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Abstract: Given a real-valued function f defined over some metric space X, is it possible to
recover some structural information about f from the sole information of its values at a finite
set L ⊆ X of sample points, whose pairwise distances in X are given? We provide a positive
answer to this question. More precisely, taking advantage of recent advances on the front of
stability for persistance diagrams, we introduce a novel algebraic construction, based on a pair
of nested families of simplicial complexes built on top of the point cloud L, from which the
persistance diagram of f can be faithfully approximated. We derive from this construction a
series of algorithms for the analysis of scalar fields from point cloud data. These algorithms are
simple and easy to implement, they have reasonable complexities, and they come with theoretical
guarantees. To illustrate the genericity and practicality of the approach, we also present some
experimental results obtained in various applications, ranging from clustering to sensor networks.

Key-words: Persistent homology, Persistence modules, Sampling theory, Vietoris-Rips com-
plexes, Morse theory

∗ frederic.chazal@inria.fr
† guibas@cs.stanford.edu
‡ steve.oudot@inria.fr
§ primoz@stanford.edu



Analyse de champs scalaires sur des nuages de points

Résumé : Étant donné une fonction scalaire f définie sur un espace métrique X, est-il possible
d’extraire de l’information sur la structure du graphe de f à partir de la seule donnée de ses valeurs
sur un ensemble fini L d’échantillons de X, ainsi que des distances géodésiques entre les points de
L ? Cet article répond positivement à cette question. Plus précisément, en nous appuyant sur des
résultats récents sur la stabilité des diagrammes de persistance, nous introduisons une nouvelle
construction algébrique utilisant une paire de familles de complexes simpliciaux imbriqués, à
partir de laquelle le diagramme de persistance de f peut être calculé de manière approchée. Nous
déduisons de cette construction algébrique une famille d’algorithmes pour l’analyse des champs
scalaires à partir de nuages de points. Ces algorithmes sont simples et faciles à implanter, ils ont
des complexités raisonnables, ainsi que des garanties théoriques. Afin d’illustrer la généricité de
notre approche, nous présentons des résultats expérimentaux obtenus dans diverses applications,
comme la classification ou les réseaux de capteurs sans fils.

Mots-clés : Homologie persistante, modules de persistance, théorie de l’échantillonnage, com-
plexes de Rips-Vietoris, théorie de Morse.
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1 Introduction

Suppose we are given a collection of sensors spread out in some planar region, and suppose
that these sensors measure some intensive physical quantity, such as temperature or humidity.
Assuming that the nodes do not know their geographic location but that they can detect which
other nodes lie in their vicinity, is it possible to recover some high-level information about
the measured quantity, such as the number of its peaks or valleys, as well as a sense of their
prominence? Consider now the case were we are given a finite set of sample points in Euclidean
space, drawn from some unknown probability density f . Suppose that we can compute at each
of these points a rough estimate of the local density. Can we then infer the number of prominent
peaks of f , which we could later use as the input parameter to a clustering algorithm? Can we tell
how to merge the basins of attraction of the maxima, in order to guide the clustering? Consider
finally the case where a movie database is provided together with a similarity measure between
movies and a measure of popularity for each movie. Can we extract the prominent peaks of the
popularity measure, so as to provide information on the general trends of the public’s tastes?

These three scenarios are just special instances of a same generic problem: given an unknown
domain X and a scalar field f : X → R whose values are known only at a finite set L of sample
points, the goal is to extract some structural information about f from the sole information
of the pairwise distances between the data points and of their function values. The nature of
the sought-for information is highly application-dependent. In the above scenarios one is mainly
interested in finding the peaks and valleys of the function, together with their respective basins of
attraction1. In addition, it is desirable to have a mechanism for distinguishing between significant
and insignificant peaks or valleys of f , which requires to introduce some notion of prominance for
the critical points of a function. This is where topological persistence comes into play: inspired
from Morse theory, this framework describes the evolution of the topology of the sublevel-sets of f ,
i.e. the sets of type f−1((−∞, a]), as parameter a ranges from −∞ to +∞. Topological changes
occur only at critical points of f , which can be paired in some natural way. For instance, a new
connected component appears in f−1((−∞, a]) when a reaches the f -value of a local minimum,
and this component gets connected to the rest of the sublevel-set as a reaches the f -value of a
saddle. The outcome of this process is a set of intervals, called a persistence barcode, each of
which corresponds to a pair of critical points and gives the birth and death times of a homological
feature of the sublevel-sets of f — see Figure 1. An equivalent representation is by a multiset of
points in the plane, called a persistence diagram, where the coordinates of each point correspond
to the endpoints of some interval in the barcode. Such barcodes or diagrams can be used to guide
the simplification of the graphs of real-valued functions by iterative cancellations of critical pairs
[14, 15]. As such, they provide the desired information for evaluating the prominence of the
peaks and valleys (and in fact of all the critical points) of a scalar field.

Thus, our problem becomes the following: given X, f, L as above, is it possible to approximate
the persistence diagram of f from the pairwise distances between the points of L and from the
values of f at these points? The main contribution of the paper is a positive answer to this
question. More precisely, in Section 3 we exhibit a novel algebraic construction, based on a
pair of nested families of simplicial complexes — derived from the so-called Rips complexes of
L, defined below — from which the persistence diagram of f can be approximated (Theorem
3.1). We also show the robustness of our construction with respect to noise in the pairwise
distances or function values (Theorems 3.7 and 3.9). From these structural results we derive
algorithms (Section 4) for approximating the persistence diagram of f from its values at a finite
set of samples, both in static (fixed f) and in dynamic (time-varying f) settings. We also give a
procedure for finding the basins of attraction of the peaks of f inside the point cloud L, and for

1In the context of clustering, this approach to the problem is reminiscent of Mean Shift [11].
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Figure 1: Left: a noisy scalar field f defined over a planar square domain X. Center: approx-
imation of the 0-dimensional persistence barcode of (−f) from a finite sampling of X: the long
intervals correspond to the six prominent peaks (including the top of the crater) of f . Right:
approximate basins of attraction of the peaks of f in L, before (top) and after (bottom) merging
non-persistent clusters, thus revealing the intuitive structure of f .

merging these basins according to the persistence information, as illustrated in Figure 1 (right).
Our algorithms are based on variants [9, 10] of the celebrated persistence algorithm. They can be
easily implemented, they have reasonable complexities, and they are provably correct for the most
part. To illustrate the versatility of the approach, we provide experimental results obtained in a
variety of applications (Section 5): without pretending in any way to give definitive solutions to
the considered problems, we aim at showing the potential of our method and its possible interest
for the community.

Related work. Topological persistence and its applications have been an extensively stud-
ied topic since the introduction of the persistence algorithm by Edelsbrunner et al. [14]. First
designed for simplicial complexes in R3, this algorithm was later extended to compute the per-
sistent homology of discrete functions over arbitrary finite simplicial complexes [27]. A number
of variants were also proposed, for instance to cope with changes in the function over time [10]
or to handle pairs of functions defined over nested pairs of spaces [9]. All these methods deal
with functions defined over simplicial complexes, and in some sense our work suggests a way of
extending the approach to a more general class of spaces via finite sampling and modulo some
(controlled) errors in the output.

Topological persistence has already been used in the past for the analysis and simplification of
scalar fields. The original persistence paper [14] showed how to simplify the graph of a piecewise-
linear (PL) real-valued function f defined over a simplicial complex X in R3, by iteratively
cancelling the pairs of critical points provided by the persistence barcode of f . This approach
was later refined, in the special case where X is a triangulated 2-manifold, to only cancel the
pairs corresponding to short intervals in the barcode, thus removing all topological noise up
to a certain prescribed amplitude [15]. In parallel, people have considered computing accurate
or simplified representations of Morse-Smale complexes, which capture important information
about the structure of scalar fields. Indeed, the Morse-Smale complex of a function f : X→ R is
a partition of the space X into regions where the flow induced by the gradient vector field of f is
uniform. Building upon the idea of iterative cancellations of pairs of critical points, it is possible
to construct hierarchies of increasingly coarse Morse-Smale complexes from PL functions defined
over triangulated 2- or 3-manifolds [1, 3, 13, 19, 20]. Although our question of finding the basins
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Analysis of Scalar Fields over Point Cloud Data 5

of attraction of the peaks of a scalar field may seem a simplistic variant of the above problems,
we claim that it is in fact not, as our context is much more general and our knowledge of the
function f is much weaker. In particular, the resort to a PL approximation of f in our potentially
high-dimensional or even non-Euclidean setting would be prohibitively costly, if not impossible.
Note also that, in applications such as the scenarios described at the beginning of the section,
the knowledge of the basins of attraction of the (significant) peaks of the scalar field is sufficient
for further processing.

A last trend of work in which persistence has played a prominent role is homology inference
from point cloud data, where the goal is to recover the homological type of an unknown space
X from a finite set L of sample points. The idea is to consider the function distance to L, either
inside X or in some ambient space Y where X is embedded. Under sufficient sampling density, this
function approximates the distance to X, and therefore their persistence diagrams are close, by a
stability result due to Cohen-Steiner et al. [8]. Thus, the sole knowledge of the sample points is
enough to approximate the persistence diagram of the distance to X, from which the homology
of X is easily inferred [6, 8]. In practice however, the cost of estimating the distance to L at
every point of X or of some ambient space Y is prohibitive, thus requiring the resort to auxiliary
algebraic constructions. Among the most popular ones is the Rips complex Rα(L), which is the
abstract simplicial complex whose simplices correspond to non-empty subsets of L of diameter
less than α. The building of this complex only involves comparisons of distances, which makes it
a good candidate data structure in practice. Furthermore, as proved in [7], a pair of nested Rips
complexes Rα(L) ⊆ Rβ(L) can provably-well capture the homology of the underlying space X,
even though none of the individual complexes does. Our algebraic construction (see Section 3)
is directly inspired from this property, and in fact our theoretical analysis is articulated in the
same way as in [7], namely: we first work out structural properties of unions of geodesic balls,
which we prove to also hold for their nerves (also called Čech complexes); then, using strong
relationships between families of Čech and of Rips complexes, we derive structural properties
for the latter. Note however that the core of the analysis differs significantly from [7], because
our families of complexes are built differently. In particular, the classical notion of stability
for persistence diagrams, as introduced in [8], is not broad enough for our setting, where it is
replaced by a generalized notion recently proposed by Chazal et al. [4].

2 Background

Our analysis uses singular homology with coefficients in a commutative ring R, assumed to
be a field throughout the paper and omitted in the notations. We also use some elements of
Riemannian geometry, as well as of Morse theory (mainly in Section 4.3). We refer the reader
to [2, 21, 22] for comprehensive introductions to these topics.

2.1 Geodesic ε-samples on Riemannian manifolds

Throughout the paper, and unless otherwise stated, X denotes a compact Riemannian manifold
possibly with boundary, and dX denotes its geodesic distance. Our analysis turns out to hold
for a larger class of length spaces, however for simplicity we restrict the focus of the paper to
the Riemannian setting. Given a point x ∈ X and a real value r ≥ 0, let BX(x, r) denote the
open geodesic ball of center x and radius r, namely: BX(x, r) = {y ∈ X, dX(x, y) < r}. For all
sufficiently small values r ≥ 0, the ball BX(x, r) is known to be strongly convex, that is: for every
pair of points y, y′ in the closure of BX(x, r), there exists a unique shortest path in X between y
and y′, and the interior of this path is included in BX(x, r). Let %c(x) > 0 be the supremum of
the radii such that this property holds. Since X is compact, the infimum of %c(x) over the points
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6 Chazal & Guibas & Oudot & Skraba

of X is positive, and known as the strong convexity radius of X, noted %c(X). This quantity
plays an important role in the paper because strongly convex sets are contractible2, and because
intersections of strongly convex sets are also strongly convex.

In the sequel, L denotes a finite set of points of X that form a geodesic ε-sample of X, namely:
∀x ∈ X, dX(x, L) < ε. Here, parameter ε is homogeneous to a length, and it controls the density
of the point cloud L. Our theoretical claims will assume this density to be high enough, via a
condition on ε stipulating that the latter is at most a fraction of the strong convexity radius of
X.

2.2 Persistence modules and filtrations

The main algebraic objects under study here are persistence modules. A persistence module is a
family {Φα}α∈R of R-modules together with a family {φβα : Φα → Φβ}α≤β∈R of homomorphisms
such that ∀α ≤ β ≤ γ, φγα = φγβ ◦ φβα and φαα = idΦα . Persistence modules are often derived
from filtrations, which are families {Fα}α∈R of topological spaces that are nested with respect
to inclusion. For all α ≤ β, the canonical inclusion map Fα ↪→ Fβ induces homomorphisms
between the homology groups Hk(Fα) → Hk(Fβ) of all dimensions k ∈ N. Thus, for any fixed
k the family {Hk(Fα)}α∈R forms a persistence module, called kth persistent homology module of
{Fα}α∈R, where the homomorphisms between R-modules are understood to be those induced by
inclusions.

An important class of filtrations are the ones formed by the sublevel-sets of real-valued func-
tions. Given a topological space X and a function f : X → R, the sublevel-sets filtration of f is
the family {Fα}α∈R of subspaces of X of type Fα = f−1((−∞, α]). This family forms a filtration
because f−1((−∞, α]) ⊆ f−1((−∞, β]) whenever α ≤ β. A real-valued function that has played
a prominent role in homology inference is the geodesic distance to a finite point cloud L. The
0-sublevel set of this function is L itself, while for any α > 0 its α-sublevel set is the closure of
the so-called α-offset Lα, defined as the union of the open geodesic balls of radius α about the
points of L, namely: Lα =

⋃
p∈LBX(p, α). Important structural properties of growing families of

open balls, some of which will be exploited in Section 3.1 of this paper, follow from the properties
of the sublevel-sets of the distance function [5, 23].

Since the offsets of a point cloud L can be difficult to manipulate, they are often replaced by
purely combinatorial constructions in practice. A natural choice is to use the nerve of the family of
open geodesic balls used in the definition of the α-offset of L. Specifically, the nerve of the family
{BX(p, α)}p∈L is the abstract simplicial complex of vertex set L whose simplices correspond to
non-empty subsets of the family whose elements have a non-empty common intersection. This
complex is also known as the Čech complex, and noted Cα(L). Thanks to the duality that exists
between unions of open balls and their nerves (see Lemma 3.4 below), Čech complexes Cα(L)
enjoy many interesting properties that will be exploited as well in Section 3.1.

An even simpler combinatorial construction is the so-called (Vietoris-)Rips complex Rα(L),
which is the abstract simplicial complex of vertex set L whose simplices correspond to non-empty
subsets of L of geodesic diameter less than α. The building of this complex only involves compar-
isons of distances, which makes it a good candidate data structure in practice. Furthermore, Rips
complexes are known to be closely related to Čech complexes through the following sequence of
inclusions, which holds in any arbitrary metric space (see e.g. [7]):

∀α > 0, Cα
2

(L) ⊆ Rα(L) ⊆ Cα(L) (1)

2A topological space is contractible if it can be continuously deformed to a point within itself.
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Several other combinatorial constructions, such as the α-shape or the witness complex, have been
proven to be useful in the context of homology inference. These will not be considered in the
paper.

Finally, let us mention that the above constructions are parametrized by a unique quantity
α, which one usually lets vary from 0 to +∞ to get a filtration. In contrast, our filtrations will
be obtained by fixing α to some constant value and by letting the vertex set grow from ∅ to L.

2.3 Persistence diagrams and stability

Persistence diagrams have been introduced as a succint way of describing the algebraic structure
of a persistence module [27]. There is a restriction though: without any further assumptions,
the algebraic structure of a persistence module can be arbitrarily complicated, thereby making
it impossible to find a descriptor that is both succint and complete. This is where the concept
of tameness3 comes into play:

Definition 2.1 A persistence module ({Φα}α∈R, {φβα}α≤β∈R) is tame if ∀α < β, rank φβα < +∞.

This condition is restrictive enough for persistence diagrams to be well-defined, yet the concept
of tameness remains sufficiently wide to encompass a large class of persistence modules. In
particular, all persistent homology modules of nested families of finite simplicial complexes are
tame. As a consequence, all persistence modules introduced in Sections 3 and 4 of this paper
will be tame.

Following [4], the persistence diagram of a tame persistence module ({Φα}α∈R, {φβα}α≤β∈R) is
defined as a multiset of points in the extended plane R̄2, where R̄ = R∪{−∞,+∞}. This multiset
is obtained as the limit of the following iterative process: given arbitrary values a, ε > 0, we dis-
cretize the persistence module over the integer scale a+εZ, considering the subfamily {Φa+kε}k∈Z
of vector spaces together with the subfamily {φa+lε

a+kε}k≤l∈Z of linear maps. Its persistence diagram
is defined naturally4 as the set of vertices of the regular grid (a+εZ)×(a+εZ) in R̄2, plus the di-
agonal ∆ = {(x, x), x ∈ R̄}, where each grid vertex (a+kε, a+lε) is given the (finite) multiplicity
mult(a+ kε, a+ lε) = rank φa+(l−1)ε

a+kε − rank φa+lε
a+kε + rank φa+lε

a+(k−1)ε− rank φa+(l−1)ε
a+(k−1)ε, while each

point of ∆ is given infinite multiplicity. Then, the persistence diagram of ({Φα}α∈R, {φβα}α≤β∈R)
is the limit multiset obtained as ε→ 0, which is known to be independent of the choice of a [4].

An important property of persistence diagrams is their stability under small perturbations.
Cohen-Steiner et al. [8] proposed the first result in this vein: given two tame continuous real-
valued functions f, g defined over a same triangulable space X, for all k ∈ N the bottleneck dis-
tance between the persistence diagrams of the kth persistent homology modules of their sublevel-
sets filtrations is at most supx∈X |f(x)− g(x)|. Recall that the bottleneck distance d∞B (A,B) be-
tween two multisets in R̄2 endowed with the l∞ norm is the quantity minγ maxp∈A ‖p− γ(p)‖∞,
where γ ranges over all bijections from A to B.

Recently, Chazal et al. [4] extended the result of [8] by dropping the continuity and trian-
gulability assumptions, as well as the functional setting. To do so, they had to introduce a new
notion of proximity between persistence modules:

Definition 2.2 Two persistence modules ({Φα}α∈R, {φβα}α≤β∈R) and ({Ψα}α∈R, {ψβα}α≤β∈R)
are (strongly) ε-interleaved if there exist two families of homomorphisms, {µα : Φα → Ψα+ε}α∈R
and {να : Ψα → Φα+ε}α∈R, that make the following diagrams commute for all values α ≤ β ∈ R:

3We borrow this concept from [4], where it is called 0-tameness and made weaker than in [8].
4In the particular case of a discretized persistence module, this definition does coincide with the one of [8].
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Under these conditions, Chazal et al. proved the following generalized stability result [4]:

Theorem 2.3 If two tame persistence modules are ε-interleaved, then, in the extended plane
R̄2 endowed with the l∞ norm, the bottleneck distance between their persistence diagrams is at
most ε.

An important special case is the one of kth persistent homology modules of filtrations {Fα}α∈R
and {Gα}α∈R such that Fα ⊆ Gα+ε and Gα ⊆ Fα+ε for all α ∈ R. In this case, the maps µα and
να induced at homology level by the canonical inclusions Fα ↪→ Gα+ε and Gα ↪→ Fα+ε make the
diagrams of Eqs. (2) and (3) commute, thus ε-interleaving the kth persistent homology modules
of the two filtrations. Theorem 2.3 guarantees then that their persistence diagrams are ε-close.

Note about the exposition. In order to simplify the exposition in the sequel, we allow
ourselves some degree of sloppiness in the notations. Specifically, we omit the ranges of the
indices when these are obvious, thus designating a filtration of parameter α ∈ R by {Fα}, and a
persistence module of parameters α ≤ β ∈ R by ({Φα}, {φβα}). In addition, we use the following
shortcuts: the persistence diagram of the kth persistent homology module of a filtration {Fα}
is simply called the kth persistence diagram of {Fα}. Furthermore, the filtration itself is said
to be tame if its kth persistent homology module is tame for all values k ∈ N. At a higher
level, the kth persistent homology module of a real-valued function f refers by default to the
kth persistent homology module of its sublevel-sets filtration, and f is said to be tame if its
sublevel-sets filtration is tame. Finally, the kth persistence diagram of f is the kth persistence
diagram of its sublevel-sets filtration.

3 Structural properties

Let X be a Riemannian manifold, possibly with boundary, and let f : X→ R be a tame c-Lipschitz
function. Assuming X and f to be unknown, we want to approximate the kth persistence diagram
of f from the values of the function at a finite set L of sample points that form a geodesic ε-sample
of X. The main result of the section (Theorem 3.1 below) claims that this is possible using an
algebraic construction based on Rips complexes. The main advantage of this construction is that
it leads to an easy-to-compute data structure, which will be described in the algorithms Section
4. From now on, Lα denotes the set L ∩ f−1((−∞, α]).

Our construction is inspired from [7], where it is shown that a pair of nested Rips complexes
can provably-well capture the homology of a domain even though none of the individual Rips
complexes does. Given a fixed parameter δ > 0, we use two Rips-based filtrations simulatneously,

INRIA



Analysis of Scalar Fields over Point Cloud Data 9

{Rδ(Lα)}α∈R and {R2δ(Lα)}α∈R, and we consider the persistence modules formed at homology
level by the images of the homomorphisms induced by the inclusions Rδ(Lα) ↪→ R2δ(Lα). Specifi-
cally, for all k ∈ N and all α ≤ β we have the following induced commutative diagram at homology
level:

Hk(R2δ(Lα)) → Hk(R2δ(Lβ))
↑ ↑

Hk(Rδ(Lα)) → Hk(Rδ(Lβ))

Letting Φα be the image of Hk(Rδ(Lα)) → Hk(R2δ(Lα)), we get that the above commutative
diagram induces a map φβα : Φα → Φβ . Since this is true for all α ≤ β, the family {Φα}α∈R
of vector spaces, together with the family {φβα}α≤β of linear maps, forms a persistence module.
By analogy with the terminology of Section 2, we call it the kth persistent homology module
of the nested pair of filtrations {Rδ(Lα) ↪→ R2δ(Lα)}α∈R, and its persistence diagram the kth
persistence diagram of the nested pair. This construction is in fact not specific to families of
Rips complexes, and it allows to define a persistence module ({Φα}, {φβα}) from the k-dimensional
homology groups of any pair of filtrations {Gα} and {G′α} that is nested with respect to inclusion:
∀α ∈ R, Gα ⊆ G′α.

Theorem 3.1 Let X be a compact Riemannian manifold, possibly with boundary, and f : X→ R
a tame c-Lipschitz function. Let also L be a geodesic ε-sample of X. If ε < 1

4%c(X), then for any
δ ∈ [2ε, 1

2%c(X)) and any k ∈ N, the kth persistent homology modules of f and of the nested pair
of filtrations {Rδ(Lα) ↪→ R2δ(Lα)}α∈R are 2cδ-interleaved. Therefore, the bottleneck distance
between their persistence diagrams is at most 2cδ, by Theorem 2.3.

In practice, the kth persistent homology module of the pair of filtrations {Rδ(Lα) ↪→ R2δ(Lα)}α∈R
does not have to be built explicitly since its persistence diagram can be computed directly from
the filtrations {Rδ(Lα)}α∈R and {R2δ(Lα)}α∈R [9]. The next two sections are devoted to the
proof of Theorem 3.1. The core argument, based on a technique of algebraic topology called
diagram chasing, is presented in Section 3.2. It makes use of preliminary results on unions of
balls and their nerves, introduced in Section 3.1. Finally, Section 3.3 addresses the robustness of
our main result with respect to small perturbations of the geodesic distances or function values.

3.1 Preliminaries: unions of geodesic balls and their nerves

Let δ > 0 be a fixed parameter. Consider the filtration {Lδα}α∈R formed by the δ-offsets of the
subsets Lα. Recall that the δ-offset of Lα is defined by Lδα =

⋃
p∈Lα BX(p, δ).

Lemma 3.2 Let X, f, L be as in Theorem 3.1. Then, for any δ ≥ ε, the sublevel-sets filtration
{Fα} of f is cδ-interleaved with {Lδα}α∈R. Hence, ∀k ∈ N, the bottleneck distance between their
kth persistence diagrams is at most cδ, by Theorem 2.3.

Proof. Consider an arbitrary value α ∈ R and take a point p ∈ Fα. Since L is a geodesic
ε-sample of X, there exists some point q ∈ L such that dX(p, q) < ε ≤ δ. Since f is c-Lipschitz,
we have f(q) ≤ f(p) + cδ ≤ α + cδ, which implies that q ∈ L ∩ Fα+cδ. Hence, p belongs to
Lδα+cδ. Reciprocally, take a point p ∈ Lδα. By definition, there exists some point q ∈ Lα such
that dX(p, q) < δ. Since f is c-Lipschitz, we have f(p) ≤ f(q)+ cδ ≤ α+ cδ. Therefore, p belongs
to Fα+cδ. This proves that {Fα} and {Lδα} are cδ-interleaved. �

We now turn our focus to the nerves Cδ(Lα) of the offsets Lδα:
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10 Chazal & Guibas & Oudot & Skraba

Lemma 3.3 Let X, f, L be as in Theorem 3.1. ∀k ∈ N, there exists a family of isomorphisms
{Hk(Cδ(Lα)) → Hk(Lδα)}α∈R, δ<%c(X) such that the following diagrams (where horizontal homo-
morphisms are induced by inclusions) commute: ∀α ≤ β ∈ R, ∀δ ≤ ξ < %c(X),

Hk(Cδ(Lα)) → Hk(Cξ(Lβ))
↓ ↓

Hk(Lδα) → Hk(Lξβ)
(4)

As a consequence, ∀k ∈ N, ∀δ < %c(X), the kth persistence diagrams of {Cδ(Lα)}α∈R and
{Lδα}α∈R are identical.

The proof of this result, detailed below, relies on the following technical lemma5 from [7], which
relates good open covers to their nerves. Given a topological space X and a family {Ua}a∈A of
open subsets covering X, the family defines a good cover if, for every finite subset S of A, the
common intersection

⋂
a∈S Ua is either empty or contractible.

Lemma 3.4 (Lemma 3.4 of [7]) Let X ⊆ X′ be two paracompact spaces, and let U = {Ua}a∈A
and U ′ = {U ′a′}a′∈A′ be good open covers of X and X′ respectively, based on finite parameter sets
A ⊆ A′, such that Ua ⊆ U ′a for all a ∈ A. Then, the homotopy equivalences NU → X and
NU ′ → X′ provided by the Nerve Theorem [21, §4G] commute with the canonical inclusions
X ↪→ X′ and NU ↪→ NU ′ at homology level.

Proof of Lemma 3.3. Let k ∈ N. We claim that, for all α ∈ R and δ < %c(X), the family of open
balls {BX(p, δ)}p∈Lα forms a good open cover of the set Lδα, that is: ∀l ∈ N, ∀p1, · · · , pl ∈ Lα,
the intersection I = BX(p1, δ) ∩ · · · ∩BX(pl, δ) is either empty or contractible. Indeed, assuming
that I is non-empty, we have that each ball B(pi, δ) is strongly convex because δ < %c(X). As
a consequence, I itself is strongly convex and therefore contractible, as mentioned in Section
2.1. Thus, {BX(p, δ)}p∈Lα forms a good open cover of Lδα. Since this is true for all α ∈ R and
δ < %c(X), Lemma 3.4 guarantees that the diagram of Eq. (4) commutes.

Letting now δ = ξ < %c(X) be fixed, the commutativity of (4) implies that the homomor-
phisms Hk(Cδ(Lα))→ Hk(Cδ(Lβ)) and Hk(Lδα)→ Hk(Lδβ) have same rank, for all values α ≤ β.
Therefore, the filtrations {Cδ(Lα)}α∈R and {Lδα}α∈R have identical kth persistence diagrams. �

With these preliminary results at hand, we can now proceed to the proof of our main result.

3.2 Proof of Theorem 3.1

We will in fact prove the following more general (yet technical) result:

Lemma 3.5 Let X, f, L be as in Theorem 3.1. Suppose there exist ε′ ≤ ε′′ ∈ [ε, %c(X)) and
two filtrations, {Gα} and {G′α}, such that: ∀α ∈ R, Cε(Lα) ⊆ Gα ⊆ Cε′(Lα) ⊆ G′α ⊆ Cε′′(Lα).
Then, ∀k ∈ N, the kth persistent homology modules of f and of the nested pair of filtrations
{Gα ↪→ G′α}α∈R are cε′′-interleaved.

Applying Lemma 3.5 with ε′ = δ, ε′′ = 2δ, Gα = Rδ(Lα) and G′α = R2δ(Lα) gives Theorem 3.1,
the sequence of inclusions assumed in the statement of Lemma 3.5 being ensured by Eq. (1) in
this case. Lemma 3.5 itself will be instrumental in Section 3.3, in proving the robustness of our
main result with respect to small perturbations of geodesic distances or function values.

5Note that the statement of Lemma 3.4 of [7] assumes the parameter sets A,A′ to be equal. However, the
proof of the lemma only uses the facts that A ⊆ A′ and that the cover U is subordinate to the cover U ′ on its own
index set A. In addition, the statement of the lemma does not specify that the homotopy equivalences considered
are the ones provided by the Nerve Theorem [21, §4G], but this appears clearly in the proof of the lemma.
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Proof of Lemma 3.5. Let k ∈ N. For clarity, we call ({Φα}, {φβα}) the kth persistent homology
module of the nested pair of filtrations {Gα ↪→ G′α}α∈R, and ({Ψα}, {ψβα}) the kth persistent
homology module of f .

On the one hand, for all values α ≤ β, the sequence of inclusions assumed in the statement
of the lemma induces the following commutative diagram at homology level:

Hk(Cε(Lβ))
aβ→ Hk(Gβ)

bβ→ Hk(Cε′(Lβ))
dβ→ Hk(G′β)

eβ→ Hk(Cε′′(Lβ))
↑ iβα ↑ jβα ↑ lβα ↑ mβα ↑ nβα

Hk(Cε(Lα)) aα→ Hk(Gα) bα→ Hk(Cε′(Lα)) dα→ Hk(G′α) eα→ Hk(Cε′′(Lα))

(5)

This diagram encodes important relations between the persistence module ({Φα}, {φβα}) and the
homology groups of the Čech complexes. It implies for instance that the rank of φβα is at most
the rank of Hk(Cε′(Lα))→ Hk(Cε′(Lβ)). Indeed, by definition, φβα : Φα → Φβ is the restriction
of mβ

α to im dα ◦ bα, therefore we have im φβα = im mβ
α ◦ dα ◦ bα = im dβ ◦ lβα ◦ bα, which implies

that rank φβα = rank dβ ◦ lβα ◦ bα ≤ rank lβα. Similarly, the rank of Hk(Cε(Lα)) → Hk(Cε′′(Lβ))
is equal to rank eβ ◦ (mβ

α ◦ dα ◦ bα) ◦ aα ≤ rank mβ
α ◦ dα ◦ bα = rank φβα. Thus, for all α ≤ β, the

rank of the homomorphism φβα is sandwiched between the ranks of Hk(Cε(Lα))→ Hk(Cε′′(Lβ))
and Hk(Cε′(Lα)) → Hk(Cε′(Lβ)). If ever these lower and upper bounds happened to be equal
for all α ≤ β, then we could conclude that ({Φα}, {φβα}) has the same persistence diagram as the
kth persistent homology module of the filtration {Cε′(Lα)}α∈R, which by Lemmas 3.2 and 3.3
is cε′-close to the kth persistence diagram of f . However, in full generality the lower and upper
bounds may differ.

On the other hand, Lemma 3.2 tells us that ({Ψα}, {ψβα}) is related to the homology of the
ε−, ε′− and ε′′−offsets of Lα through the following sequence of homomorphisms induced by
inclusions: ∀α, β s.t. β − α ≥ c(ε+ ε′′),

Ψα−cε
tα−cε→ Hk(Lεα) uα→ Hk(Lε

′

α ) vα→ Hk(Lε
′′

α ) wα→ Ψα+cε′′

↓ ψβ−cε
α+cε′′

Ψβ+cε′′
wβ← Hk(Lε

′′

β )
vβ← Hk(Lε

′

β )
uβ← Hk(Lεβ)

tβ−cε← Ψβ−cε

(6)

To relate Eq. (5) to Eq. (6), we consider the isomorphisms hα : Hk(Cε(Lα)) → Hk(Lεα),
h′α : Hk(Cε′(Lα)) → Hk(Lε

′

α ) and h′′α : Hk(Cε′′(Lα)) → Hk(Lε
′′

α ) provided by Lemma 3.3 —
which are well-defined since ε ≤ ε′ ≤ ε′′ < %c(X). Through the diagram of Eq. (4), these
isomorphisms relate (5) to (6) and thereby draw a connection between the persistence modules
({Φα}, {φβα}) and ({Ψα}, {ψβα}). Note however that the diagram obtained by combining (4), (5)
and (6) may not fully commute: for instance, there is no particular reason why the linear map mβ

α

should be identical to dβ ◦bβ ◦aβ ◦h−1
β ◦tβ−cε◦ψ

β−cε
α+cε′′ ◦wα◦h′′α◦eα. Nevertheless, the subdiagram

of Eq. (5) commutes for all α ≤ β, because it is induced by inclusions. Furthermore, Lemma
3.3 ensures that the following subdiagrams (where homomorphisms l′βα and n′

β
α are induced by

inclusions) also commute for all α ≤ β:

Hk(Cε(Lα)) bα◦aα−→ Hk(Cε′(Lα)) eα◦dα−→ Hk(Cε′′(Lα))
↓ hα ↓ h′α ↓ h′′α

Hk(Lεα) uα−→ Hk(Lε
′

α ) vα−→ Hk(Lε
′′

α )
(7)

Hk(Cε(Lβ))
bβ◦aβ−→ Hk(Cε′(Lβ))

eβ◦dβ−→ Hk(Cε′′(Lβ))
↓ hβ ↓ h′β ↓ h′′β

Hk(Lεβ)
uβ−→ Hk(Lε

′

β )
vβ−→ Hk(Lε

′′

β )
(8)
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12 Chazal & Guibas & Oudot & Skraba

Hk(Cε′(Lα))
lβα−→ Hk(Cε′(Lβ))

↓ h′α ↓ h′β
Hk(Lε

′

α )
l′βα−→ Hk(Lε

′

β )

Hk(Cε′′(Lα))
nβα−→ Hk(Cε′′(Lβ))

↓ h′′α ↓ h′′β
Hk(Lε

′′

α )
n′βα−→ Hk(Lε

′′

β )

(9)

For all α ∈ R, let µα : Φα → Ψα+cε′′ be the restriction of the map wα◦h′′α◦eα to the subspace Φα =
im dα◦bα ⊆ Hk(G′α). Symmetrically, let να−cε : Ψα−cε → Φα be the map dα◦bα◦aα◦h−1

α ◦tα−cε.
Its image is indeed included in the subspace Φα = im dα ◦ bα ⊆ Hk(G′α). To prove that the
persistence modules ({Φα}, {φβα}) and ({Ψα}, {ψβα}) are cε′′-interleaved, it suffices to show that
the families of homomorphisms {µα} and {να} make the diagrams of Definition 2.2 commute for
all values α ≤ β ∈ R.

We begin with the trapezoids of Eq. (2). Consider the map µβ ◦mβ
α ◦ να−cε. Replacing µβ

and να−cε by their definitions, we get wβ ◦ h′′β ◦ (eβ ◦ mβ
α) ◦ dα ◦ bα ◦ aα ◦ h−1

α ◦ tα−cε, which
by commutativity of (5) is equal to wβ ◦ h′′β ◦ (nβα ◦ eα) ◦ dα ◦ bα ◦ aα ◦ h−1

α ◦ tα−cε. Now, by
commutativity of (7), we have eα ◦dα ◦ bα ◦aα ◦h−1

α = h′′
−1
α ◦vα ◦uα, therefore µβ ◦mβ

α ◦να−cε is
equal to wβ ◦ (h′′β ◦nβα ◦h′′

−1
α )◦ vα ◦uα ◦ tα−cε, which by commutativity of the rightmost diagram

of (9) is equal to wβ ◦ n′βα ◦ vα ◦ uα ◦ tα−cε, which is precisely ψβ+cε′′

α−cε .
Consider now the map νβ−cε ◦ ψβ−cεα+cε′′ ◦ µα. Since by definition we have Φα = im dα ◦ bα ⊆

im dα, the fact that νβ−cε ◦ ψβ−cεα+cε′′ ◦ µα coincides with mβ
α over Φα is a direct consequence

of the fact that the map νβ−cε ◦ ψβ−cεα+cε′′ ◦ µα ◦ dα coincides with mβ
α ◦ dα over Hk(Cε′(Lα)),

which we will now prove. Replacing µα and νβ−cε by their definitions, we get dβ ◦ (bβ ◦ aβ ◦
h−1
β ) ◦ tβ−cε ◦ ψβ−cεα+cε′′ ◦ wα ◦ (h′′α ◦ eα ◦ dα), which by commutativity of (7) and (8) is equal to
dβ ◦ h′−1

β ◦ uβ ◦ tβ−cε ◦ ψ
β−cε
α+cε′′ ◦ wα ◦ vα ◦ h′α. Now, observe that uβ ◦ tβ−cε ◦ ψβ−cεα+cε′′ ◦ wα ◦ vα

is nothing but the homomorphism l′
β
α induced by the inclusion Lε

′

α ↪→ Lε
′

β . Therefore, we have
νβ−cε ◦ ψβ−cεα+cε′′ ◦ µα ◦ dα = dβ ◦ (h′−1

β ◦ l′
β
α ◦ h′α), which is equal to dβ ◦ lβα by commutativity of

the leftmost diagram of (9). Finally, we have dβ ◦ lβα = mβ
α ◦ dα by commutativity of (5). Thus,

νβ−cε ◦ ψβ−cεα+cε′′ ◦ µα coincides with mβ
α over Φα.

It follows from the two paragraphs above that the trapezoids of Eq. (2) commute for all
values α ≤ β ∈ R. Before analyzing the case of the parallelograms of Eq. (3), let us point out
that Lemma 3.3 guarantees the commutativity of the following subdiagram:

Hk(Cε(Lα))
iβα−→ Hk(Cε(Lβ))

↓ hα ↓ hβ

Hk(Lεα)
tβ−cε◦ψβ−cεα+cε′′◦wα◦vα◦uα−→ Hk(Lεβ)

(10)

In addition, the following diagram commutes since all homomorphisms are induced by inclusions:

Hk(Lε
′′

α )
n′βα−→ Hk(Lε

′′

β )
↓ wα ↓ wβ

Ψα+cε′′
ψβ+cε′′

α+cε′′−→ Ψβ+cε′′

(11)

Consider the map µβ ◦mβ
α. Replacing µβ by its definition, we obtain wβ ◦h′′β ◦(eβ ◦mβ

α), which by
commutativity of (5) is equal to wβ ◦ (h′′β ◦nβα) ◦ eα. This map is the same as (wβ ◦n′βα) ◦h′′α ◦ eα,
by commutativity of the rightmost diagram of (9). Finally, the commutativity of (11) implies
equality with ψβ+cε′′

α+cε′′ ◦ (wα ◦ h′′α ◦ eα) = ψβ+cε′′

α+cε′′ ◦ µα.
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Consider now the map mβ
α ◦ να−cε. Replacing να by its definition, we obtain (mβ

α ◦ dα ◦ bα ◦
aα) ◦ h−1

α ◦ tα−cε, which by commutativity of (5) is equal to dβ ◦ bβ ◦ aβ ◦ (iβα ◦ h−1
α ) ◦ tα−cε. By

commutativity of (10), this map coincides with dβ◦bβ◦aβ◦h−1
β ◦tβ−cε◦(ψ

β−cε
α+cε′′◦wα◦vα◦uα◦tα−cε),

which is equal to (dβ ◦ bβ ◦ aβ ◦ h−1
β ◦ tβ−cε) ◦ ψ

β−cε
α−cε = νβ−cε ◦ ψβ−cεα−cε since the homomorphisms

in Eq. (6) are induced by inclusions.
It follows from the two paragraphs above that the parallelograms of Eq. (3) commute for

all values α ≤ β ∈ R. This concludes the proof that the persistence modules ({Φα}, {φβα}) and
({Ψα}, {ψβα}) are cε′′-interleaved. �

3.3 Stability with respect to noise

The guarantees provided by Theorem 3.1 hold as far as exact geodesic distances and function
values are used in the construction of the Rips complexes. In practice however, function values
are often obtained from physical measurements with inherent noise, while geodesic distances are
not known in advance and have to be estimated through some neighborhood graph distance. We
claim that our analysis is generic enough to handle these practical situations.

Consider first the case where function values are noisy. More precisely, given a geodesic
ε-sample L of some Riemannian manifold X, and a c-Lipschitz tame function f : X → R,
assume that the data points p ∈ L are assigned values f̃(p) that are different from f(p), and let
ζ = maxp∈L |f̃(p) − f(p)|. For convenience, for all α ∈ R we introduce the set L̃α of points of
L whose f̃ -values are at most α. Note that L̃α may neither contain nor be contained in Lα in
general. However, we have L̃α ⊆ Lα+ζ , which, plugged into the proof of Lemma 3.2, yields the
following variant of that result:

Lemma 3.6 ∀δ ≥ ε, the sublevel-sets filtration of f is (cδ + ζ)-interleaved with {L̃δα}α∈R.

The rest of the analysis of Sections 3.1 and 3.2 carries through, with Lα replaced by L̃α for all
α ∈ R and cε and cε′′ replaced respectively by cε + ζ and cε′′ + ζ in Eq. (6) and in the rest of
the proof of Lemma 3.5. We thus obtain the following new bounds:

Theorem 3.7 Let X, f, L be as in Theorem 3.1. Assume that the values of f at the points of
L are known within a precision of ζ. Then, for any δ ∈ [2ε, 1

2%c(X)) and any k ∈ N, the kth
persistent homology modules of f and of the nested pair of filtrations {Rδ(L̃α) ↪→ R2δ(L̃α)}α∈R
are (2cδ + ζ)-interleaved. Therefore, the bottleneck distance between their persistence diagrams
is at most 2cδ + ζ, by Theorem 2.3.

Consider now the case where geodesic distances are noisy. Specifically, assume that the
geodesic distance dX is replaced by the distance dG in some neighborhood graph G built on
top of the point cloud L. This graph can be either weighted of unweighted, depending on
the application. For instance, in unsupervised learning the edges of G are often weighted by
the Euclidean distances between their vertices [24], while in sensor networks edges are usually
unweighted because retrieving the exact geographic locations of the sensor nodes can be difficult
— see e.g. [25, §4.4]. Generally speaking, weighted graphs provide better approximations of
geodesic distances, but their construction requires to have additional information at hand, such
as extrinsic distances between the data points. We therefore focus on unweighted graphs, which
correspond to the most general case. In order to make theoretical claims, we assume that G is
a µ-disk graph6, that is: a pair of data points form an edge in G if and only if their geodesic
distance is less than µ. Assuming that the input point cloud L is a geodesic ε-sample of some

6Our analysis holds also for quasi µ-disk graphs, modulo a slight degradation of the approximation bounds.
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Riemannian manifold X, we will use the following bounds on the graph distance [16, Lemma 6.1]:

∀i, j ∈ {1, · · · , n}, dX(xi, xj)
µ

≤ dG(xi, xj) ≤ 1 + λ
dX(xi, xj)

µ
, where λ = 1 + 4

ε

µ
. (12)

The two Rips-based filtrations introduced at the beginning of Section 3 are now defined with
respect to dG, and no longer dX. To emphasize this aspect, we denote them respectively by
{RGδ (Lα)}α∈R and {RGδ′(Lα)}α∈R. In Theorem 3.1 we set δ′ = 2δ because geodesic distances
were exact. We will now show that noise in geodesic distances can be handled by taking a
slightly larger δ′. We first relate {RGδ (Lα)}α∈R and {RGδ′(Lα)}α∈R to Čech filtrations defined
with respect to dX:

Lemma 3.8 Let λ = 1 + 4 εµ be as in Eq. (12). Assume that δ ≥ 1 + 2λ εµ , ε′ ≥ µδ, δ′ ≥ 1 + 2λ ε
′

µ

and ε′′ ≥ µδ′. Then, ∀α ∈ R, Cε(Lα) ⊆ RGδ (Lα) ⊆ Cε′(Lα) ⊆ RGδ′(Lα) ⊆ Cε′′(Lα).

Proof. Let us prove that RGξ (Lα) ⊆ Cµξ(Lα) and Cξ(Lα) ⊆ RG1+2λξ/µ(Lα) for any arbitrary
value ξ ≥ 0. The lemma will then follow by letting ξ be consecutively equal to ε, δ, ε′, and δ′.

Consider first a simplex {x1, · · · , xl} ofRGξ (Lα). Eq. (12) implies that dX(x1, xi) ≤ µdG(x1, xi) <
µξ for all i ∈ {1, · · · , l}. This means that the open geodesic balls of same radius µξ about the
points xi have x1 in their common intersection, which is therefore non-empty. As a consequence,
the simplex belongs to Cµξ(Lα). Consider now a simplex {x1, · · · , xl} of Cξ(Lα). The open
geodesic balls of same radius ξ about the points xi have a non-empty common intersection,
therefore the pairwise geodesic distances between the points are less than 2ξ. It follows then
from Eq. (12) that the diameter of the simplex in the graph distance is at most 1 + 2λ ξµ . Thus,
the simplex belongs to RG1+2λξ/µ(Lα). �

Letting Gα = RGδ (Lα) and G′α = RGδ′(Lα), where δ, δ′ and ε ≤ ε′ ≤ ε′′ satisfy the conditions
of Lemma 3.8, we can now apply Lemma 3.5 to get the following guarantee:

Theorem 3.9 Let X, f, L be as in Theorem 3.1. Assume that the geodesic distance dX is replaced
by the graph distance dG in the unweighted µ-disk graph G built on top of L. Let λ = 1 + 4 εµ .
Then, for any δ ≥ 1 + 2λ εµ , any δ′ ∈ [1 + 2λδ, 1

µ%c(X)), and any k ∈ N, the kth persistent
homology modules of f and of the nested pair of filtrations {RGδ (Lα) ↪→ RGδ′(Lα)}α∈R are cµδ′-
interleaved. Therefore, the bottleneck distance between their persistence diagrams is at most cµδ′,
by Theorem 2.3.

This result provides sufficient conditions on parameters δ, δ′ for the analysis of the previous
sections to hold in the case where geodesic distances are not exact. Note that simple expressions
can be derived for δ and δ′, which can be later used in our algorithms. For instance, if we assume
that µ ≥ 4ε, then λ ≤ 2 and therefore we can choose δ = 2 and δ′ = 9. Then, the conclusion
of Theorem 3.9 holds provided that δ′ is less than 1

µ%c(X), from which derives the following
condition on the sampling density ε and communication radius µ: 4ε ≤ µ < 1

9%c(X).

4 Algorithms

Section 4.1 presents the core algorithm, which derives from the structural results of Section 3.
The subsequent sections introduce two improvements to the algorithm: the first one deals with
time-varying functions (Section 4.2), the second one extracts additional spatial information (Sec-
tion 4.3).
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4.1 Core algorithm

The algorithm takes as input a n-dimensional vector v, a n×n distance matrixD, and a parameter
δ ≥ 0. The ith entry of v stands for the function value at the ith point of the data set, while the
entries Di,j = Dj,i give the distance between points i and j. No geographic coordinates are to
be provided, so that the algorithm can virtually be applied in any arbitrary metric space. For
clarity of exposition, we assume that the entries of v are sorted, that is: v1 ≤ v2 ≤ · · · ≤ vn.
They are not in our implementation. The algorithm proceeds in two steps:

1. it builds two families of Rips complexes: Rδ({1}) ⊆ Rδ({1, 2}) ⊆ · · · ⊆ Rδ({1, 2, · · · , n})
and R2δ({1}) ⊆ R2δ({1, 2}) ⊆ · · · ⊆ R2δ({1, 2, · · · , n}). The ith complex in each family is
computed from the sub-matrix of D spanned by the rows and columns of indices 1, · · · , i.
The time of appearance of its simplices that are not in the (i− 1)th complex is set to vi.

2. for k ranging from zero to the dimension of the complexes, it computes the kth persistence
diagram of the nested pair of filtrations {Rδ({1, · · · , i}) ↪→ R2δ({1, · · · , i})}1≤i≤n.

Upon termination, the algorithm returns the persistence diagrams computed at step 2. The
quality of this output is guaranteed by the structural results of Section 3, under sufficient sampling
density and in the absence of noise. Observe indeed that the filtrations built at step 1. are the
same as the ones considered in Theorem 3.1, which therefore provides the following theoretical
guarantee:

Theorem 4.1 If the data points form a geodesic ε-sample of some Riemannian manifold X, with
ε < 1

4 %c(X), and if the input distance matrix D gives the exact geodesic distances between the
data points, then, for any input δ ∈ [2ε, 1

2%c(X)) and any tame c-Lipschitz function f : X → R
whose values at the data points are given exactly by the input vector v, the kth persistence diagram
output by the algorithm lies at bottleneck distance at most 2cδ of the kth persistence diagram of f .

Note that the output of the algorithm also gives the homology groups of the underlying space X.
Indeed, Hk(X) is isomorphic to the linear span of the k-dimensional homological features that are
infinitely persistent in the kth persistence diagram of f . Now, by Theorem 4.1, the bottleneck
distance between the diagram of f and the one computed at step 2. of the algorithm is finite,
therefore the infinitely-persistent homological features in both diagrams are in bijection.

One drawback of our approach is that it is not parameter-free, which makes its behavior
dependent on the choice of the input parameter δ. In some sense, this parameter controls
the scale at which the algorithm will process the data. The issue of finding the right scale is
ubiquitous in geometric data analysis, and several solutions based on the idea of persistence have
been proposed. We suggest to consider a whole range of values of δ, between zero and infinity (or
any sufficiently large value). For each value in this range7, we apply the algorithm and report the
infinitely-persistent homological features in the output persistence diagrams, which supposedly
coincide with the ones of the underlying space X, according to Theorem 4.1. Then, following [17]
and subsequent work, we claim that relevant ranges of scales can be identified as ranges of values
of δ over which the numbers of infinitely-persistent homological features in all the diagrams are
stable.

Finally, note that Theorems 3.7 and 3.9 provide theoretical guarantees similar to the ones of
Theorem 4.1 in cases where the input vector v of function values or the input distance matrix D
is noisy. As explained in Section 3.3, this latter case requires to set δ = 2 and to replace 2δ by
δ′ = 9 in the construction of the two families of Rips complexes at step 1. of the algorithm.

7In fact, we only have to consider the finitely many values of δ at which the combinatorial structures of the
Rips complexes change.
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Implementation and complexity. The running time of the algorithm can be bounded in
terms of the size of the data structure, provided that a careful implementation is built. In our
case, the two families of complexes introduced at step 1. are built simultaneously as filtrations
of the largest of the Rips complexes, R2δ({1, · · · , n}), which by definition contains all the other
complexes of the two families. As emphasized in [7], the simplices of R2δ({1, · · · , n}) are in
bijection with the cliques of its 1-skeleton graph. Therefore, we first build this graph in O(n2)
time by comparing the entries of the matrix D with the threshold 2δ. Then, we construct the
simplices of R2δ({1, · · · , n}) iteratively, by increasing dimension. First, all vertices are created.
Then, for each simplex {i1, · · · , ik} created, we look at its 1-ring neighborhood in the graph,
and for each vertex il in this neighborhood, we check whether {i1, · · · , ik, il} forms a clique. If
so, then this new simplex is created, and its diameter max1≤r<s≤lDr,s and appearance time
max1≤r≤l vjr are stored. The time spent checking whether we have a clique and computing the
new diameter and appearance time from the ones of the original simplex {i1, · · · , ik} is O(k),
while the size of the 1-ring neighborhood is O(n). Thus, the total time spent building the complex
is O(ndN), where d is the dimension of the complex and N is its total number of simplices. Then,
within O(N logN) time, we order the created simplices according to their appearance times, to
build the filtration of parameter 2δ. As for the filtration of parameter δ, observe that each of its
simplices must appear in both filtrations at the same time. Therefore, we can build the filtration
of parameter δ in O(N) time by scanning through the sorted list of simplices in the filtration of
parameter 2δ and reporting the simplices that have diameter at most δ. Finally, we perform step
2. by running the algorithm of [9] on our two filtrations. This variant of the standard persistence
algorithm has the same worst-case running time of O(N3).

Theorem 4.2 The total running time of the algorithm is O(ndN+N3), where d is the dimension
of R2δ({1, · · · , n}) and N is its total number of simplices.

Step 2. is clearly the pacing phase of our method. However, it is reported in [27] that, although
the worst-case running time of the persistence algorithm is O(N3), in most practical cases it
has an almost-linear behavior. Thus, the running time of our method is likely to be O(ndN)
in practice.

Note also that R2δ({1, · · · , n}) could potentially span the full (n − 1)-simplex and there-
fore have as many as 2n simplices. However, there are important cases where the size of the
complex remains bounded. For instance, when the data points are uniformly sampled along a
m-dimensional Riemannian manifold, a packing argument detailed in [7] shows that the size of
the complex is at most 22mn, and that it even reduces to 2O(m2)n if a reasonable upper bound
on m is known. This reduces the running time of the algorithm to 2O(m2)n3 and thereby makes
the approach tractable when the data points sample uniformly some low-dimensional manifold,
possibly embedded in high-dimensional space. Sampling uniformity can be achieved in practice
by a landmarking strategy [17].

4.2 Time-varying functions

It is commonplace in sensor networks and related areas that the functions under study vary with
time. In monitoring applications for instance, one wants to get a high-level description of the
distribution of some intensive quantity like temperature or humidity over a fixed domain. Such
quantities vary typically on a day scale, and a natural goal is to be able to maintain accurate
approximations to their persistence diagrams under such variations.

We model the problem as follows: given a finite point cloud L = {x1, · · · , xn} that is a
geodesic ε-sample of some fixed Riemannian manifold X, we want to maintain accurate approx-
imations to the persistence diagrams of some time-varying function ft : X → R whose values
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are known only at the points of L and at a finite number of instants t0 ≤ t1 ≤ · · · ≤ tk. We
assume fti to be tame and c-Lipschitz for all i, for some fixed constant c. Thanks to this assump-
tion, Theorem 4.1 provides us with theoretical guarantees regarding the quality of the output
persistence diagrams at every instant ti. The dynamic version of the algorithm works as follows:

It performs an initialization step at time t0, where it simply applies the core algorithm as in
the static setting. The filtrations of parameters δ and 2δ are stored as two arrays of simplices,
sorted according to their times of appearance, which are derived from the values of ft0 at the
vertices.

At every subsequent instant tj we need to update the two filtrations, and then to recompute
their kth persistence diagram for all values k between zero and their dimension. In fact, since X
and L remain fixed throughout the process, the distance matrix D does not change and therefore
the Rips complexes Rδ(L) and R2δ(L) remain the same. Thus, updating the filtrations boils down
to re-sorting their simplices according to the new appearance times induced by ftj . Computing
the new appearance times is done by scanning through the filtrations, and for each simplex,
finding the vertex of maximal ftj -value. Then, re-sorting the simplices of each filtration is done
in-place in the array of the filtration using insertion sort. The reason for using this particular
sorting algorithm is that it decomposes the permutation on the simplices into a sequence of
inversions8. This sequence is then provided as input to the vineyards9 variant of the persistence
algorithm [10], which uses this information to update the kth persistence diagram for all values
k at once.

The time complexity of the initialization stage is the same as the one of the static algorithm,
namely O(N3), where N is the total number of simplices of R2δ(L). Then, at every subsequent
instant tj , the time spent updating the appearance times is O(dN), where d is the dimension of
R2δ(L). Consider now the permutation πj on the simplices induced by the change from function
ftj−1 to function ftj . A key feature of insertion sort is that it decomposes πj into a minimal
sequence of inversions, of size |πj |. Its time complexity is thus O(N+ |πj |). Finally, the vineyards
algorithm updates the persistence diagrams in O(N) time per inversion. Hence, the total time
spent by our method at instant tj is O((1 + d+ |πj |)N). Although d is bounded by logN , in the
worst case |πj | can be up to Θ(N2), thereby raising the complexity to Θ(N3), which is no better
than if the filtrations and persistence diagrams were re-computed entirely at time tj . However,
this is a worst-case analysis, and in many practical situations |πj | is likely to be small. If for
instance the values ft(xi) at the data points follow polynomial trajectories in time10, such that
only a constant number (say two) of such trajectories meet at any given time, then between two
instants tj−1 and tj that are close enough only two function values ft(xi), ft(xj) are permuted.
As a consquence, only the stars of xi, xj in R2δ(L) are affected by πj , and therefore we have
|πj | = O(d2

v), where dv denotes the size of the largest possible star of a vertex of R2δ(L). The
update time of our method at tj becomes then O((d+d2

v)N) = O((d+d2
v)dvn). If the input point

cloud uniformly samples some Riemannian manifold of dimension m (known within a constant
factor), then we have d = O(m) and dv = 2O(m2), which reduces the update time to 2O(m2)n —
a quantity that is linear in the size of the input, modulo a constant factor that depends on the
intrinsic dimensionality of the data.

Finally, let us mention that, similarly to the standard persistence algorithm, the vineyards
algorithm has been observed to run much faster in practice than expected in theory [10]. Typi-
cally, the observed running time is constant per simplex inversion. This reduces the update time
of our method to O(d+ |πj |) in the general case, and even to a constant 2O(m2) in the practical
setting described above.

8An inversion is a transposition between two simplices that are adjacent in the array.
9Originally designed for a single filtration, this algorithm was adapted to our context in Appendix A of [9].

10This is the usual assumption in the kinetic data structures framework [18].
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4.3 Extracting additional spatial information

Assume the domain X underlying the data to be a m-dimensional Riemannian manifold, and
the unknown function f : X → R to be a Morse function, i.e. a smooth function with only
nondegenerate critical points. We want to recover the ascending regions (a.k.a. stable manifolds)
of the maxima of f , as well as the descending regions (a.k.a. unstable manifolds) of its minima.
The ascending region of a maximum p is the set of points of X that eventually reach p by moving
along the flow induced by the gradient vector field of f . Symmetrically, the descending region
of a minimum q is the set of points that eventually reach q by moving against the gradient
flow. These regions share many interesting properties, among which the following ones are of
particular interest to us: ascending (resp. descending) regions form pairwise disjoint open cells
homeomorphic to Rm that cover X up to a subset of measure zero. In other words, they can
be used as a tool for segmenting the domain X according to the basins of attraction of the
maxima (resp. minima) of f . Furthermore, they can be used as the main building block of the
Morse-Smale decomposition of X induced by f , since the faces of the complex are obtained as
intersections of ascending and descending regions. Note that the ascending regions of f are the
descending regions of −f , so the problem reduces to finding the descending regions of f from its
values at a finite sampling L of X.

As in the previous sections, the geographic locations of the data points are not assumed to be
known, and the algorithm uses only the connectivity between the data points in the 1-skeleton
graph of the Rips complex R2δ(L), called the Rips graph G from now on. For simplicity, we
assume that the values of f at the data points are all different. This genericity condition is
easily ensured by an infinitesimal perturbation of f . At a high level, our method is composed of
two phases: first, it approximates the gradient vector field of f at the vertices of G and clusters
them according to the (approximate) basins of attraction in the graph G; second, it uses the
0th persistence diagram of f to merge the clusters of short lifespans with longer-lasting clusters.
The clustering technique used in the first phase is in fact not new, and it has been shown to
be quite unstable under small perturbations of the function, both in theory [12] and in practice
[26]. The novelty of our approach lies in the way it uses persistence to merge clusters and regain
some stability.

In the first phase, we iterate over the vertices of G, in the order of their f -values. At each
vertex v, the direction of −∇f is approximated by the edge e of G that connects v to a neighbor
u minimizing the quantity f(u)−f(v)

|e| , where |e| is the length of the edge — computed during the
construction of the Rips graph G. If no neighbor of v has a lower f -value than v, then v is a
local minimum of f in G and is therefore kept disconnected. Such a vertex v is called a sink.
Note that every non-sink vertex w is connected to a proper neighbor in G, and by following the
approximate direction of −∇f in the graph we eventually reach a sink because the value of f
decreases strictly along the path followed. We declare this sink as the center of the cluster to
which w belongs.

Recall now that the core algorithm (Section 4.1) approximates the kth persistence dia-
gram of f via the kth persistent homology module of the nested pair of filtrations {Rδ(Lα) ↪→
R2δ(Lα)}α∈R, where by definition Lα = L∩f−1((−∞, α]). In the special case of zero-dimensional
homology however, we know that each vertex appears both in Rδ(Lα) and in R2δ(Lα) at the
same time, therefore im H0(Rδ(Lα)) → H0(R2δ(Lα)) is isomorphic to H0(R2δ(Lα)). As a re-
sult, the 0th persistence diagram of f is in fact approximated by the 0th persistence diagram of
the filtration {R2δ(L)}α∈R, which can be computed easily from its 1-skeleton graph G using a
variant of the standard union-find data structure, described in [14]. This is what phase two of
our algorithm does. The outcome is a set of pairs (v, e), where v is a local minimum of f in the
graph G, and e is an edge of G that connects the connected component created by v in G to some
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older connected component. Stated differently, v is a sink and e is the first edge that connects
its cluster to some other cluster of center u. If the lifespan11 of the cluster of v is shorter than
some user-defined threshold λ, then the algorithm merges the cluster of v into the cluster of u.

Our implementation uses only one pass through the graph G, during which the approximate
gradients at the vertices are computed and the clusters are formed and merged on the fly using
the union-find data structure of [14]. Thus, once the Rips graph G is built, the remaining running
time is O(|G|A−1(|G|)), where |G| is the size of G and A is the Ackermann function. In addition,
Theorem 4.1 provides the following theoretical guarantee on the output of the algorithm:

Theorem 4.3 Assume L to be a geodesic ε-sample of X, with ε < 1
4 %c(X), and f to be tame

and c-Lipschitz. Assume further that there exist two non-negative values d2 > d1 + 16cε such
that the 0th persistence diagram of f has the following well-separated structure: D0 f = D1∪D2,
with max{py − px, p ∈ D1} ≤ d1 and min{qy − qx, q ∈ D2} ≥ d2. Then, for any Rips parameter
δ ∈ [2ε,min{ 1

2%c(X), d2−d1
8c }) and any threshold λ ∈ (d1 + 4cδ, d2 − 4cδ), the number of clusters

computed by our algorithm is equal to the number of basins of attraction of minima of f on X
whose lifespans are at least λ. Furthermore, there is a pairing between clusters and basins of
attraction that modifies the birth times by at most 2cδ.

The well-separatedness of the 0th persistence diagram of f can be interpreted as a signal-to-
noise ratio condition: the relevant peaks or valleys of f must be significantly more persistent
than the non-relevant ones, as measured by the difference between their lifespans. Under such
a condition, it is possible to threshold the diagrams of f and of the Rips complex R2δ(L) so
that the remaining finite point sets in both diagrams are in bijection and lie at small bottleneck
distance of each other.

In addition to the above stability guarantee, it would be desirable to have an approximation
result that bounds the distance between the set of data points falling into the cluster of a given
sink and the basin of attraction of the corresponding minimum of f in X. To the best of our
knowledge, this question remains open.

5 Applications & Discussion

We now illustrate the relevance and generality of our approach through three specific applications.
For each application, we describe the context and show some experimentation validation. We
also provide timings information in Table 1.

data set dimension # vertices # edges Rips graph (sec.) clustering (sec.) total (sec.)

crater 2 1,048 7,095 0.01 0.00 0.01

torus 3 2,034 7,650 0.01 0.00 0.01

four Gaussians 2 6,354 51,946 0.07 0.02 0.09

hand 2 19,470 158,395 0.27 0.05 0.32

double spiral 2 114,563 2,116,035 2.43 0.61 3.04

octopus 3 770,196 9,540,143 14.56 7.11 21.67

Table 1: Timings on an Intel Core 2 Duo T7500 @ 2.20GHz with 2GB of RAM. We used the
C++ library ANN [28] for the proximity queries involved in the construction of the Rips graph.
The clustering phase comprises both steps of the algorithm of Section 4.3, which are performed
simultaneously.

11Defined as the difference between the times at which e and v appear in the Rips graph G.
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Figure 2: Segmentation result on a sampled hand-shaped 2-D domain. The segmentation function
is the Euclidean distance to the subset of the data points lying on the boundary of the domain.
The barcode shows only three long intervals, corresponding to the palm of the hand and to the
two rightmost fingers (center-right image), which have significant bottlenecks at their base. This
suggests that the above function is not well-suited for segmenting this type of shape. Indeed, when
a finger (such as the index in our example) has no bottleneck, the exact distance to the boundary
has no local maximum inside this finger, therefore no ascending region separates it from the rest
of the hand. In practice, the inaccuracy of our gradient estimation creates artificial local maxima
which, by chance, cover the fingers (left). However, our barcode reveals that their ascending
regions are actually not persistent. The rightmost image shows the result obtained with a smaller
persistence threshold τ , which divides the palm of the hand before separating it from the index
finger.
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Figure 3: Result obtained on the same data set as in Figure 2, using the normalized diameter
of the set of nearest boundary points as the segmentation function. The barcode shows six long
intervals corresponding to the palm of the hand and to the five fingers. The results before and
after merging non-persistence clusters are shown respectively to the left and to the right of the
barcode.

Clustering. Clustering attempts to group points by assuming they are drawn from some un-
known probability distribution. Our approach is inspired by Mean-Shift clustering [11]. Given
an input point cloud L, we use a simple density estimator to approximate the local density at
the points of L. As Figure 6 shows, our estimator can be quite noisy. However, our emphasis is
not on accurate density estimation, but rather on clustering with noisy density estimates. Our
estimator is provided together with L as input to the algorithm of Section 4.3, which clusters
the points of L according to the basins of attraction of the local maxima of the estimator in the
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Figure 4: Segmentation result obtained from a sampling of the interior of an octopus in 3-D.
The segmentation function is the squared distance to the boundary of the body, whose barcode
(center) somewhat emphasizes the bottlenecks at the base of the legs. With this segmentation
function, there is a small range of values of the persistence threshold τ (easily computed from
the barcode) that allow to recover the eight legs and the head. Pictures on the left show the result
before merging clusters, while pictures on the right show the result after merging.

Rips graph G2δ built over L. Due to the noisy nature of the estimator, we get a myriad of small
clusters before the merging phase. The novelty of our approach is to provide visual feedback
to the user in the form of an approximate persistence barcode of the estimator, from which the
user can choose a relevant merging parameter τ . For instance, the example of Figure 6 is highly
non-linear and noisy, yet the barcode clearly shows two long intervals, suggesting that there are
two main clusters.

Another important feature of our approach is to make a clear distinction between the merging
criterion, governed by τ and based solely on persistence information, and the approximation
accuracy of the basins of attraction of the maxima, governed by the Rips parameter δ and based
solely on spatial information. In the example of Figure 6, reducing δ while keeping τ fixed
enabled us to separate the two spirals from the background while keeping them separate and
integral.

Shape Segmentation. The goal of shape segmentation is to partition a given shape into
meaningful segments, such as fingers on a hand. This problem is ill-posed by nature, as meaning-
fulness is a subjective notion. Given a sampled shape X, our approach is to apply the algorithm
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of Section 4.3 on some segmentation function f : X → R derived from the geometric features of
X. The output is a partition of the point cloud into clusters corresponding roughly to the basins
of attraction of the significant peaks of f . Thus, we cast the segmentation problem into another
problem, namely the one of finding a relevant segmentation function for a given class of data.

We investigated two functions in our experiments: Distance from a point to the set of samples
on the boundary, as proposed in [12, 26]; Diameter of the set of nearest samples on the boundary,
normalized by the previous distance. We chose these two functions as a demonstration, but our
method can be applied virtually with any segmentation function. The approximate barcodes
computed by the algorithm provide information on the stability of the different segments. This
information can be viewed as an indicator of the relevance of a given segmentation function on
a particular class of data. In Figures 2 and 3, the barcodes suggest that the second function
is superior to the first one at separating the fingers from the palm of a hand. Yet, the second
function turned out to be too noisy on the octopus data set of Figures 4 and 5.

Sensor networks. Our approach was originally designed with the sensor network framework
in mind, where physical quantities such as temperature or humidity are measured by a collection
of communicating sensors, and where the goal is to answer qualitative queries such as how
many significant hot spots are being sensed. Purely geometric approaches cannot be applied in
this setting, since geographic location is usually unavailable. Rough pairwise geodesic distances
however are available, in the form of graph distances in the communication network. With this
data at hand, the algorithms of Section 4 can find the number of hot spots, provide an estimation
of their prominance and of their size in the network, and track them as the quantity being
measured changes. The computations are done in a centralized way, after a data aggregation
step.

τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4

τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8

Figure 5: Influence of the persistence threshold τ on the data set of Figure 4.
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Final remarks

The potential of our approach stems from the observation that many problems can be reduced
to the analysis of some scalar field defined over a given point cloud data. With the theoretical
and algorithmic tools developed in this paper at hand, the users can cast these problems into the
one of finding the scalar field that is most suitable for their particular purposes. Thus, clustering
is turned into a density estimation problem, while shape segmentation is turned into finding a
relevant segmentation function for a given class of shapes. Many application-specific questions
arise from this paradigm, which we do not pretend to solve in the paper. Some of them, related
to the above scenarios, will be addressed in subsequent work.
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