, (ii) self-optimization policy, and (iii) system reorganization.

The “rst part is responsible of observing the behavior of the underlying
managed system in terms of resource consumption. Here, resme consumption
refers to hardware resources such as cpu, memory, disk or netwko System ob-
servation may have the form of an on-line resource monitoring systm that per-
forms real-time monitoring of the system, or it may have the form of predictions
of future resource usage of the system. The former is used to implemereactive
self-optimization, while the latter applies in case of proative self-optmization.
On-line resource monitoring consists in resource usage indicator$.¢. sensors).
Self-optimization is triggered when a sensor reports a value whit violates
some minimum or maximum thresholds. High-level sensors may aggregasnd
“Iter many lower-level sensors to provide meaningful resotce usage indica-
tions. Aggregation allows to consolidate grouped resource usage informan
(e.g. partition-wide resource usage as shown in Figuril 6-awhile “Itering tar-
gets monitoring data quality such as stability, responsiveness. Aggregation is
usually achieved through mathematical computations such a summing, aver-
aging, minimum “nding, etc; this depends on the nature of the information to
measure and to report. Filtering generdly targets the removal of meaningless
artifacts for stability purpose through smoothing over tim e (e.g. raw average or
EWMA), "ip-"op “Iters, etc. Filterin g e ects are illustrated in Figure Btb.

RR n 6575

12 Taton & Bouchenak & de Palma & Hagimont

Partition wide

r ' ' " CPU load without filtering
CPU load with filtering

=
o
s}

®
o

60

CPU load (%)

Aggregate

40

20

0O 100 200 300 400 500 600 700 800 900
Time (s)

(a) Aggregation and “Itering of sensors (b) Filtering of monitoring data

Figure 6: Aggregation and “ltering of sensors

Add
ressources
Remove
ressources

Maximum
threshold
exceeded?

Minimum
threshold
violated?

System
observation

Figure 7: Dynamic provisioning control-loop and policy design

The central part of the self-optimization manager is its policy. Its general
functioning is brie”y described in Figure [7] and Algorithm L[] Here, the self-
optimization policy is a control-loop that reacts to events received from the
system observation part. Each time an eent is noti“ed, it is analyzed to check
if the underlying managed system is over-loaded or under-ulized. If one of
the observed resources exceeds its mamum threshold, that means that the
managed system faces a bottleneck ant over-loaded. In this case the system
is provisioned with additional nodes. Symmetrically, if all observed resources
use less than their minimum threshold, that means that the owerall system is
under-utilized. Thus nodes are removed from the managed sysm. Addition
and removal of nodes is done through system reorganization operations, ¢h
third part of the self-optimization manager.

This latter part of the self-optimization manager provides operations that
actually perform the dynamic provisioning or un-provisioning of nodes to the
managed system. Such operations consist in assigning new free nodesthe
managed system, releasing nodes from the managed systemstalling on a new
node the software needed by the managed system when necessaron“guring
the software and starting the software.

More generally, Figure[8 depicts a general example of how debptimization
applies in an Internet service. An Internet service may be organized as parti-

INRIA

Self-Optimization of Internet Services 13

Algorithm 1 Algorithm for a dynamic provisioning policy

on Receive(event: MonitoringEvent):
if (event.consumption; > max_threshold;)
or (event.consumption, > max_threshold,)
or ...
or (event.consumption > max_threshold;) then
/I System is overloaded and need more resources
AddResourcesToSystem()
else if (event.consumption; < min_threshold;)
and (event.consumption, < min_threshold,)
and ...
and (event.consumption < min_threshold;) then
/I System is underloaded and wastes resources
RemoveResourcesFromSystem()
end if

Self-optimization

Self-optimization

3,8

Self-optimization
\; NG
B3 B.F
8.3
Tl
X

Self-optimization

Figure 8: Architecture of self-optimized Internet services

tioned and pipelined sub-systems, whez the partitioned and pipelined entities
may be sets of replicated entities §; to S; in Figure [B). In this context, a
self-optimization manager is associatedvith each set of replicated entities. It
is responsible of dynamically provisioning resources to tht set of replicated
entities. Moreover, the self-optimization managers of the Internet services co-
operate in order to provide a global consistent behavior (e.g. prevaing system
oscillations as discussed in section4.3).

In the following, we detail how the self-optimization manager tackles di erent
types of load variation, and how it prevents system oscillatons.

RR n 6575

14

Taton & Bouchenak & de Palma & Hagimont

. System available load

....... # of resources
.......... system
availability

Service degraded
or unavailable

Maximum system

Load

load

of resources
system
availability

Service degraded
or unavailable

sudden
load variation
speed

Load

reorganization

spidx

gradual
load variation
speed

Maximum system
reorganization
speed

Time (s)

(a) Gradual load variation

Time (s)

(b) Sudden load variation

Figure 9: Gradual load variation v.s. sudden load variation

4.2 Managing load variation

Load variations may happen following di erent schemes. A common sceario
consists in a gradual change of the load which will progresgely induce an under-
load or an overload in the system. Another common scenario often happens at
the occasion of big events and consists in sudden load varians also commonly
referred to as load spikes or "ash crowds.

Whether a load variation is considered as gradual or suddensirelated to
the relative di erence between the speed of load variation and the speed of
system reorganization. Gradual load variation corresponds to load variabn
that happens slower than the system reorganization speed (see Figel[@-a).
In this case, simple system reorganizations such as single resouraddition or
removal (i.e. at the granularity of one resource at a time) ake su cient to absorb
the load variation. On the contrary, sudden load variation happens when the
load variation is faster than the system reorganization speed (see Bure [9-
b). In this case, “ne-grain heuristics are required to detemine the optimal
capacity planning of the system, in oder to accelerate the process of system
reorganization towards an optimum state. In case of suddendad variation,
it is necessary to determine the amount of resources to (unprovision, before
actually performing the (un-)provisioning in a single step. In the following, we
present two mechanisms to address both types of load variations.

Gradual Load Variations. In a system undergoing gradual load variations,
the capacity planning of the system can be continuously adjsted through sys-
tem reorganizations as simple as adding or removing resouecunits one at a
time. Indeed, the gradual load variation assumption ensurs that the system
provisioning will be updated promptly enough to absorb and bllow the load
variation. We implemented a self-optimization manager abk to handle gradual
load variations. The manager relies on low-level resource usage sgsh observa-
tions (such as cpu, memory, disk or network) and, based on thee observations,
triggers single node addition or removal to the system. We egerimented and
evaluated this manager on a clustered Intenet service implementing a multi-tier
e-commerce web application that was submitted to gradual lad variation. The
Internet service was able to self-optimize its behavior acording to the changing
workload (see sectiorf5.2]1).

INRIA

Self-Optimization of Internet Services 15

Sudden Load Variations. In a system submitted to sudden load variations,
updates to the system capacity planning may require addition or removal of
multiple resources at a time, so as to absorb the load peaks.nlicase of sudden
load variation, it is preferable to factorize and parallelize system reorganiza-
tion operations, thus increasing the overall speed of system reorgaration. The
challenge here is to determine as accurately as possible homany nodes to
add or remove in one step. We implemergd a self-optimization manager that
copes with sudden load variations. It is based on low-level @source system
observations (cpu, memory, disk and network) as well as higher apptiation-
level observations (such as the number of concurrent transaions running in a
server). Application-level observations dlow the construction of heuristics func-
tions to determine the optimum capacity planning of the system. We identi“ed
a heuristics function that calculates the optimum capacity planning as being lin-
early proportional to concurrent transactions in the system. Then based on the
result of this function, multiple nodes are assigned or relased in parallel. We
implemented this self-optimization policy and applied it to a cluster of Internet
services that implements an e-commere web application. In the presence of
load spikes, the e-commerce web applicain was able to e ciently self-optimize

(see sectior 5.2]2).

4.3 System oscillation management

Another issue of self-optimization is that it may introduce system instabilities
during which sensors may report meaningless information. Tus, interpreting
these signals is likely to be irrelevant aml leads to erroneous decisions. Indeed,
dynamic resource provisioning of an Internet service may iduce multiple con-
current provisioning operations that are actually not necessary and would, as a
result, hurt the overall Internet service performance. For instance, in a multi-
tier Internet service composed of a frotrend web server and a database back-end
organized as a pipelined system, the dabase back-end might become a bot-
tleneck and induce an underload on the frontend web server (hich then waits
for responses from the back-end tier). In sch a situation, the self-optimization
could trigger provisioning operations, increasing the amount of resources on
the database back-end tier on one hand, while reclaiming unged resources on
the front-end tier. Obviously, the latter un-provisioning on the front-end tier
is a consequence of the dependency between the front-end websarand the
database back-end that leads to un-necessary operationsnd therefore to sys-
tem oscillations. To prevent system oscillations, we intraluce a technique that
(i) “rst automatically calculates inter-dependencies between sub-parts of the
system, and then (ii) automatically prevents system oscilation occurrence.

The system oscillation management relies on a description fothe system
that allows the manager to determine dependencies betweenapts of the sys-
tem. More precisely, the manager is gien a representation of the system in
terms of pipelined and partitioned sub-systems (see Figuré]). Thanks to this
knowledge, the manager infers a dependency function de“neds follows: (i) a
sub-systemS; depends on a sub-systen$; if S; and S; are parts of a pipelined
system, and (ii) a sub-systemS; always depends on itself. Indeed, a pipeline
materializes the dependency between subystems, while a partition materializes
their independency.

RR n 6575

16 Taton & Bouchenak & de Palma & Hagimont

Notice that in pipelined sub-systems, the workload of one of the sutsystems
may have a side-e ect on another sub-system in pipeline. T8 is due to the
fact that client request processing may "ow through all or part of the pipelined
sub-systems. While in case of partitioned sub-systems, the workkd of the
di erent sub-systems are independent from each other; eaclpartition being re-
sponsible of processing requests independently from the loér partitions. Thus,
based on the inter-dependency function and the knowledge dhe system archi-
tecture, the self-optimization manager is able to automatically identify inter-
dependent parts of the Internet service. To prevent oscilléions from occurring,
the self-optimization manager ensures that during a self-optimizaion operation
on a part of the system, self-optimization is inhibited on ary inter-dependent
part (during a given delay). Once the inhibition delay has expired, new self-
optimization operations are allowed for execution again.

We implemented the system oscillation management for a selbptimized e-
commerce web application hosted by a twdier Internet service where each tier
of the Internet service was replicated and dynamically provsioned. The two
tiers of the Internet service were identi“ed as a pipelined sgtem. Thus, all
system reorganization happening on the “rst or the second tier of the gstem
triggered an inhibition that blocked any new reorganization on the “rst and the
second tier (seesection[5.2).

4.4 Discussion

The proposed self-optimization approach based on resource usage obsereais
and on simple system reorganization is attractive thanks toits simplicity. Its
basic design confers the self-optimization approach a generic behav, thus al-
lowing its appliance to many dierent | nternet services with minimal e ort.
Indeed, since self-optimization is based on low-level resoce monitoring, it
can apply to dierent Internet services. Of course, the genericity is reduced
when self-optimization makes use of application-level hetstics, like it was the
case for tackling sudden load variations (such observatiosm being application-
dependent).

However, a major open issue of this work concerns tuning and edguring the
self-optimization manager itself. Indeed, con“guration parametersmay have the
form of min and max thresholds used to guide dynamic resourc@rovisioning,
inhibition delays used to prevent system oscillation. The ©n“guration of these
parameters must be carried carefully sine it conditions the e ciency of the self-
optimization manager. In our experiments, we manually tuned these prameters
of the self-optimization manager, based on an observation of the beléor of the
underlying Internet service. The proposed self-optimizaion manager takes in
charge dynamic optimization and resource provisioning in a Internet service;
However, techniques that would assist, and possibly automa, the con“guration
of the parameters of the self-optimization manager would make the usage stlf-
optimization easier.

INRIA

Self-Optimization of Internet Services 17

Self-optimization Self-optimization

HTTP Load
balancer |

Clustered application server

Clustered database

Figure 10: Experimental dynamic J2EE infrastructure

5 EXPERIMENTAL EVALUATION

5.1 Experimental environment

Hardware environment Experimentations have been conducted on a cluster of
x86-compatible machines with bi-1.85Hz Xeon CPUs and 1GB RAM, connected
via a 100Mb/s Ethernet LAN.

Software environment The cluster nodes have been installed with Linux
2.4 kernels and with the following J2EE middleware: Apache HTTPD 1.3.9
as the web server[[50], Jakarta Tomcat 3.3.2 as the enterprise senvg5Z],
MySQL 4.0.17 as the database servef [34], PLB 0.3 as the web senclustering
solution [37], Tomcat clustering as the emerprise server clustering solution [52]
and c-jdbc 2.0.2 as the database server clustering systerin J10].

Application. The evaluation has been realized with the Rubis multi-tier
J2EE application benchmark which implements an auction sie [2]. Rubis de-
“nes several web interactions (e.g registering new users, brows, buying or
selling items); and it provides a benchmarking tool that emdates web client
behaviors and generates a tunable workload. Rubis comes wittwo mixes: a
browsing mix in which clients execute 100% read-only requests and bidding
mix composed of 85% read-only interactions. This benchmarking tool gath
ers statistics about the application. Rubis was deployed asa cluster-based
replicated multi-tier system, consisting of a cluster of replicated web/enterprise
servers as a front-end, and a cluster of replicated databasgervers as a backend.
The cluster hosting this instance of Rubis has been enhanceso as to provide
dynamic provisioning abilities (see “gure[10). Indeed the &perimental cluster
allowed us to dynamically adapt the resource provisioning 6the web/enterprise
servers and the resource provisioning of the replicated dathase, while provid-
ing meaningful resource usage sensors. We used the Rubis .2.4ersion of the
multi-tier J2EE application running the middleware platfo rm described above.

5.2 Experimental results

We present here the main results obtained fter experimenting various scenarios
on the environment described previously.

Protocol. The purpose of the following experimental evaluation is to &mon-
strate the correctness and the e ectivenes of the proposed dynamic provisioning
technique. To achieve this all conducted experiments inclde a comparison of
the dynamic provisioning algorithm behavior with the standard static provision-

RR n 6575

18 Taton & Bouchenak & de Palma & Hagimont

600

Workload # of emulated clients)‘

500 |
400

300

of clients

200

100

0 500 1000 1500 2000 2500 3000
Time (s)

Figure 11: Generated workload to simulate gradual variations

ing practice. The referencestatically provisioned infrastructure corresponds to
the J2EE infrastructure presented in “gure [[J with a single Tomcat server and
a single MySQL server.

5.2.1 Handling gradual load variations

We present here an experiment demonséting the dynamic provisioning for
gradual load variations. Therefore we expose the Rubis web applican hosted
on the cluster described previously to a workload with gradual varidions in-
tending to demonstrate the ability of our dynamic provisioning mechanism to
adapt and follow the changing workload appropriately.

The workload (see “gure[11) starts lightly by simulating 80 clients and slowly
increases up to 500 clients by steps of 20 new clients every mite. After this
the workload symmetrically decreases from 500 clients dowio 80 clients. This
dynamic workload corresponds to the scenario of a normal service dayhere the
number of clients increases in the morning up to a maximum in he afternoon
and then decreases in the evening.

Figure [I2-a (resp. “gure[I2-b) present the aggregated resource us@ef
the database servers (resp. the application servers) hostg Rubis during the
experiment. Both the behavior of the statically provisioned and the dynami-
cally prosioned systems are representedn these “gures. Moreover the “gures
display the minimum and maximum thresholds driving the dynamic provision-
ing control-loops. Finally the “gures also present the curent number of nodes
provisioned for the speci“c part of the system they represeh

When con“guring the hosting cluster to be statically provisioned for Rubis,
we observe that the service gets quickly overloaded with its aggregatl resource
being saturated. In comparison when enabling dynamic prowsioning on the
hosting cluster, the violation of the maximum threshold by the monitored re-
source usage triggers the increase of the current provisiamg of the system part

by one node. This induces a decrease of the aggregated resource usage that

1In the present experiments, the CPU was the unique bottlenec k resource. For simplicity
and space constraints, we only present CPU usage.

INRIA

CPU usage (%)

Self-Optimization of Internet Services 19

1 " . . 1 ; ; ; T
L CPU, self-optimized case CPU, self-optimized case
H # of database backends # of enterprise servers ----- -
CPU, non optimized cése - CPU, non optimized case - .
08 r Max threshald 0.8 Max threshold
-------------------- Minthreshold ------ 1 3 Min thegghold ------
H 1 £3VY
4 LIS i 1
06 [i 2 £ o6 P
{ i g 3% IS
I 3 28 g
H H 2 > : ¥ by
0.4 4 5 2 04p ; i
i L] ; i
: 1 ot
0.2 i 02 % T Y
_
0 ra L L L L L 0 L L L L L
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Time (s) Time (s)

(a) Database behaviour in response

(b) Application server behaviour in
to gradual load variations response to gradual load variations

Figure 12: Behavior of Rubis entities in response to gradual load vadtions

allows the service to keep functioning while the staticallyprovisioned system is
thrashing.

The dynamic provisioning mechanism is triggered three tims during the
workload increase: the two “rst activations of the dynamic provisioning lead to
two additions of one node to the clustered database, thus sking the bottleneck
on the application server which then also takes advantage of one nodeddition.

Symmetrically as the load decreases, the aggregated resource usage drops an

eventually violates the minimum threshold. The threshold violation leads to
resource unprovisioning as expected.

5.2.2 Handling load spikes

This section details an experimentatian which aims at demonstrating the e ec-
tiveness of our dynamic provisioning algorithm in case of sdden load variation.
To this end Rubis is then exposed to a load spike that widely exceesithe current
capacity of the system.

As shown in “gure [I3 the workload starts moderately by simulating 100
clients. After three minutes (at time 180s) the workload instantaneously jumps
to 500 clients, thus generating a load spike which cannot be dndled correctly
by the current system con“guration. Figure [[3 presents the esulting behaviour
of the system in response to the generated load spike, both in case d&asc and
dynamic provisioning. The behaviour is here depicted throgh the response
times to requests as perceived by cliem. More precisely a dot on this “gure
represents one client request which has been submitted at #htime the dot is
located at (its x-axis), and which took as many seconds to beerved as its y-axis
location.

The initial moderate workload directed to the system is sats“ed before the
load spike, which translates to low request latencies. Just after the load spike
happens the request response times jump very quickly. Thisaveals a thrashing
of the underlying system which is actually unable to serve rquests decently any-
more. When the system is statically provisioned the thrashing is very strong so
that many requests submitted after the spike are given a respnse after the end

RR n 6575

of servers

	INTRODUCTION

