On Probability Distributions for Trees: Representations, Inference and Learning

Abstract : We study probability distributions over free algebras of trees. Probability distributions can be seen as particular (formal power) tree series [Berstel et al 82, Esik et al 03], i.e. mappings from trees to a semiring K . A widely studied class of tree series is the class of rational (or recognizable) tree series which can be defined either in an algebraic way or by means of multiplicity tree automata. We argue that the algebraic representation is very convenient to model probability distributions over a free algebra of trees. First, as in the string case, the algebraic representation allows to design learning algorithms for the whole class of probability distributions defined by rational tree series. Note that learning algorithms for rational tree series correspond to learning algorithms for weighted tree automata where both the structure and the weights are learned. Second, the algebraic representation can be easily extended to deal with unranked trees (like XML trees where a symbol may have an unbounded number of children). Both properties are particularly relevant for applications: nondeterministic automata are required for the inference problem to be relevant (recall that Hidden Markov Models are equivalent to nondeterministic string automata); nowadays applications for Web Information Extraction, Web Services and document processing consider unranked trees.
Type de document :
Communication dans un congrès
NIPS Workshop on Representations and Inference on Probability Distributions, Dec 2007, Whistler, Canada. 2007
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00294636
Contributeur : Marc Tommasi <>
Soumis le : jeudi 10 juillet 2008 - 11:24:49
Dernière modification le : vendredi 9 mars 2018 - 11:24:56
Document(s) archivé(s) le : vendredi 28 mai 2010 - 21:36:31

Fichiers

nips07.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00294636, version 1
  • ARXIV : 0807.2983

Collections

Citation

François Denis, Amaury Habrard, Rémi Gilleron, Marc Tommasi, Édouard Gilbert. On Probability Distributions for Trees: Representations, Inference and Learning. NIPS Workshop on Representations and Inference on Probability Distributions, Dec 2007, Whistler, Canada. 2007. 〈inria-00294636〉

Partager

Métriques

Consultations de la notice

385

Téléchargements de fichiers

342