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Abstract

Tuning hardwired compiler optimizations for rapidly

evolving hardware makes porting an optimizing com-

piler for each new platform extremely challenging. Our

radical approach is to develop a modular, extensible,

self-optimizing compiler that automatically learns the

best optimization heuristics based on the behavior of the

platform. In this paper we describe MILEPOST1 GCC,

a machine-learning-based compiler that automatically

adjusts its optimization heuristics to improve the exe-

cution time, code size, or compilation time of specific

programs on different architectures. Our preliminary

experimental results show that it is possible to consider-

ably reduce execution time of the MiBench benchmark

suite on a range of platforms entirely automatically.

1 Introduction

Current architectures and compilers continue to evolve

bringing higher performance, lower power and smaller

size while attempting to keep time to market as short as

possible. Typical systems may now have multiple het-

erogeneous reconfigurable cores and a great number of

compiler optimizations available, making manual com-

piler tuning increasingly infeasible. Furthermore, static

compilers often fail to produce high-quality code due to

a simplistic model of the underlying hardware.

1MILEPOST - MachIne Learning for Embedded PrOgramS op-

Timization [4]

The difficulty of achieving portable compiler perfor-

mance has led to iterative compilation [11, 16, 15, 26,

33, 19, 30, 24, 25, 18, 20, 22] being proposed as a

means of overcoming the fundamental problem of static

modeling. The compiler’s static model is replaced by

a search of the space of compilation strategies to find

the one which, when executed, best improves the pro-

gram. Little or no knowledge of the current platform is

needed so programs can be adapted to different archi-

tectures. It is currently used in library generators and

by some existing adaptive tools [36, 28, 31, 8, 1, 3].

However it is largely limited to searching for combina-

tions of global compiler optimization flags and tweaking

a few fine-grain transformations within relatively nar-

row search spaces. The main barrier to its wider use is

the currently excessive compilation and execution time

needed in order to optimize each program. This prevents

its wider adoption in general purpose compilers.

Our approach is to use machine learning which has the

potential to reuse knowledge across iterative compila-

tion runs, gaining the benefits of iterative compilation

while reducing the number of executions needed.

The MILEPOST project’s [4] objective is to develop

compiler technology that can automatically learn how to

best optimize programs for configurable heterogeneous

embedded processors using machine learning. It aims to

dramatically reduce the time to market of configurable

systems. Rather than developing a specialised compiler

by hand for each configuration, MILEPOST aims to

produce optimizing compilers automatically.
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A key goal of the project is to make machine learning

based compilation a realistic technology for general-

purpose compilation. Current approaches [29, 32, 10,

14] are highly preliminary; limited to global compiler

flags or simple transformations considered in isolation.

GCC was selected as the compiler infrastructure for

MILEPOST as it is currently the most stable and ro-

bust open-source compiler. It supports multiple archi-

tectures and has multiple aggressive optimizations mak-

ing it a natural vehicle for our research. In addition,

each new version usually features new transformations

demonstrating the need for a system to automatically re-

tune its optimization heuristics.

In this paper we present early experimental results

showing that it is possible to improve the performance

of the well-known MiBench [23] benchmark suite on a

range of platforms including x86 and IA64. We ported

our tools to the new ARC GCC 4.2.1 that targets ARC

International’s configurable core family. Using MILE-

POST GCC, after a few weeks training, we were able to

learn a model that automatically improves the execution

time of MiBench benchmark by 11% demonstrating the

use of our machine learning based compiler.

This paper is organized as follows: the next section de-

scribes the overall MILEPOST framework and is, it-

self, followed by a section detailing our implementation

of the Interactive Compilation Interface for GCC that

enables dynamic manipulation of optimization passes.

Section 4 describes machine learning techniques used

to predict good optimization passes for programs us-

ing static program features and optimization knowledge

reuse. Section 5 provides experimental results and is

followed by concluding remarks.

2 MILEPOST Framework

The MILEPOST project uses a number of components,

at the heart of which is the machine learning enabled

MILEPOST GCC, shown in Figure 1. MILEPOST

GCC currently proceeds in two distinct phases, in ac-

cordance with typical machine learning practice: train-

ing and deployment.

Training During the training phase we need to gather

information about the structure of programs and record

how they behave when compiled under different op-

timization settings. Such information allows machine

learning tools to correlate aspects of program structure,

or features, with optimizations, building a strategy that

predicts a good combination of optimizations.

In order to learn a good strategy, machine learning tools

need a large number of compilations and executions as

training examples. These training examples are gener-

ated by a tool, the Continuous Collective Compilation

Framework[2] (CCC), which evaluates different compi-

lation optimizations, storing execution time, code size

and other metrics in a database. The features of the pro-

gram are extracted from MILEPOST GCC via a plugin

and are also stored in the database. Plugins allow fine

grained control and examination of the compiler, driven

externally through shared libraries.

Deployment Once sufficient training data is gathered,

a model is created using machine learning modeling.

The model is able to predict good optimization strate-

gies for a given set of program features and is built as

a plugin so that it can be re-inserted into MILEPOST

GCC. On encountering a new program the plugin deter-

mines the program’s features, passing them to the model

which determines the optimizations to be applied.

Framework In this paper we use a new version of the

Interactive Compilation Interface (ICI) for GCC which

controls the internal optimization decisions and their pa-

rameters using external plugins. It now allows the com-

plete substitution of default internal optimization heuris-

tics as well as the order of transformations.

We use the Continuous Collective Compilation Frame-

work [2] to produce a training set for machine learn-

ing models to learn how to optimize programs for the

best performance, code size, power consumption and

any other objective function needed by the end-user.

This framework allows knowledge of the optimization

space to be reused among different programs, architec-

tures and data sets.

Together with additional routines needed for machine

learning, such as program feature extraction, this forms

the MILEPOST GCC. MILEPOST GCC transforms

the compiler suite into a powerful research tool suitable

for adaptive computing.

The next section describes the new ICI structure and ex-

plains how program features can be extracted for later

machine learning in Section 4.
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Figure 1: Framework to automatically tune programs and improve default optimization heuristics using machine

learning techniques, MILEPOST GCC with Interactive Compilation Interface (ICI) and program features extractor,

and Continuous Collective Compilation Framework to train ML model and predict good optimization passes

3 Interactive Compilation Interface

This section describes the Interactive Compilation Inter-

face (ICI). The ICI provides opportunities for external

control and examination of the compiler. Optimization

settings at a fine-grained level, beyond the capabilities

of command line options or pragmas, can be managed

through external shared libraries, leaving the compiler

uncluttered.

The first version of ICI [21] was reactive and required

minimal changes to GCC. It was, however, unable to

modify the order of optimization passes within the com-

piler and so large opportunities for speedup were closed

to it. The new version of ICI [9] expands on the ca-

pabilities of its predecessor permitting the pass order to

be modified. This version of ICI is used in the MILE-

POST GCC to automatically learn good sequences of

optimization passes. In replacing default optimization

heuristics, execution time, code size and compilation

time can be improved.

3.1 Internal structure

To avoid the drawbacks of the first version of the ICI, we

designed a new version, as shown in Figure 2. This ver-

sion can now transparently monitor execution of passes

or replace the GCC Controller (Pass Manager), if de-

sired. Passes can be selected by an external plugin

which may choose to drive them in a very different order

to that currently used in GCC, even choosing different

pass orderings for each and every function in program

being compiled. Furthermore, the plugin can provide its

own passes, implemented entirely outside of GCC.

In an additional set of enhancements, a coherent event

and data passing mechanism enables external plugins to

discover the state of the compiler and to be informed as

it changes. At various points in the compilation process

events (IC Event) are raised indicating decisions about

transformations. Auxiliary data (IC Data) is registered

if needed.

Since plugins now extend GCC through external shared

libraries, experiments can be built with no further mod-

ifications to the underlying compiler. Modifications for
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Figure 2: GCC Interactive Compilation Interface: a) original GCC, b) GCC with ICI and plugins

different analysis, optimization and monitoring scenar-

ios proceed in a tight engineering environment. These

plugins communicate with external drivers and can al-

low both high-level scripting and communication with

machine learning frameworks such as MILEPOST

GCC.

Note that it is not the goal of this project to develop

fully fledged plugin system. Rather, we show the util-

ity of such approaches for iterative compilation and

machine learning in compilers. We may later utilize

GCC plugin systems currently in development, for ex-

ample [7] and [13].

Figure 3 shows some of the modifications needed to en-

able ICI in GCC with an example of a passive plugin

to monitor executed passes. The plugin is invoked by

the new -fici GCC flag or by setting ICI_USE environ-

ment variable to 1 (to enable non-intrusive optimiza-

tions without changes to Makefiles). When GCC detects

these options, it loads a plugin (dynamic library) with a

name specified by ICI_PLUGIN environment variable

and checks for two functions start and stop as shown in

Figure 3a.

The start function of the example plugin registers an

event handler function executed_pass on an IC-Event

called pass_execution.

Figure 3c shows simple modifications in GCC Con-

troller (Pass Manager) to enable monitoring of exe-

cuted passes. When the GCC Controller function exe-

cute_one_pass is invoked, we register an IC-Parameter

called pass_name giving the real name of the executed

pass and trigger an IC-Event pass_execution. This in

turn invokes the plugin function executed_pass where

we can obtain the current name of the compiled function

using ici_get_feature("function_name") and the pass

name using ici_get_parameter("pass_name").

IC-Features provide read only data about the compila-

tion state. IC-Parameters, on the other hand, can be dy-

namically changed by plugins to change the subsequent

behavior of the compiler. Such behavior modification is

demonstrated in the next subsection using an example

with an avoid_gate parameter needed for dynamic pass

manipulation.

Since we use the name field from the GCC pass struc-

ture to identify passes, we have had to ensure that each

pass has a unique name. Previously, some passes have

had no name at all and we suggest that in the future

a good development practice of always having unique

names would be sensible.
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Figure 3: Some GCC modifications to enable ICI and an example of a plugin to monitor executed passes:

a) IC Framework within GCC, b) IC Plugin to monitor executed passes, c) GCC Controller (pass manager) modifi-

cation

3.2 Dynamic Manipulation of GCC Passes

Previous research shows a great potential to improve

program execution time or reduce code size by carefully

selecting global compiler flags or transformation param-

eters using iterative compilation. The quality of gener-

ated code can also be improved by selecting different

optimization orders as shown in [16, 15, 17, 26]. Our

approach combine the selection of optimal optimization

orders and tuning parameters of transformations at the

same time.

The new version of ICI enables arbitrary selection of le-

gal optimization passes and has a mechanism to change

parameters or transformations within passes. Since

GCC currently does not provide enough information

about dependencies between passes to detect legal or-

ders, and the optimization space is too large to check

all possible combinations, we focused on detecting in-

fluential passes and legal orders of optimizations. We

examined the pass orders generated by compiler flags

that improved program execution time or code size us-

ing iterative compilation.

Before we attempt to learn good optimization settings

and pass orders we first confirmed that there is indeed

performance to be gained within GCC from such actions

otherwise there is no point in trying to learn. By using

the Continuous Collective Compilation Framework [2]

to random search though the optimization flag space

(50% probability of selecting each optimization flag)

and MILEPOST GCC 4.2.2 on AMD Athlon64 3700+

and Intel Xeon 2800MHz we could improve execution

time of susan_corners by around 16%, compile time by

22% and code size by 13% using Pareto optimal points

as described in the previous work [24, 25]. Note, that

the same combination of flags degrade execution time

of this benchmark on Itanium-2 1.3GHz by 80% thus

demonstrating the importance of adapting compilers to

each new architecture. Figure 4a shows the combina-

tion of flags found for this benchmark on AMD platform

while Figures 4b,c show the passes invoked and moni-

tored by MILEPOST GCC for the default -O3 level and

for the best combination of flags respectively.

Given that there is good performance to be gained

by searching for good compiler flags, we now wish

to automatically select good optimization passes and

transformation parameters. These should enable fine-

grained program and compiler tuning as well as non-

intrusive continuous program optimizations without
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Figure 4: a) Selection of compiler flags found using CCC Framework with uniform random search strategy that

improve execution and compilation time for susan_corners benchmark over -O3, b) recorded compiler passes for

-O3 using ICI, c) recorded compiler passes for the good selection of flags (a)

modifications to Makefiles, etc. The current version

of ICI allows passes to be called directly using the

ici_run_pass function that in turn invokes GCC function

execute_one_pass. Therefore, we can circumvent the

default GCC Pass Manager and execute good sequences

of passes previously found by the CCC Framework as

shown in Figure 2b or search for new good orders of

optimizations. However, we leave the determination of

their interaction and dependencies for future work.

To verify that we can change the default optimization

pass orders using ICI, we recompiled the same bench-

mark with the -O3 flag but selecting passes shown in

Figure 4c. However, note that the GCC internal function

execute_one_pass shown in Figure 3c has gate control

(pass->gate()) to execute the pass only if the associate

optimization flags is selected. To avoid this gate con-

trol we use IC-Parameter "gate_status" and IC-Event

"avoid_gate" so that we can set gate_status to TRUE

within plugins and thus force its execution. The exe-

cution of the generated binary shows that we improve

its execution time by 13% instead of 16% and the rea-

son is that some compiler flags not only invoke associ-

ated pass such as -funroll-loops but also select specific

fine-grain transformation parameters and influence code

generation in other passes. Thus, at this point we recom-

pile programs with such flags always enabled, and in the

future plan to add support for such cases explicitly.

3.3 Adding program feature extractor pass

Our machine learnt model predicts the best GCC opti-

mization to apply to an input program based on its pro-

gram structure or program features. The program fea-

tures are typically a summary of the internal program

representation and characterize the essential aspects of

a program needed by the model to distinguish between
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good and bad optimizations.

The current version of ICI allows invoking auxiliary

passes that are not a part of default GCC compiler.

These passes can monitor and profile the compilation

process or extract data structures needed to generate pro-

gram features.

During the compilation, the program is represented by

several data structures, implementing the intermediate

representation (tree-SSA, RTL etc), control flow graph

(CFG), def-use chains, the loop hierarchy, etc. The data

structures available depend on the compilation pass cur-

rently being performed. For statistical machine learn-

ing, the information about these data structures is en-

coded as a vector of constant size of numbers (i.e fea-

tures) - this process is called feature extraction and is

needed to enable optimization knowledge reuse among

different programs.

Therefore, we implemented an additional GCC pass ml-

feat to extract static program features. This pass is not

invoked during default compilation but can be called us-

ing a extract_program_static_features plugin after any

arbitrary pass starting from FRE when all the GCC data

necessary to produce features is ready.

In the MILEPOST GCC, the feature extraction is per-

formed in two stages. In the first stage, a relational rep-

resentation of the program is extracted; in the second

stage, the vector of features is computed from this rep-

resentation.

In the first stage, the program is considered to be charac-

terized by a number of entities and relations over these

entities. The entities are a direct mapping of similar en-

tities defined by the language reference, or generated

during the compilation. Such examples of entities are

variables, types, instructions, basic blocks, temporary

variables, etc.

A relation over a set of entities is a subset of their Carte-

sian product. The relations specify properties of the en-

tities or the connections between them. For describing

the relations we used a notation based on logic - Datalog

is a Prolog-like language but with a simpler semantics,

suitable for expressing relations and operations between

them [35, 34]

For extracting the relational representation of the pro-

gram, we used a simple method based on the examina-

tion of the include files. The compiler main data struc-

tures are struct data types, having a number of f ields.

Each such struct data type may introduce an entity, and

its f ields may introduce relations over the entity rep-

resenting the including struct data type and the entity

representing the data type of the f ield. This data is col-

lected using ml-feat pass.

In the second stage, we provide a Prolog program defin-

ing the features to be computed from the Datalog re-

lational extracted from the compiler internal data struc-

tures in the first stage. The extract_program_static _fea-

tures plugin invokes a Prolog compiler to execute this

program, the result being the vector of features shown

in Table 1 that can later be used by the Continuous Col-

lective Compilation Framework to build machine learn-

ing models and predict best sequences of passes for new

programs. This example shows the flexibility and capa-

bilities of the new version of ICI.

4 Using Machine Learning to Select Good Op-

timization Passes

The previous sections have described the infrastructure

necessary to build a learning compiler. In this section

we describe how this infrastructure is used in building a

model.

Our approach to selecting good passes for programs is

based upon the construction of a probabilistic model on

a set of M training programs and the use of this model in

order to make predictions of “good” optimization passes

on unseen programs.

Our specific machine learning method is similar to that

of [10] where a probability distribution over “good” so-

lutions (i.e. optimization passes or compiler flags) is

learnt across different programs. This approach has

been referred in the literature to as Predictive Search

Distributions (PSD) [12]. However, unlike [10, 12]

where such a distribution is used to focus the search of

compiler optimizations on a new program, we use the

distribution learned to make one-shot predictions on un-

seen programs. Thus we do not search for the best opti-

mization, we automatically predict it.

4.1 The Machine Learning Model

Given a set of training programs T 1, . . . ,T M , which can

be described by (vectors of) features t1 . . . , tM, and for

which we have evaluated different sequences of opti-

mization passes (x) and their corresponding execution
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times (or speed-ups y) so that we have for each pro-

gram M j an associated dataset D j = {(xi,yi)}N j

i=1, with

j = 1, . . .M, our goal is to predict a good sequence of

optimization passes x∗ when a new program T ∗ is pre-

sented.

We approach this problem by learning the mapping from

the features of a program t to a distribution over good

solutions q(x|t,θ), where θ are the parameters of the

distribution. Once this distribution has been learnt, pre-

dictions on a new program T ∗ is straightforward and it is

achieved by sampling at the mode of the distribution. In

other words, we obtain the predicted sequence of passes

by computing:

x∗ = argmax
x

q(x|t,θ). (1)

4.2 Continuous Collective Compilation Frame-

work

We used Continuous Collective Compilation Frame-

work [2] and MILEPOST GCC shown in Figure 1 to

generate a training set of programs together with com-

piler flags selected uniformly at random, associated se-

quences of passes, program features and speedups (code

size, compilation time) that is stored in the externally

accessible Global Optimization Database. We use this

training set to build machine learning model described

in the next section which in turn is used to predict the

best sequence of passes for a new program given its

feature vector. Current version of CCC Framework re-

quires minimal changes to the Makefile to pass opti-

mization flags or sequences of passes and has a support

to verify the correctness of the binary by comparing pro-

gram output with the reference one to avoid illegal com-

binations of optimizations.

4.3 Learning and Predicting

In order to learn the model it is necessary to fit a dis-

tribution over good solutions to each training program

beforehand. These solutions can be obtained, for ex-

ample, by using uniform sampling or by running an es-

timation of distribution algorithm (EDA, see [27] for

an overview) on each of the training programs. In our

experiments we use uniform sampling and we choose

the set of good solutions to be those optimization set-

tings that achieve at least 98% of the maximum speed-

up available in the corresponding program-dependent

dataset.

Let us denote the distribution over good solutions on

each training program by P(x|T j) with j = 1, . . . ,M. In

principle, these distributions can belong to any paramet-

ric family. However, In our experiments we use an IID

model where each of the elements of the sequence are

considered independently. In other words, the probabil-

ity of a “good” sequence of passes is simply the product

of each of the individual probabilities corresponding to

how likely each pass is to belong to a good solution:

P(x|T j) =
L

∏
ℓ=1

P(xℓ|T
j), (2)

where L is the length of the sequence.

As proposed in [12], once the individual training distri-

butions P(x|T j) have been obtained, the predictive dis-

tribution q(x|t,θ) can be learnt by maximization of the

conditional likelihood or by using k-nearest neighbor

methods. In our experiments we use a 1-nearest neigh-

bor approach. In other words, we set the predictive dis-

tribution q(x|t,θ) to be the distribution corresponding

to the training program that is closest in feature space to

the new (test) program.

Note that we currently predict “good” sequences of opti-

mization passes that are associated to the best combina-

tion of compiler flags. We will investigate in future work

the application of our models to the general problem of

determining “optimal” order of optimization passes for

programs.

5 Experiments

We performed our experiments on four different plat-

forms:

• AMD – a cluster with 16 AMD Athlon 64 3700+

processors running at 2.4GHz

• IA32 – a cluster with 4 Intel Xeon processors run-

ning at 2.8GHz

• IA64 – a server with Itanium2 processor running at

1.3GHz

• ARC – FPGA implementation of the ARC 725D

processor running GNU/Linux with a 2.4.29 ker-

nel.
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Figure 5: Experimental results when using iterative compilation with random search strategy (500 iterations; 50%

probability to select each flags; AMD,IA32,IA64) and when predicting best optimization passes based on program

features and ML model (ARC)

In all case the compiler used is MILEPOST GCC 4.2.x

with the ICI version 0.9.6 We decided to use open-

source MiBench benchmark with MiDataSets [20, 6]

(dataset No1 in all cases) due to its applicability to both

general purpose and embedded domains.

5.1 Generating Training Data

In order to build a machine learning model, we need

training data. This was generated by a random explo-

ration of a vast optimization search space using the CCC

Framework. It generated 500 random sequences of flags

either turned on or off. These flag settings can be read-

ily associated with different sequences of optimization

passes. Although such a number of runs is very small

in respect to the optimisation space, we have shown that

sufficient information can be gleaned from this to allow

significant speedup. Indeed, the size of the space left

unexplored serves to highlight our lack of knowledge in

this area, and the need for further work.

Firstly, features for each benchmark were extracted

from programs using the new pass within MILEPOST

GCC, and these features then sent to the Global Op-

timization Database within CCC Framework. An ML

model for each benchmark was built, using the execu-

tion time gathered from 500 separate runs using differ-

ent random sequences of passes, and a fixed data set.

Each run was repeated 5 times so speedups were not

caused by cache priming etc.). After each run, the ex-

perimental results including execution time, compila-

tion time, code size and program features are sent to the
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database where they are stored for future reference.

Figure 5a shows that considerable speedups can be al-

ready obtained after iterative compilation on all plat-

forms. However, this is a time-consuming process and

different speedups across different platforms motivates

the use of machine learning to automatically build spe-

cialized compilers and predict the best optimization

flags or sequences of passes for different architectures.

5.2 Evaluating Model Performance

Once a model has been built for each of our bench-

marks, we can evaluate the results by introducing a

new program to the system, and measuring how well

the prediction provided by our model performs. In this

work we did not use a separate testing benchmark suite

due to time constraints, so instead leave-one-out-cross-

validation was used. Using this method, all training data

relating to the benchmark being tested is excluded from

the training process, and the models rebuilt. When a sec-

ond benchmark is tested, the training data pertaining to

the first benchmark is returned to the training set, that of

the second benchmark excluded, and so on. In this way

we ensure that each benchmark is tested as a new pro-

gram entering the system for the first time—of course,

in real-world usage, this process is unnecessary.

When a new program is compiled, features are first gen-

erated using MILEPOST GCC. These features are then

sent to our ML model within CCC Framework (imple-

mented as a MATLAB server), which processes them

and returns a predicted sequence of passes which should

either improve execution time or reduce code size or

both. We then evaluate the prediction by compiling the

program with the suggested sequence of passes, mea-

sure the execution time and compare with the origi-

nal time for the default ’-O3’ optimization level. It

is important to note that only one compilation occurs

at evaluation—there is no search involved. Figure 5b

shows these results for the ARC725D. It demonstrates

that except a few pathological cases where predicted

flags degraded performance and which analysis we leave

for future work, using CCC Framework, MILEPOST

GCC and Machine Learning Models we can improve

original ARC GCC by around 11%.

This suggests that our techniques and tools can be effi-

cient to build future iterative adaptive specialized com-

pilers.

6 Conclusions and Future Work

In this paper we have shown that MILEPOST GCC has

significant potential in the automatic tuning of GCC op-

timization. We plan to use these techniques and tools

to further investigate the automatic selection of opti-

mal orders of optimization passes and fine-grain tun-

ing of transformation parameters. The overall frame-

work will also allow the analysis of interactions be-

tween optimizations and investigation of the influence

of program inputs and run-time state on program opti-

mizations. Future work will also include fine-grain run-

time adaptation for multiple program inputs on hetero-

geneous multi-core architectures.
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Feature Description:

number:

ft1 Number of basic blocks in the method

ft2 Number of basic blocks with a single successor

ft3 Number of basic blocks with two successors

ft4 Number of basic blocks with more then two successors

ft5 Number of basic blocks with a single predecessor

ft6 Number of basic blocks with two predecessors

ft7 Number of basic blocks with more then two predecessors

ft8 Number of basic blocks with a single predecessor and a single successor

ft9 Number of basic blocks with a single predecessor and two successors

ft10 Number of basic blocks with a two predecessors and one successor

ft11 Number of basic blocks with two successors and two predecessors

ft12 Number of basic blocks with more then two successors and more then two predecessors

ft13 Number of basic blocks with number of instructions less then 15

ft14 Number of basic blocks with number of instructions in the interval [15, 500]

ft15 Number of basic blocks with number of instructions greater then 500

ft16 Number of edges in the control flow graph

ft17 Number of critical edges in the control flow graph

ft18 Number of abnormal edges in the control flow graph

ft19 Number of direct calls in the method

ft20 Number of conditional branches in the method

ft21 Number of assignment instructions in the method

ft21 Number of unconditional branches in the method

ft22 Number of binary integer operations in the method

ft23 Number of binary floating point operations in the method

ft24 Number of instructions in the method

ft25 Average of number of instructions in basic blocks

ft26 Average of number of phi-nodes at the beginning of a basic block

ft27 Average of arguments for a phi-node

ft28 Number of basic blocks with no phi nodes

ft29 Number of basic blocks with phi nodes in the interval [0, 3]

ft30 Number of basic blocks with more then 3 phi nodes

ft31 Number of basic block where total number of arguments for all phi-nodes is in greater then 5

ft32 Number of basic block where total number of arguments for all phi-nodes is in the interval [1, 5]

ft33 Number of switch instructions in the method

ft34 Number of unary operations in the method

ft35 Number of instruction that do pointer arithmetic in the method

ft36 Number of indirect references via pointers ("*" in C)

ft37 Number of times the address of a variables is taken ("&" in C)

ft38 Number of times the address of a function is taken ("&" in C)

ft39 Number of indirect calls (i.e. done via pointers) in the method

ft40 Number of assignment instructions with the left operand an integer constant in the method

ft41 Number of binary operations with one of the operands an integer constant in the method

ft42 Number of calls with pointers as arguments

ft42 Number of calls with the number of arguments is greater then 4

ft44 Number of calls that return a pointer

ft45 Number of calls that return an integer

ft46 Number of occurrences of integer constant zero

ft47 Number of occurrences of 32-bit integer constants

ft48 Number of occurrences of integer constant one

ft49 Number of occurrences of 64-bit integer constants

ft50 Number of references of a local variables in the method

ft51 Number of references (def/use) of static/extern variables in the method

ft52 Number of local variables referred in the method

ft53 Number of static/extern variables referred in the method

ft54 Number of local variables that are pointers in the method

ft55 Number of static/extern variables that are pointers in the method

Table 1: List of static program features currently available in the MILEPOST GCC
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