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1 INTR ODUCTION

1.1 Context and challenges

A large variety of Internet services exists, ranging from web servers to email
servers, streaming media services, enterprise servers, and database systems.
These services are usually based on the client-server architecture, where a server
provides some online service (such as reading web pages, sending emails or buy-
ing the content of a shopping cart), and clients concurrently access that service.
Internet services may face a large amount of load in terms of number of clients
that concurrently request the service at the same time. To tackle this load,
classical techniques such as replication and partitioningare applied to allow the
service to scale with its load [39]. For example, in a replicated service, the load
is balanced among several replicas of the same service, allowing the service to
globally process more client requests than with a single-instance service. In such
systems, the amount of resources (i.e. computers) needed by an Internet service
depends on the current load the serviceneeds to process. Ideally an Internet
service should be assigned the necessaryand su�cient amount of resources to
handle its current load. The necessary amount of resources would allow the
Internet service to absorb the load whileguaranteeing acceptable performance
and Service Level Agreement (SLA) requirements to end-users. On the other
hand, restricting Internet service resources to the minimal and su�cient amount
allows a saving of resources, and thus reduces powering and cooling costs of the
Internet service. The former objective is usually presented as the end-user•s
point of view, while the latter objective is seen as the system administrator•s
point of view. Combining these two antagonist criteria in order to plan the
ideal capacity of an Internet service is challenging. This trade-o� is particularly
important in the context of physical pla tforms consisting of a set of resources
(e.g. clusters or grids) that are sharedby several Internet services such as in
case of ASPs (Application Service Providers).

Moreover since the load of an Internet service may vary over time,a challeng-
ing task for an Internet service administrator is to well provision the service with
the good (i.e. necessary and su�cient) amount of resources. A “rst approach,
the pessimistic approach, assigns to the service a “xed amount of resources which
corresponds to the resources needed by the service in its worst case (i.e. in its
highest load scenario). This approach clearly results in resource wasting, be-
cause most of the time, the service is provisioned with much moreresources
than its instantaneous needs. Another approach is based on resource overbook-
ing and may result in situations where the Internet service does not have its
necessary amount of resources [59]. Thus, dynamic resource provisioning is an
appealing approach to face load variations in Internet services. However it raises
several open issues among which dynamic load variation, system oscillations and
genericity that we detail in the following.

Load variation. The workload of an Internet service usually varies over time
from a light workload to a heavier workload and vice versa. Roughly speaking,
in contrast to a light workload, a heavy workload involves a large amount of
concurrent client requests and/or requests that require long processing times.
This workload variation in an Internet s ervice re”ects di�erent client usages
at di�erent times. For instance, an e-mail service is likely to face a heavier
workload in the morning than in the rest of the day, since people usually consult
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Self-Optimization of Internet Services 3

their e-mails when arriving at work. Moreover the load of an Internet service
may vary at di�erent speeds, in the sense that it may vary gradually or it
may have the form of load spikes that occur suddenly. While inthe former
case the dynamic addition and removal of a single resource at a time may be
su�cient to absorb load variations, in the latter case a chal lenging issue is
to determine the amount of resources to be (un-)provisionedbefore actually
performing the (un-)provisioning in a single step. Thus, a challenging issue in
Internet service resource provisioning is to e�ciently tackle both situations of
gradual load variations and load peaks.

System oscillations. If not addressed carefully, dynamic resource provision-
ing of an Internet service may induce multiple concurrent provisioning opera-
tions that are actually not necessary, but only triggered because the system is
in a temporarily instable state. This would, for instance, result in “rst adding
more resources than strictly necessary, and then later on removing the unnec-
essary resources. As a result these oscillations would hurtthe overall Internet
service performance. This problem is made harder by the fact that two concur-
rent provisioning operations do not always act on the same parts of anInternet
service but may apply to di�erent parts of the same Internet service. For in-
stance, in a three-tier e-commerce Internet service consisting of a front-end tier
of replicated web servers, a middle tier of replicated application servers, and a
back-end tier of replicated database servers; the back-end tier may become the
bottleneck which results in an under-load of the front-end tier (which simply
waits for responses from the back-end tier). In such a situation, a provisioning
operation may be triggered on the set of replicas of the back-end tier(because of
its over-load) while an un-provisioning operation may be triggered on the set of
replicas of the front-end tier. Obviously, the latter un-pr ovisioning operation on
the front-end tier is not necessary, and is only triggered because the back-end
tier of the Internet service is in an instable state. Thus, one of the issues of
Internet service resource provisioning is to prevent system oscillations due to
unnecessary (un-)provisioning operations.

Genericity. Dynamic resource provisioning solutions may be tied to a par-
ticular Internet service (such as a database server [46]). This is the case when
the underlying provisioning mechanism is speci“c to a particular service and
implemented as part of that service. Such an approach makes the provisioning
system hard to be directly applied to other Internet services (e.g. web servers or
streaming media servers). Thus, generic resource provisioningis an appealing
approach to handle the broad diversity of Internet services. However a generic
approach to resource provisioning needs to be careful about providing a too
general solution that does “nally not apply to any speci“c and realistic Internet
service. Thus an important question to address here is the following: is a generic
approach to resource provisioning able to capture the speci“cities of individual
Internet services in an e�cient way?

1.2 Research contributions

This paper describes our experience in designing, implementing and evaluating
self-optimizing Internet services through dynamic resource provisioning. The
proposed self-optimization solution aims at allocating at least the necessary
amount of resources in order for end-users to obtain good performance, and
at most the su�cient amount of resources to reduce the operating costs of the
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4 Taton & Bouchenak & de Palma & Hagimont

system. Thus, to plan the capacity of an Internet service, both criteria (provide
the minimal and maximal resource amount) need to be met. We translate these
criteria to an objective function based on minimum and maximum thresholds.
This function aims at keeping the Internet service between acceptable minimum
and maximum resource usage that respectively represent thelimits under which
the system is sub-optimal and over which the system is over-loaded. The design
principles of the proposed dynamic resource provisioning solution are precisely
motivated by the above-mentioned issues, that are addressed as follows.

Load variation. In order to face dynamic variation of the load of an Inter-
net service, we propose a self-optimization system that continuously monitors
the Internet service resource usage, recalculates its capacity planning and per-
forms dynamic resource (un-)provisioning accordingly. Moreover, in order to
tackle both situations of gradual load variations and load spikes, we enriched
the capacity planning policy with heuristics that allow to d etermine the amount
of resources that need to be (un-)provisioned according to the Internet service
load.

System oscillations. Internet services are usuallybuilt as distributed systems
that consist of several parts. In this context, load variations and system insta-
bilities in some parts of the Internet service may have temporary side-e�ects
on other parts of the system. Thus, dynamic resource provisioning on di�erent
parts of an Internet service should be conducted carefully to prevent system
oscillations. For that purpose, we follow an architecture-based approach for
self-optimizing Internet services. More precisely, the di�erent parts composing
a distributed Internet service are materialized in a view of the system, and the
direct and indirect communication and cooperation dependencies between these
parts are exhibited. Then, based on this knowledge of the system architecture
and in order to prevent system oscillations, concurrent dynamic resource pro-
visioning operations are inhibited if they occur on inter-dependent parts of the
same Internet service. For instance, in case of a multi-tier e-commerce Internet
service, the front-end tier and the back-end tier are automatically identi“ed as
inter-dependent, and thus concurrent provisioning operations on these two parts
are automatically inhibited to prevent system oscillations.

Genericity. As discussed earlier, the resource provisioning policy that un-
derlies the proposed self-optimization system is built upon an objective function
that is based on minimum and maximum thresholds for resource usage. Are-
source, as a computer, can be seen as a coarse-grain resource which consists in
several “ner-grain hardware resources such as CPU, memory, disk or network
bandwidth. The proposed resource provisioning policy makes use of this view of
“ner-grain hardware resources to determine if a coarse grain resource is under-
utilized or over-loaded in order to (un-)provision resources. Thus, the proposed
policy is based on general hardware resource usage which makes it genericand
applicable to any Internet service.

Finally, we implemented a self-optimization autonomic manager as ady-
namic resource provisioning system that follows the designprinciples intro-
duced earlier ; we integrated this self-optimization manager to the Jade au-
tonomic management framework [8]. This helps building self-optimizing Inter-
net services. In this paper, we illustrate the feasibility of the proposed policy
and describe its appliance in di�erent use cases ranging from e-mail servers to
streaming services and e-commerce websystems. Furthermore, we experimen-
tally evaluated the self-optimization system in a realistic e-commerce multi-tier
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web application running in a Linux cluster of computers. The results of the ex-
perimental evaluation show the usefulness of self-optimization in terms of end-
user•s perceived performance and system•s operational costs with a negligible
overhead.

1.3 Paper roadmap

The remainder of the paper is organized as follows. Section 2describes the con-
sidered system model. Section 3 illustrates the appliance of dynamic resource
provisioning to di�erent Internet services. Section 4 describes the design prin-
ciples and implementation details of the proposed self-optimization autonomic
manager through dynamic resource provisioning, and section 5 presents the re-
sults of its experimental evaluation. Finally, the related work is discussed in
section 6, and section 7draws our conclusions.
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6 Taton & Bouchenak & de Palma & Hagimont

2 SYSTEM MODEL

The term resource is used throughout this paper to designate a node, i.e. a com-
puter, a machine. We considera collection of resourcesinterconnected through
a local area network. The resources are homogeneous in the sense that they
have the same physical architecture and operating system, as it is typically the
case in clusters of computers. A distributed application isa software computing
system that runs on a set of resources. An application may dynamically acquire
or release resources from a global set ofresources (i.e. a cluster): a resource is
either free or exclusively used by an application. In other words two applications
do not share the same resource at the same time. We consider, in particular,
the case of client-server Internet applications where concurrent clients connect
to a server which provides them with someonline service, e.g.streaming videos
in a video-on-demand service, reading e-mails in an e-mail service, etc.

Moreover, the application may be seen as a monolithic entityor as a set of
several entities. For instance, an e-mail service may be seen as a monolithic
entity represented by the e-mail server. While a three-tier e-commerce appli-
cation may be seen as a collection of threeentities: the web server entity, the
application server entity and the database server entity. Here, an application
entity is any part of the distributed application that can be hosted by a distinct
resource.

Furthermore, the architecture of a distributed applicatio n, i.e. the way its en-
tities are organized may have di�erent forms. We distinguish between pipelined
systems and partitioned systems. In a pipelined system, the entities composing
the system are organized in series (see Figure 1-a) and each entity may take part
to the building of the response to the client. For instance, in a multi-tier web ap-
plication consisting of three entities (the database server, theapplication server
and the web server), the three entities cooperate in order toproduce the overall
web client response: the database server performs queries on the database, the
enterprise server uses these results to compute the web application logic whose
results are then used by the web server in order to be formatted inHTML pages.
On the contrary, in a partitioned system, the entities composing the system are
organized in parallel (see Figure 1-b) and do not interact with each other for
client requests processing. For instance, in case of an application which consists
of N di�erent entities (i.e. servers), each one being responsible of processing re-
quests of a particular classCi (1 � i � N ), client requests are spread among the
di�erent entities depending on their classes, and each client request is processed
by a unique entity. Internet services may be a combination of several pipelined
and partitioned systems.

Finally for scalability purposes, in order to process more client requests, ap-
plication entities may be replicated on several resource instances (see Figure 2).
This is coupled with a load balancer which distributes the load among replicas.
Di�erent load balancing algorithms may be used (see [37, 16, 10]).In the fol-
lowing we consider a load balancer thatequally balances the load (in terms of
resource consumption) between the replicas.
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(a) Pipelined systems (b) Partitioned systems

Figure 1: Application organization … pipelined versus partitioned systems

(a) Pipelined systems with replication (b) Partitioned systems with
replication

Figure 2: Application organization with replication

3 USE CASES

3.1 E-mail server

An e-mail service is an online service that is used for sending andreceiving
digital posts via the Internet. An e-mail server follows the classical client-server
architecture where clients send requests to the server, which processes them be-
fore sending back a response. Figure 3-a illustrates an e-mail client interface,
that allows a client to access its e-mails. The Simple Mail Transfer Protocol
(SMTP) usually underlies the sending of e-mails to an e-mailserver [22]. While
the Internet Message Access Protocol (IMAP) or the Post O�ce Protocol Ves-
rion 3 (POP3) are used to retrieve e-mails from an e-mail server [23, 19]. For
instance, when a client wants to send an e-mail, it uses several SMTP commands
such as theRCPT command that allows the client to specify the recipient of
the e-mail to send, and theDATA command that sends the e-mail content to
the server. When a client wants to read its e-mails, it may use IMAP or POP3
commands such as theLIST command that asks the server to list the received
e-mails, and the POP3RETR command that asks the server to retrieve a given
e-mail.

RR n � 6575



8 Taton & Bouchenak & de Palma & Hagimont

Sendmail, Microsoft Exchange Server, Post“x and Qmail are examples of
e-mail servers [42, 49, 60, 4]. Instances of e-mail client softwareare Microsoft
Outlook and Mozilla Thunderbird [28, 33]. Some e-mail services provide the
users a web interface to access theire-mails, such as Gmail, Yahoo and Hot-
mail [17, 65, 29].

(a) E-mail application (b) Replicated e-mail servers

Figure 3: E-mail application and replicated servers

For scalability purposes, an e-mail server may be replicated as a set of mul-
tiple entities with appropriate consistency management policies [5, 41, 62]. Fig-
ure 3-b illustrates the architecture of a replicated e-mailservice, in which client
requests are spread amongthe di�erent replicas of the service. In this context,
and since the e-mail service may be more or less stressed over time depend-
ing on the varying client workload, dynamic resource provisioning would allow
the system to provide good performance to end-users while requiring minimum
resources.

3.2 Video-on-demand service

A video-on-demand (VoD) service allowsusers to interactively select and watch
video data over the network. This provides users with streaming multimedia
capabilities and, for instance, the ability to start, stop or rewind the streamed
video. A video-on-demand system follows the classical client-server architecture
where clients send requests to the server, which processes them before sending
back a response. The Real Time Streaming Protocol (RTSP) usually underlies
streaming media systems [20]. It controls on-demand delivery of real-time data
such as audio and video. For instance, clients may sendRTSP PLAY requests
to play the accessed media stream orRTSP PAUSE requests to temporarilly
interrupt the media stream.

Apple QuickTime Streaming Server, Microsoft Windows Media Services and
Alcatel/Lucent•s pvServer Streaming module are examples of RTSP-based VoD
server software [25, 27, 30]. Apple•s QuickTime, RealPlayer andVLC media
player are examples of VoD client software [24, 61, 40]. Instancesof streaming
media services are YouTube and Dailymotion [66, 13] (see Figure 4-a).

In this context, partitioning and replic ation are classical techniques used to
build scalable VoD services [26, 11, 14, 68] (see Figure 4-b). Here, partitioning
may be mapped to categories of videos provided by the VoD server. Client
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(a) Video streaming application [66] (b) Partitioning and replication in VoD
servers

Figure 4: Video streaming application and VoD servers organization

requests are directed to the appropriate VoD service partition depending on the
category of the video requested by the client. Client requests are then balanced
between the di�erent replicas of the served video for scalability purposes. Here,
dynamic resource provisioning would allow to tackle the varying workload by
dynamically allocating th e necessary and su�cient resources to the VoD service.

3.3 E-commerce web server

A plenty of e-commerce web servers exists, such as online shopping sites (e.g. the
Amazon.com shopping site [1], the Ebay.com auction site depicted in Figure 5-
a [15]), online banking services (e.g. PayPal [36], Moneybookers [32]) and online
booking sites (e.g. the Booking.com hotel booking site [7],the Momondo.com
plane ticket reservation site [31]). More generally, an e-commerce web server
provides users with several features, such as the ability toconsult the pro-
vided products and services, the ability to perform online transactions to buy
a product or a service, etc. E-commerce sites are based on the client-server
architecture and make use of the HyperText Transfer Protocol (HTTP) [21].
HTTP is a communication protocol that allows web clients to interact w ith web
servers and exchange hypermedia information. For instance, an HTTP GET
request, the most frequently used web request type, allows a client to access a
web resource available on the server. While an HTTP PUT request uploads the
speci“ed web resource on the server.

For scalability issues of e-commerce sites, the classical simple client-server ar-
chitecture where the server consists of a single entity was extended to a pipelined
system also known as the multi-tier architecture [48]. In a multi-tier architec-
ture, the server is organized as a series of tiers. Such systems start with requests
from web clients that ”ow through a front-end web server and provider of static
content, then to a middle-tier enterprise server to execute the business logic
of the application and generate web pages on-the-”y, and “nally to a back-end
database that stores non-ephemeral data. However, the complexity of multi-tier
architectures and their low rate for delivering dynamic web documents (often
one or two orders of magnitudes slower than static documents) place a signif-
icant burden on servers [18]. To face high loads and provide higher service
scalability, a commonly used approach is to replicate servers (see Figure 5-b).
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10 Taton & Bouchenak & de Palma & Hagimont

(a) E-commerce application [15] (b) Multi-tier replicated e-commerce
sites

Figure 5: E-commerce application and server organization

Replication-based clustering solutions are responsible of dynamically balancing
the load among replicas, and managing replica consistency [51, 9, 10]. However,
determining the right amount of resources that are needed by each tier of a
multi-tier e-commerce service to handle its variable load is a challenging task.
Dynamic resource provisioning makes all sense in the context of these complex
distributed systems.

INRIA



Self-Optimization of Internet Services 11

4 SELF-OPTIMIZATION OF INTERNET SER-
VICES

4.1 Architecture and Design principles

In the following, we describe the main architecture and design principles of self-
optimization of Internet services. A self-optimization manager is responsible
of applying a given self-optimization policy on an Internet service. The self-
optimization policy described here is based on dynamic resource provisioning,
i.e. on-line addition and removal of resources to and from an Internet service. A
self-optimization manager is associated with each set of replicatedentities of an
Internet service. For instance in the Internet service described in Figure 3 a self-
optimization manager will be associated with the set of replicated e-mail servers.
In the Internet service described in Figure 4, a self-optimization manager will be
associated with each partition of the VoD service. And in the Internet service
described in Figure 5, a self-optimization manager will be associated with each
tier of the multi-tier e-commerce web application. A self-optimization manager
is organized as follows. It observes the behavior of a set of replicated entities and
triggers resource provisioning or un-provisioning according to its observations.

A self-optimization manager applies a resource usage threshold-based policy
to a set of managed entities (e.g. replicated entities). When the resource usage
of the underlying set of replicated entities reaches a maximum threshold, that
means that the system is over-loaded and thus the self-optimization manager
provisions the set of managed entities with additional resources. Symmetrically,
when the resource usage of the set of managed entities goes below a minimum
threshold, that corresponds to an under-utilization of the system. In this case,
the self-optimization manager removes resources from the set of managed enti-
ties. A self-optimization manager is organized in three main parts: (i) system
observation, (ii) self-optimization policy, and (iii) sys tem reorganization.

The “rst part is responsible of observing the behavior of the underlying
managed system in terms of resource consumption. Here, resource consumption
refers to hardware resources such as cpu, memory, disk or network. System ob-
servation may have the form of an on-line resource monitoring system that per-
forms real-time monitoring of the system, or it may have the form of predictions
of future resource usage of the system. The former is used to implement reactive
self-optimization, while the latter applies in case of proactive self-optmization.
On-line resource monitoring consists in resource usage indicators (i.e. sensors).
Self-optimization is triggered when a sensor reports a value which violates
some minimum or maximum thresholds. High-level sensors may aggregateand
“lter many lower-level sensors to provide meaningful resource usage indica-
tions. Aggregation allows to consolidate grouped resource usage information
(e.g. partition-wide resource usage as shown in Figure 6-a), while “ltering tar-
gets monitoring data quality such as stability, responsiveness. Aggregation is
usually achieved through mathematical computations such as summing, aver-
aging, minimum “nding, etc; this depends on the nature of the information to
measure and to report. Filtering generally targets the removal of meaningless
artifacts for stability purpose through smoothing over tim e (e.g. raw average or
EWMA), ”ip-”op “lters, etc. Filterin g e�ects are illustrated in Figure 6-b.
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(a) Aggregation and “ltering of sensors
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Figure 6: Aggregation and “ltering of sensors

Figure 7: Dynamic provisioning control-loop and policy design

The central part of the self-optimization manager is its policy. Its general
functioning is brie”y described in Figure 7 and Algorithm 1. Here, the self-
optimization policy is a control-loop that reacts to events received from the
system observation part. Each time an event is noti“ed, it is analyzed to check
if the underlying managed system is over-loaded or under-utilized. If one of
the observed resources exceeds its maximum threshold, that means that the
managed system faces a bottleneck andis over-loaded. In this case the system
is provisioned with additional nodes. Symmetrically, if all observed resources
use less than their minimum threshold, that means that the overall system is
under-utilized. Thus nodes are removed from the managed system. Addition
and removal of nodes is done through system reorganization operations, the
third part of the self-optimization manager.

This latter part of the self-optimization manager provides operations that
actually perform the dynamic provisioning or un-provisioning of nodes to the
managed system. Such operations consist in assigning new free nodesto the
managed system, releasing nodes from the managed system, installing on a new
node the software needed by the managed system when necessary, con“guring
the software and starting the software.

More generally, Figure 8 depicts a general example of how self-optimization
applies in an Internet service. An Internet service may be organized as parti-
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Algorithm 1 Algorithm for a dynamic provisioning policy
on Receive(event: MonitoringEvent):
if (event.consumption1 > max threshold1)

or (event.consumption2 > max threshold2)
or . . .
or (event.consumptionr > max thresholdr ) then

// System is overloaded and need more resources
AddResourcesToSystem()

else if (event.consumption1 < min threshold1)
and (event.consumption2 < min threshold2)
and . . .
and (event.consumptionr < min thresholdr ) then

// System is underloaded and wastes resources
RemoveResourcesFromSystem()

end if

Figure 8: Architecture of self-optimized Internet services

tioned and pipelined sub-systems, where the partitioned and pipelined entities
may be sets of replicated entities (S1 to S7 in Figure 8). In this context, a
self-optimization manager is associatedwith each set of replicated entities. It
is responsible of dynamically provisioning resources to that set of replicated
entities. Moreover, the self-optimization managers of the Internet services co-
operate in order to provide a global consistent behavior (e.g. preventing system
oscillations as discussed in section 4.3).

In the following, we detail how the self-optimization manager tackles di�erent
types of load variation, and how it prevents system oscillations.
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(a) Gradual load variation (b) Sudden load variation

Figure 9: Gradual load variation v.s. sudden load variation

4.2 Managing load variation

Load variations may happen following di�erent schemes. A common scenario
consists in a gradual change of the load which will progressively induce an under-
load or an overload in the system. Another common scenario often happens at
the occasion of big events and consists in sudden load variations also commonly
referred to as load spikes or ”ash crowds.

Whether a load variation is considered as gradual or sudden is related to
the relative di�erence between the speed of load variation and the speed of
system reorganization. Gradual load variation corresponds to load variation
that happens slower than the system reorganization speed (see Figure 9-a).
In this case, simple system reorganizations such as single resourceaddition or
removal (i.e. at the granularity of one resource at a time) are su�cient to absorb
the load variation. On the contrary, sudden load variation happens when the
load variation is faster than the system reorganization speed (see Figure 9-
b). In this case, “ne-grain heuristics are required to determine the optimal
capacity planning of the system, in order to accelerate the process of system
reorganization towards an optimum state. In case of sudden load variation,
it is necessary to determine the amount of resources to (un-)provision, before
actually performing the (un-)provisioning in a single step. In the following, we
present two mechanisms to address both types of load variations.

Gradual Load Variations. In a system undergoing gradual load variations,
the capacity planning of the system can be continuously adjusted through sys-
tem reorganizations as simple as adding or removing resource units one at a
time. Indeed, the gradual load variation assumption ensures that the system
provisioning will be updated promptly enough to absorb and follow the load
variation. We implemented a self-optimization manager able to handle gradual
load variations. The manager relies on low-level resource usage system observa-
tions (such as cpu, memory, disk or network) and, based on these observations,
triggers single node addition or removal to the system. We experimented and
evaluated this manager on a clustered Internet service implementing a multi-tier
e-commerce web application that was submitted to gradual load variation. The
Internet service was able to self-optimize its behavior according to the changing
workload (see section 5.2.1).
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Sudden Load Variations. In a system submitted to sudden load variations,
updates to the system capacity planning may require addition or removal of
multiple resources at a time, so as to absorb the load peaks. In case of sudden
load variation, it is preferable to factorize and parallelize system reorganiza-
tion operations, thus increasing the overall speed of system reorganization. The
challenge here is to determine as accurately as possible howmany nodes to
add or remove in one step. We implemented a self-optimization manager that
copes with sudden load variations. It is based on low-level resource system
observations (cpu, memory, disk and network) as well as higher application-
level observations (such as the number of concurrent transactions running in a
server). Application-level observations allow the construction of heuristics func-
tions to determine the optimum capacity planning of the system. We identi“ed
a heuristics function that calculates the optimum capacity planning as being lin-
early proportional to concurrent transactions in the system. Then based on the
result of this function, multiple nodes are assigned or released in parallel. We
implemented this self-optimization policy and applied it to a cluster of Internet
services that implements an e-commerce web application. In the presence of
load spikes, the e-commerce web application was able to e�ciently self-optimize
(see section 5.2.2).

4.3 System oscillation management

Another issue of self-optimization is that it may introduce system instabilities
during which sensors may report meaningless information. Thus, interpreting
these signals is likely to be irrelevant and leads to erroneous decisions. Indeed,
dynamic resource provisioning of an Internet service may induce multiple con-
current provisioning operations that are actually not necessary and would, as a
result, hurt the overall Internet service performance. For instance, in a multi-
tier Internet service composed of a front-end web server and a database back-end
organized as a pipelined system, the database back-end might become a bot-
tleneck and induce an underload on the frontend web server (which then waits
for responses from the back-end tier). In such a situation, the self-optimization
could trigger provisioning operations, increasing the amount of resources on
the database back-end tier on one hand, while reclaiming unused resources on
the front-end tier. Obviously, the latter un-provisioning on the front-end tier
is a consequence of the dependency between the front-end web server and the
database back-end that leads to un-necessary operations, and therefore to sys-
tem oscillations. To prevent system oscillations, we introduce a technique that
(i) “rst automatically calculates inter-dependencies between sub-parts of the
system, and then (ii) automatically prevents system oscillation occurrence.

The system oscillation management relies on a description of the system
that allows the manager to determine dependencies between parts of the sys-
tem. More precisely, the manager is given a representation of the system in
terms of pipelined and partitioned sub-systems (see Figure1). Thanks to this
knowledge, the manager infers a dependency function de“nedas follows: (i) a
sub-systemSi depends on a sub-systemSj if Si and Sj are parts of a pipelined
system, and (ii) a sub-systemSi always depends on itself. Indeed, a pipeline
materializes the dependency between sub-systems, while a partition materializes
their independency.
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Notice that in pipelined sub-systems, the workload of one of the sub-systems
may have a side-e�ect on another sub-system in pipeline. This is due to the
fact that client request processing may ”ow through all or part of the pipelined
sub-systems. While in case of partitioned sub-systems, the workload of the
di�erent sub-systems are independent from each other; eachpartition being re-
sponsible of processing requests independently from the other partitions. Thus,
based on the inter-dependency function and the knowledge ofthe system archi-
tecture, the self-optimization manager is able to automatically identify inter-
dependent parts of the Internet service. To prevent oscillations from occurring,
the self-optimization manager ensures that during a self-optimization operation
on a part of the system, self-optimization is inhibited on any inter-dependent
part (during a given delay). Once the inhibition delay has expired, new self-
optimization operations are allowed for execution again.

We implemented the system oscillation management for a self-optimized e-
commerce web application hosted by a two-tier Internet service where each tier
of the Internet service was replicated and dynamically provisioned. The two
tiers of the Internet service were identi“ed as a pipelined system. Thus, all
system reorganization happening on the “rst or the second tier of the system
triggered an inhibition that blocked any new reorganization on the “rst and the
second tier (seesection 5.2).

4.4 Discussion

The proposed self-optimization approach based on resource usage observations
and on simple system reorganization is attractive thanks toits simplicity. Its
basic design confers the self-optimization approach a generic behavior, thus al-
lowing its appliance to many di�erent I nternet services with minimal e�ort.
Indeed, since self-optimization is based on low-level resource monitoring, it
can apply to di�erent Internet services. Of course, the genericity is reduced
when self-optimization makes use of application-level heuristics, like it was the
case for tackling sudden load variations (such observations being application-
dependent).

However, a major open issue of this work concerns tuning and con“guring the
self-optimization manager itself. Indeed, con“guration parametersmay have the
form of min and max thresholds used to guide dynamic resourceprovisioning,
inhibition delays used to prevent system oscillation. The con“guration of these
parameters must be carried carefully since it conditions the e�ciency of the self-
optimization manager. In our experiments, we manually tuned these parameters
of the self-optimization manager, based on an observation of the behavior of the
underlying Internet service. The proposed self-optimization manager takes in
charge dynamic optimization and resource provisioning in an Internet service;
However, techniques that would assist, and possibly automate, the con“guration
of the parameters of the self-optimization manager would make the usage ofself-
optimization easier.
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Figure 10: Experimental dynamic J2EE infrastructure

5 EXPERIMENTAL EVALUATION

5.1 Experimental environment

Hardware environment. Experimentations have been conducted on a cluster of
x86-compatible machines with bi-1.8GHz Xeon CPUs and 1GB RAM, connected
via a 100Mb/s Ethernet LAN.

Software environment. The cluster nodes have been installed with Linux
2.4 kernels and with the following J2EE middleware: Apache HTTPD 1.3.9
as the web server [50], Jakarta Tomcat 3.3.2 as the enterprise server [52],
MySQL 4.0.17 as the database server [34], PLB 0.3 as the web server clustering
solution [37], Tomcat clustering as the enterprise server clustering solution [52]
and c-jdbc 2.0.2 as the database server clustering system [10].

Application . The evaluation has been realized with the Rubis multi-tier
J2EE application benchmark which implements an auction site [2]. Rubis de-
“nes several web interactions (e.g registering new users, browsing, buying or
selling items); and it provides a benchmarking tool that emulates web client
behaviors and generates a tunable workload. Rubis comes with two mixes: a
browsing mix in which clients execute 100% read-only requests anda bidding
mix composed of 85% read-only interactions. This benchmarking tool gath-
ers statistics about the application. Rubis was deployed asa cluster-based
replicated multi-tier system, consisting of a cluster of replicated web/enterprise
servers as a front-end, and a cluster of replicated databaseservers as a backend.
The cluster hosting this instance of Rubis has been enhancedso as to provide
dynamic provisioning abilities (see “gure 10). Indeed the experimental cluster
allowed us to dynamically adapt the resource provisioning of the web/enterprise
servers and the resource provisioning of the replicated database, while provid-
ing meaningful resource usage sensors. We used the Rubis 1.4.2 version of the
multi-tier J2EE application running the middleware platfo rm described above.

5.2 Experimental results

We present here the main results obtained after experimenting various scenarios
on the environment described previously.

Protocol. The purpose of the following experimental evaluation is to demon-
strate the correctness and the e�ectiveness of the proposed dynamic provisioning
technique. To achieve this all conducted experiments include a comparison of
the dynamic provisioning algorithm behavior with the standard static provision-
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Figure 11: Generated workload to simulate gradual variations

ing practice. The referencestatically provisioned infrastructure corresponds to
the J2EE infrastructure presented in “gure 10 with a single Tomcat server and
a single MySQL server.

5.2.1 Handling gradual load variations

We present here an experiment demonstrating the dynamic provisioning for
gradual load variations. Therefore we expose the Rubis web application hosted
on the cluster described previously to a workload with gradual variations in-
tending to demonstrate the ability of our dynamic provisioning mechanism to
adapt and follow the changing workload appropriately.

The workload (see “gure 11) starts lightly by simulating 80 clients and slowly
increases up to 500 clients by steps of 20 new clients every minute. After this
the workload symmetrically decreases from 500 clients downto 80 clients. This
dynamic workload corresponds to the scenario of a normal service day where the
number of clients increases in the morning up to a maximum in the afternoon
and then decreases in the evening.

Figure 12-a (resp. “gure 12-b) present the aggregated resource usage1 of
the database servers (resp. the application servers) hosting Rubis during the
experiment. Both the behavior of the statically provisioned and the dynami-
cally prosioned systems are representedon these “gures. Moreover the “gures
display the minimum and maximum thresholds driving the dynamic provision-
ing control-loops. Finally the “gures also present the current number of nodes
provisioned for the speci“c part of the system they represent.

When con“guring the hosting cluster to be statically provisioned for Rubis,
we observe that the service gets quickly overloaded with its aggregated resource
being saturated. In comparison when enabling dynamic provisioning on the
hosting cluster, the violation of the maximum threshold by the monitored re-
source usage triggers the increase of the current provisioning of the system part
by one node. This induces a decrease of the aggregated resource usage that

1 In the present experiments, the CPU was the unique bottlenec k resource. For simplicity
and space constraints, we only present CPU usage.
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(a) Database behaviour in response
to gradual load variations
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response to gradual load variations

Figure 12: Behavior of Rubis entities in response to gradual load variations

allows the service to keep functioning while the staticallyprovisioned system is
thrashing.

The dynamic provisioning mechanism is triggered three times during the
workload increase: the two “rst activations of the dynamic provisioning lead to
two additions of one node to the clustered database, thus shifting the bottleneck
on the application server which then also takes advantage of one node addition.
Symmetrically as the load decreases, the aggregated resource usage drops and
eventually violates the minimum threshold. The threshold violation leads to
resource unprovisioning as expected.

5.2.2 Handling load spikes

This section details an experimentation which aims at demonstrating the e�ec-
tiveness of our dynamic provisioning algorithm in case of sudden load variation.
To this end Rubis is then exposed to a load spike that widely exceeds the current
capacity of the system.

As shown in “gure 13 the workload starts moderately by simulating 100
clients. After three minutes (at time 180s) the workload instantaneously jumps
to 500 clients, thus generating a load spike which cannot be handled correctly
by the current system con“guration. Figure 13 presents the resulting behaviour
of the system in response to the generated load spike, both in case of static and
dynamic provisioning. The behaviour is here depicted through the response
times to requests as perceived by clients. More precisely a dot on this “gure
represents one client request which has been submitted at the time the dot is
located at (its x-axis), and which took as many seconds to be served as its y-axis
location.

The initial moderate workload directed to the system is satis“ed before the
load spike, which translates to low request latencies. Just after the load spike
happens the request response times jump very quickly. This reveals a thrashing
of the underlying system which is actually unable to serve requests decently any-
more. When the system is statically provisioned the thrashing is very strong so
that many requests submitted after the spike are given a response after the end
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