N
N

N

HAL

open science

Efficient Streaming of 3D Scenes with Complex
Geometry and Complex Lighting

Romain Pacanowski, Mickaél Raynaud, Xavier Granier, Patrick Reuter,
Christophe Schlick, Pierre Poulin

» To cite this version:

Romain Pacanowski, Mickaél Raynaud, Xavier Granier, Patrick Reuter, Christophe Schlick, et al.. Ef-
ficient Streaming of 3D Scenes with Complex Geometry and Complex Lighting. Web3D ’08: Proceed-
ings of the 13th international symposium on 3D web technology, Aug 2008, Los Angeles, California,
United States. pp.11-17, 10.1145/1394209.1394214 . inria-00294716

HAL 1d: inria-00294716
https://inria.hal.science/inria-00294716
Submitted on 10 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00294716
https://hal.archives-ouvertes.fr

Efficient Streaming of 3D Scenes with Complex Geometry and Complex Lighting

Romain Pacanowski* !> Mickaél Raynaud*! Xavier Granier*! Patrick Reuter*! Christophe Schlick*! Pierre Poulin®?2
2Dép. I.R.O., Université de Montréal
Montréal (Canada)

I INRIA Bordeaux University
Bordeaux (France)

() (b)

0.2% mesh, no IVG 0.2% mesh, 25% IVG

() (d)
2% mesh, 25% IVG 100% mesh, 100% IVG

Figure 1: Our irradiance vector grid structure is independent of the geometric complexity and allows our client/server visualization system to
stream alternatively geometry data and lighting data to provide interactive rendering on the client side. (a) A scene with 0.2% of the geometry
transferred and only direct illumination (without shadows). (b) The same amount of geometry with 25% indirect illumination transferred:
color bleeding effects are now included, like on the surface of the buddha oriented toward the red wall that appears more red. (c) Further
refinement of the geometry (2%). (d) Full-resolution geometry (50 MB) and full-resolution (1 MB) irradiance vector grid. This scene runs at

50fps on a NVIDIA GeForce Go 7800 GTX.

Abstract

Streaming data to efficiently render complex 3D scenes in presence
of global illumination is still a challenging task. In this paper, we
introduce a new data structure based on a 3D grid of irradiance
vectors to store the indirect illumination appearing on complex and
detailed objects: the Irradiance Vector Grid (IVG). This represen-
tation is independent of the geometric complexity and is suitable
for quantization to different quantization schemes. Moreover, its
streaming over network involves only a small overhead compared
to detailed geometry, and can be achieved independently of the ge-
ometry. Furthermore, it can be efficiently rendered using modern
graphics hardware. We demonstrate our new data structure in a
new remote 3D visualization system, that integrates indirect light-
ing streaming and progressive transmission of the geometry, and

*{pacanows | raynaud | granier| reuter | schlick } @labri.fr
fpoulin@iro.umontreal.ca

study the impact of different strategies on data transfer.

CR Categories: 1.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics; C.2.4 [Computer-Communication
Networks]: Distributed Systems—Client/server; 1.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Shading;
Radiosity; RayTracing;

Keywords: 3D Streaming, Global Illumination

1 Introduction

With the recent increase of collaborative Virtual Reality applica-
tions, realistic online games, and other remote 3D graphics appli-

cations, improved realism calls upon global illumination effects. In
a remote 3D visualization system, a straightforward solution is to
implement a full real-time simulation on the client side. The main
advantage of such a solution is the low requirement of data transfer,
since only the standard description of the scene is needed. Unfortu-
nately, real-time simulation techniques are limited in the number of
indirect light-bounces and heavily depend on the geometric com-
plexity both for speed and accuracy. Therefore, in a client/server
context, it can thus be preferable to keep the computation of global
illumination on the server side, and to stream the computed indirect
illumination to the client. However, if the illumination is directly
linked with the geometry, the overhead would be proportional to the
size of geometry. In order to limit the transmission overhead, an il-
lumination data structure independent of the geometric complexity
would be valuable. This also allows one to select independently the
relative quality of the illumination and of the geometry.

As a solution to this problem, we propose a new approach for re-
mote visualization of 3D scenes. We consider that scenes are stored
on a server with all the required information: meshes for the 3D ge-
ometry, description of material properties, and indirect illumination
for each object. To reach our goal, we introduce the following con-
tributions:

e A new structure for indirect illumination based on a volumet-
ric grid of irradiance vectors [Arvo 1994]. Our structure is
independent of the geometric complexity and can be easily
rendered using modern GPUs.

e A streaming technique for the progressive transmission of this
indirect illumination combined with a number of compression
schemes.

e A client/server visualization system built around this struc-
ture, with independent streaming of geometry and indirect il-
lumination. The less-demanding direct illumination is com-
puted on the client side.

After a brief presentation of some previous work on structures for
global illumination, we introduce our new representation (cf. Sec-
tion 3) and its associated schemes for compression, streaming, and
interactive rendering. Then, we present in detail our client/server
visualization system (cf. Section 4), and analyze the resulting dif-
ferent data transfers, rendering quality, and framerate (cf. Sec-
tion 5).

2 Previous Work

Global Illumination (e.g., [Dutré et al. 2006]) has been extensively
studied in computer graphics. With the recent increase of compu-
tational power of graphics hardware, it is now possible to develop
interactive techniques that incorporate global illumination effects.
Radiosity techniques can be implemented on modern GPUs [Ni-
jasure et al. 2003; Coombe et al. 2004], capturing the computed
indirect lighting into environment maps. Based on a reformulation
of the rendering equation [Kajiya 1986], the introduction of anti-
irradiance [Dachsbacher et al. 2007] removes the problem of visi-
bility estimation, but requires a number of passes proportional to the
scene depth complexity. Stochastic solutions have also been imple-
mented on GPUs, such as those based on Photon-Mapping [Purcell
et al. 2003] or radiance caching [Gautron et al. 2005]. Real time
is only achieved with Instant Radiosity [Keller 1997; Segovia et al.
2007] combined with incremental techniques [Laine et al. 2007],
but its visual quality strongly depends on the geometric accuracy.
In a streaming context, this is hardly achievable.

The common approach in previous work has been to precompute
lighting and to store it as a diffuse lightmap. However, a highly

detailed geometry requires a highly detailed map to capture all the
lighting variations. For almost-planar surfaces or slowly varying
geometric details, one can use directional light maps [Hey and Pur-
gathofer 2002] (a texture that stores for each texel a directional light
source).

For more general lighting effects, Precomputed Radiance Transfer
(PRT) [Sloan et al. 2002] has emerged as an efficient representation.
PRT encodes precomputed light transport effects of a static scene
by projection onto a pre-defined basis. Even though the viewpoint
can be changed in recent techniques [Liu et al. 2004; Wang et al.
2004; Ng et al. 2004; Tsai and Shih 2006], PRTs are still limited
to distant lighting. Moreover, although the resulting data can be
reduced [Sloan et al. 2003] or adapted to normal-mapping [Sloan
2006], its size is still large and strongly depends on the geometric
complexity.

Extending work on PRT, recent approaches compute a more ac-
curate global illumination. The Precomputed Radiance Trans-
fer Field [Pan et al. 2007] allows interactive rendering of inter-
reflections in-between dynamic objects. However, the required data
size and computation time are huge, even for small undetailed ge-
ometry. Another solution is to precompute the direct-to-indirect
transfer (e.g., Wang et al. [Wang et al. 2007]), and let the hardware
efficiently compute the direct lighting. Unfortunately, the final data
size is still dependent on the geometric complexity.

The work most related to ours is the Irradiance Volume [Greger
et al. 1992] and its extension used by different game engines
(e.g. [Mitchell et al. 2006; Mitchell et al. 2007b]). The original
Irradiance Volume is a bilevel grid that stores irradiance values at
each vertex position. However, game engines use regular grids that
can be more easily implemented on GPU. Furthermore, the spa-
tial interpolation scheme, to ensure a smooth reconstruction of the
irradiance, is more complex than a classical trilinear interpolation
scheme used with a regular grid. Finally, storing irradiance values
at vertex positions has two drawbacks. First, irradiance is a geo-
metric dependent value; we prefer to use irradiance vectors [Arvo
1994] that are more robust to geometric variation. Second, in order
to reconstruct the irradiance for any normal, many irradiance val-
ues have to be stored, increasing furthermore the storage cost of the
irradiance volume. Instead we propose a new basis and reconstruc-
tion scheme (related to [Mitchell et al. 2007a]) that allows smooth
interpolation of the irradiance and requires less storage.

Overview. Our system exploits the same kind of separation be-
tween direct and indirect illumination. On the server side, the 3D
scene is stored together with the indirect illumination associated
with its embedded light sources and material properties. During the
streaming of the 3D scene, we also transfer the indirect illumina-
tion for complex objects, using a new data structure, called Irradi-
ance Vector Grid (IVG, for short) On the client side, the hardware
accelerated direct lighting is combined with the transferred indirect
lighting to produce an interactive and accurate global illumination
solution.

3 Representation of Indirect Lighting

The Irradiance Vector Grid is an axis-aligned uniform rectangular
3D grid structure where each grid vertex stores six irradiance vec-
tors (cf. Section 3.1). The grid is used by the graphics hardware on
the client side to compute the indirect illumination. This is accom-
plished by interpolating (cf. Section 3.2) spatially and directionally
the irradiance vectors of the grid. Our representation can be ef-
ficiently compressed (cf. Section 3.3) and easily uploaded on the
client graphics hardware.

3.1 lIrradiance Vector

For a given wavelength, the irradiance vector In(p), as introduced
by Arvo [Arvo 1994], is defined for a point p with normal n as

I,(p) = /Q L(p — ;) 0;de; 1)

where L(p < ®;) represents the incident radiance at p from direc-
tion ®;, dw; the differential solid angle sustained by ®; and Q, the
hemisphere centered at p oriented toward n. The irradiance vector
stores radiometric and geometric information; it is directly related
to the diffusely reflected radiance:

Li(p— @) = 2 (In(p) - n) @
where pp is the diffuse BRDF at point p and - denotes the dot prod-
uct. The main benefit of irradiance vectors compared to irradiance
is that for a local variation of a surface normal, the reflected ra-
diance can be adjusted, making this representation more geomet-
rically robust. To evaluate Equation 2, one may use any global
illumination algorithm such as Photon-Tracing or Path-Tracing. In-
tuitively, an irradiance vector represents the intensity of the incident
lighting and the mean direction where it comes from.

Bear in mind that we want to compute the reflected radiance L,(p),
where the normal at p may be along any direction. Therefore, we
need an efficient representation to store the incident illumination for
any direction. We thus subdivide the direction space with six over-
lapping hemispheres, where each hemisphere is oriented toward a
main direction 8 = £x| £ y| +z. We precompute an irradiance vec-
tor I for each of the six hemispheres to represent the incident il-
lumination. With an appropriate interpolation scheme, we combine
the different values of I5 to evaluate L,(p) for any normal.

3.2 Interpolation of Irradiance Vectors

In order to compute smooth indirect illumination, we interpolate
an irradiance vector for each point p = (px, py, p;) with normal
n = (ny,ny,n;) that needs to be shaded. This interpolation is per-
formed in two successive steps: a spatial interpolation according to
p and then a directional interpolation according to n. In the first
step, the irradiance vector Ig(p) is obtained by performing either a
trilinear or a tricubic spatial interpolation of the irradiance vectors
stored at the grid vertices surrounding point p. The interpolation
is only done for three out of the six possible directions of 8. The
choice between £x (resp. =y and £z) is done according to the sign
of ny (resp. ny and n;). In the second step, the final interpolated
irradiance vector I, (p) is obtained by remapping the three spatially
interpolated irradiance vectors according to the normal direction n
at point p:

In(p) = Ix(p) n? +Iy(l’)”§ +Iz(P)"§-

Notice that our directional interpolation is exact when the normal n
is aligned with 8. To achieve real-time performance, these interpo-
lations are directly executed on the client GPU once the irradiance
vector grid is uploaded on it. However, to reduce the footprint on
video memory, we need to compress our grid, as detailed in the next
section.

3.3 Irradiance Vector Compression and GPU Rendering

Remember that Equation 1 defines an irradiance vector (requiring
three floats) for a single wavelength. Since, in computer graphics
chrominance is defined by three primary colors (R, G, B), we need,
for each &, three irradiance vectors stored in a 3 x 3 matrix M =

(1§ \Ig|1§). For a given grid vertex and a given §, we compress M
as the product of a direction d and a color ¢ defined as follows:

IR+ 19+ 15 ®.8 198 153

(IR 416 + 1B || d-8 d-8§ d-§|
This guarantees that when the normal n is aligned with 8, we pre-
serve the original RGB intensity: Mn = ¢(d -n). We have tested
experimentally that this compression does not introduce any arti-
fact in the indirect lighting interpolation. To reduce the required
bandwidth usage even further, the direction can be quantized on 24
bits (classical quantization with 8 bits for each coordinate) and the
color on 32 bits, using the GPU-compatible R9_G9_B9_ES5 format!
similar to the RGBE format [Ward 1991]. This compression can be
done before transmitting the grid data (cf. Section 4.1).

Finally, the great benefit of using a 3D regular grid is that the data
structure can be straightforwardly uploaded on the GPU as a 3D
texture. In our case, the interpolated irradiance vectors are sim-
ply used by the fragment shader as additional light sources that are
meant to encode indirect illumination. These two vectors are en-
coded in two 3D textures, and therefore the information for the six
8 directions requires 12 3D textures. To reconstruct the indirect
lighting, one may use trilinear interpolation natively provided by
the hardware, or adapt a tricubic interpolation technique [Sigg and
Hadwiger 2005].

4 Our Remote Visualization System

Our visualization system is based on a client/server architecture.
The server precomputes and stores the lighting structures and the
level of detail (LOD) of each complex geometry represented as a
progressive mesh. The server sends either new geometric (cf. Sec-
tion 4.2) or lighting (cf. Section 4.1) level of detail depending on
the client requests. After each data reception, the client performs
some processes on the illumination structure and on the progressive
mesh before uploading them on the GPU. Moreover, our approach
allows to interleave geometric and lighting data when transmitting
the scene from the server to the client. This offers a very smooth
progressive visualization until the desired quality is reached.

4.1 Irradiance Vector Grid Streaming

A classical solution for the progressive transfer of the texture is to
use a hierarchical decomposition based on recursive basis functions
such as wavelets. However, to reconstruct each hierarchical level,
this decomposition techniques require waiting for the reception of
all corresponding detail coefficients. Thus, the time required to ob-
tain each new resolution level is growing with its size. We propose
here an alternative approach, which allows the transmission of con-
stant size bundles of voxels.

The transmission is initialized by transferring the eight corners of
the grid. Then, each client request consists of a constant number of
irradiance vectors. Notice that the number of irradiance vectors per
request can be dynamically set depending on the client GPU/CPU
capabilities as well as the network bandwidth and reliability. To get
a smooth global update of the indirect illumination, we have imple-
mented a stratified random sampling of the grid. In our current im-
plementation, the grid is divided in a set of slices along its longest
axis. Then, at each client request, the server sends the requested
number of irradiance vectors. The locations of the irradiance vec-
tors are randomly distributed on each slice.

'This HDR color compression is supported in DirectX 10 and in
OpenGL through the extension GL_EXT_texture_shared_exponent.

() (b) (©

Figure 2: Comparison of indirect illumination reconstructed on
the right side of the dragon (a) without our push-pull algorithm,
(b) with and (c) with a push-pull algorithm without smoothing. The
grid dimension is 16 x 16 x 16 and half of the vertices have been
transferred. The push-pull process has filled the darker regions of
the dragon with smooth indirect illumination.

Unfortunately, when streaming the IVG, some illumination holes
may appear until the grid has been fully transferred. This comes
from the fact that the incomplete grid holds invalid irradiance vec-
tors at some locations. We have adapted a 3D push-pull algorithm
to fill the missing irradiance vectors with smooth data interpola-
tion (cf. Figure 2). Notice that our push-pull algorithm does not
modify any received data. To get smoother results, we apply after
each push step a pyramidal filter to the current grid level. Finally,
the push-pull process can be skipped if the client has limited CPU
capabilities. Therefore, the minimal hardware requirement for our
client is programmable graphics hardware with 3D texture support.

The direction and color of each irradiance vector is sent either
in floating point format or quantized. Our experimentations have
shown that using quantization reduces the transfer time by a factor
of about 2.5 without introducing any visible artefact. Indeed, for
the scene presented in Figure 1, the mean difference between an
image reconstructed with and without quantization is only 0.008%
in Lab color space. Obviously, the dequantization process must be
performed on the client side in order to perform the push-pull steps,
but the resulting overhead is very small (cf. the chart of Figure 6).

4.2 Geometry Streaming

Since our illumination technique is independent of the geometry,
any encoding scheme could be used. Inspired by Hoppe’s semi-
nal work on encoding progressive meshes by successively apply-
ing edge collapse operators [Hoppe 1996], we adopted a streaming
technique that progressively refines a coarse mesh into a detailed
mesh by the inverse operation: the vertex split. For a memory-
efficient geometry streaming, we trade a slight loss in quality
against a very compact multiresolution mesh representation: in-
stead of successively collapsing the less-significant edge (deter-
mined by some energy function [Garland and Heckbert 1997]) onto
an additional vertex along the edge, we simply collapse the edge
onto one of its end vertices. Consequently, the entire multiresolu-
tion mesh can be encoded from the original mesh as an indexed face
set, with a very small overhead. This overhead corresponds to the
vertex lookup table that indicates the vertex index for every vertex
to which it is collapsed [Melax 1998].

For a progressive transmission of the multiresolution mesh, we
reorder the vertices so that the most significant vertices (that are
present in the coarser meshes) can be streamed first. The progres-
sive transmission then consists of alternating sequences of vertices,
of faces, and of small vertex lookup tables. Whereas the received
vertices are directly transferred to the GPU, the vertex indices in-
volved in the faces are first updated recursively by using the ver-
tex lookup tables. This process offers n — 2 different level of de-

tail (where n is the total number of vertices) and guarantees that
only valid faces are streamed. Our technique is somehow similar
to [Guéziec et al. 1999].

5 Results and Discussion

We have tested our remote 3D visualization system with an In-
tel Q6600 with 4GB memory as a server and an Intel Pentium M
2.26Ghz with 2GB memory as a client. We have measured all net-
work transmission times on a 802.11g WiFi network. Each mea-
surement has been repeated and averaged.

5.1 Independence of Geometry and Lighting

As a demonstration of the independence of geometry and lighting,
we have tested our remote visualization system with two extreme
streaming strategies. In the first one (cf. Figure 3), we first transfer
a low-resolution geometry with a full-resolution IVG. We then pro-
gressively transfer all the remaining details of the geometry. Thanks
to our vectorial representation, the illumination adapts smoothly to
local variations of the geometry during its refinement without re-
quiring more information.

In the second strategy (cf. Figure 4), we transfer a full-resolution
geometry with low-resolution IVG, that is progressively refined.
This strategy is useful when the server refines the illumination in
a dynamic environment by using an incremental solution for global
illumination (e.g., [Dmitriev et al. 2002]). This is also useful if we
want the server to remotely compute the illumination and progres-
sively transfer the computed IVG nodes using a parallel version of
our algorithm.

One main advantage of our separation between the illumination
structure and the geometry structure is that the client adapts its data
refinement demands according to both hardware and network capa-
bilities. The classical strategy that offers the smoothest progressive
visualization is to use an interleave streaming of illumination and
of geometry (cf. Figure 1). Our tests show that the client framerate
remains constant, when updating either the geometry or the illumi-
nation grid on the GPU. Therefore our system provides a real-time
and continuous feedback to the client. Moreover, for a given scene,
we did not measure any framerate performance penalty when intro-
ducing the illumination grid.

5.2 Transfer Time

We have also tested separately the required streaming times for the
geometry and the illumination grid. In order to test the influence
of the streaming process on the transmission time, we have com-
pared the time required to download the full structure with the time
required to transfer the geometry/grid without the overhead of the
streaming (cf. cyan horizontal curve of Figure 5). On the geom-
etry side, as illustrated in Figure 5, the maximum overhead was
70%, but only for small packet sizes. When increasing the packet
size, we quickly reduce this overhead to only 10%. This is a very
good trade-oft for a streaming solution compared to a classical LOD
mechanism of VRML where the overhead can reach 100%. The
overhead of our streaming solution is due to the transfer of the ver-
tex lookup table, the edge collapses, and the transfer to the GPU.

On the illumination side, we have tested both the streaming of quan-
tized and floating point grids. As expected, the network transfer
time is reduced when using a quantized grid (cf. black curve on the
two graphs of Figure 6). Moreover, the comparison of the two red
curves of Figure 6 demonstrates that the data dequantization pro-
cess is very small (approximately 4%). This dequantization step

500 faces 5000 faces 30K faces 200K faces
0.026s 0.9s 1.9s 9.8s

Figure 3: Streaming the geometry within a constant illumination 16 x 16 x 16 grid (563 KB). Left to right: the indirect illumination adapts
itself when the geometry is refined by using a buffer size of 250 vertices. For each image, the timing indicated below represents the total time

required to reach the indicated geometry size from one on its immediate left. The faces oriented toward the red wall are always red. The
indirect illumination and color bleeding effects are coherently represented.

(b) (©))
8 ivs 1032 ivs 3082 ivs 4096 ivs
0.01s 0.094s 0.171s 0.354s

Figure 4: Streaming a 16 x 16 x 16 illumination grid (dequantized) for the same geometry. (a) The initial illumination grid with only 8
irradiance vectors (ivs) is refined (b)-(d) with 64 samples per slice and per request. For each image, the timing indicated below represents
the total time required to reach the indicated geometry size from one on its immediate left.

Floating point grid Quantized grid

T

full streaming time —&—
network transfer time —»—
16 processing + transfer to GPU time ---+--- | 16
push-pull w/ smoothing time ---x---

T
full streaming time —&—

network transfer time —s»—

processing + transfer to GPU time ---+---
push-pull w/ smoothing time ---x---

Time (seconds)

Time (seconds)

Number of samples per slice Number of samples per slice

Figure 6: Downloading time for the complete illumination grid (32x32x32) with different buffer sizes. The size of the floating point grid is
3 MB and the size of the quantized grid is 1.3 MB. The processing includes the dequantization process and the copy to CPU memory.

is required to perform the push-pull algorithm without introduc- constant per grid size, but the number of push-pull processes de-
ing numerical errors. The time spent on the push-pull algorithm is pends on the number of client requests. Therefore, the packet size

25

mesh transfer time without LOD'
full streaming time

network transfer time ---+---

processing + transfer to GPU time ---%---

20 4

151 4

Time (seconds)

10 25 50 100 150 200 300 400 450 500 544
Packet size (x1,000 vertices)

Figure 5: Downloading time for the complete buddha geometry of
Figure 1 with different packet sizes (a packet corresponds to a fixed
number of vertices). The full geometry size is 1.1 M polygons. The
processing includes the update of the vertex indices by using the
vertex lookup table.

full s(rea‘ming time w/ sméolhing
full streaming time w/o smoothing —=—
network transfer time —»— |

Time (seconds)

16 32 64 128 256 512 1024
Number of samples per slice

Figure 7: Comparison of downloading time with and without
smoothing during the push-pull step for a quantized 32 x 32 x 32
grid. The smoothing computation represents 80% of the total time
spent for the push-pull process.

has to be chosen carefully depending on client/server and network
capacities. According to Figure 6, when using a 32 x 32 x 32 quan-
tized illumination grid, the appropriate packet size is reached when
asking approximately 100 samples per slice (the corresponding ab-
scissa when the black curve crosses the blue curve). Finally, as il-
lustrated in Figure 7, most of the computation overhead is due to the
smoothing pass of the 3D push-pull algorithm. However, depend-
ing on client capabilities, this step can be skipped and as shown in
Figure 2, the penalty on quality remains small.

6 Conclusion and Future Work

We have introduced a new structure to efficiently represent and
transfer the indirect illumination of a 3D scene in a remote ren-
dering context: the irradiance vector grid. This structure is based
on a 3D grid of irradiance vectors. The main advantage of our IVG
structure is to be independent of the geometric complexity and to be

small compared to the geometry size. Our structure integrates eas-
ily with geometry streaming techniques in a remote visualization
system to quickly provide global illumination effects for complex
geometries. Furthermore, the transfer time overhead induced by our
structure is very small as well as the overhead on the performance
at rendering time.

For future work, we would like to improve both the server and
the client of our system. On the server side, we want to develop
new precomputation schemes that take advantage of cluster archi-
tectures for on-line computation of requested illumination. We also
want to provide a fast update mechanism for dynamic 3D scenes,
with a localized computation in regions of important changes. In
order to reduce the processing time on the client side for the il-
lumination, new algorithms for the push-pull process need to be
developed.

References

ARVO, J. 1994. The irradiance jacobian for partially occluded polyhedral
sources. In Proc. SIGGRAPH 94, ACM, 343-350.

COOMBE, G., HARRIS, M. J., AND LASTRA, A. 2004. Radiosity on
graphics hardware. In Proc. Graphics Interface 2004, Canadian Human-
Computer Communications Society, 161-168.

DACHSBACHER, C., STAMMINGER, M., DRETTAKIS, G., AND DURAND,
F. 2007. Implicit visibility and antiradiance for interactive global illu-
mination. ACM Trans. Graph. 26, 3.

DMITRIEV, K., BRABEC, S., MYSZKOWSKI, K., AND SEIDEL, H.-P.
2002. Interactive global illumination using selective photon tracing. In
EGRW ’02: Proceedings of the 13th Eurographics workshop on Render-
ing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland,
25-36.

DUTRE, P., BALA, K., AND BEKAERT, P. 2006. Advanced Global Illumi-
nation. A. K. Peters, Ltd.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplification using
quadric error metrics. In Proceedings of ACM SIGGRAPH 1996, ACM,
209-216.

GAUTRON, P., KRIVANEK, J., BOUATOUCH, K., AND PATTANAIK, S.
2005. Radiance cache splatting: a gpu-friendly global illumination algo-
rithm. In Proc. Eurographics Symposium on Rendering, 55—64.

GREGER, G., SHIRLEY, P., HUBBARD, P., AND GREENBERG, D. 1992.
Irradiance volume. IEEE Comp. Graph. and Appl. 18, 2, 32-43.

GUEZIEC, A., TAUBIN, G., HORN, B., AND LAZARUS, F. 1999. A frame-
work for streaming geometry in vrml. IEEE Comput. Graph. Appl. 19,
2, 68-78.

HEY, H., AND PURGATHOFER, W. 2002. Real-time rendering of glob-
ally illuminated soft glossy scenes with directional light maps. Tech.
Rep. TR-186-2-02-05, Institute of Computer Graphics and Algorithms,
Vienna University of Technology.

HOPPE, H. 1996. Progressive meshes. In Proceedings of ACM SIGGRAPH
1996, ACM, 99-108.

KAIIYA, J. T. 1986. The rendering equation. In Comp. Graph. (Proc. ACM
SIGGRAPH ’86), vol. 20, 143—150.

KELLER, A. 1997. Instant radiosity. In Proc. SSIGGRAPH 97, ACM
Press/Addison-Wesley Publishing Co., 49-56.

LAINE, S., SARANSAARI, H., KONTKANEN, J., LEHTINEN, J., AND
AILA, T. 2007. Incremental instant radiosity for real-time indirect il-
lumination. In Proc. Eurographics Symposium on Rendering 2007, 277—
286.

Liu, X., SLOAN, P. P, SHUM, H. Y., AND SNYDER, J. 2004. All-
frequency precomputed radiance transfer for glossy objects. In Proc.
Eurographics Symposium on Rendering, 337-344.

MELAX, S. 1998. A simple, fast and effective polygon reduction algorithm.
Game Developer Magazine (November), 209-216.

MITCHELL, J., MCTAGGART, G., AND GREEN, C. 2006. Shading in
valve’s source engine. In SIGGRAPH '06: ACM SIGGRAPH 2006
Courses, ACM, New York, NY, USA, 129-142.

MITCHELL, J., FRANCKE, M., AND ENG, D. 2007. Illustrative rendering
in team fortress 2. In Symposium on Non-Photorealistic Animation and
Rendering, ACM, 71-76.

MITCHELL, J. L., FRANCKE, M., AND ENG, D. 2007. Illustrative ren-
dering in team fortress 2. In SIGGRAPH ’07: ACM SIGGRAPH 2007
courses, ACM, New York, NY, USA, 19-32.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2004. Triple product
wavelet integrals for all-frequency relighting. ACM Trans. Graph. 23, 3,
477-487.

NIJASURE, M., PATTANAIK, S., AND GOEL, V. 2003. Interactive global
illumination in dynamic environments using commodity graphics hard-
ware. In Proc. Pacific Conference on Computer Graphics and Applica-
tions, IEEE Computer Society, 450.

PAN, M., WANG, R., L1U, X., PENG, Q., AND BAO, H. 2007. Precom-
puted radiance transfer field for rendering interreflections in dynamic
scenes. Comp. Graph. Forum 26, 3, 485-493.

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN, H. W., AND
HANRAHAN, P. 2003. Photon mapping on programmable graphics
hardware. In Proc. ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, 41-50.

SEGOVIA, B., , IEHL, J.-C., AND PEROCHE, B. 2007. Metropolis instant
radiosity. Comp. Graph. Forum 26, 3, 425-434.

SIGG, C., AND HADWIGER, M. 2005. GPU Gems 2. Addison-Wesley,
ch. Fast Third-Order Texture Filtering, 313-330.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radi-
ance transfer for real-time rendering in dynamic, low-frequency lighting
environments. ACM Trans. Graph. 21, 3, 527-536.

SLOAN, P.-P., HALL, J., HART, J., AND SNYDER, J. 2003. Clustered
principal components for precomputed radiance transfer. ACM Trans.
Graph. 22, 3, 382-391.

SLOAN, P.-P. 2006. Normal mapping for precomputed radiance transfer. In
Proc. Symposium on Interactive 3D Graphics and Games, ACM, 23-26.

TsAl, Y.-T., AND SHIH, Z.-C. 2006. All-frequency precomputed radi-
ance transfer using spherical radial basis functions and clustered tensor
approximation. ACM Trans. Graph. 25, 3 (July), 967-976.

WANG, R., TRAN, J., AND LUEBKE, D. 2004. All-frequency relight-
ing of non-diffuse objects using separable brdf approximation. In Proc.
Eurographics Symposium on Rendering, 345-354.

WANG, R., ZHU, J., AND HUMPHREYS, G. 2007. Precomputed radiance
transfer for real-time indirect lighting using a spectral mesh basis. In
Proc. Eurographics Symposium on Rendering, 967-976.

WARD, G. 1991. Graphics Gems 2. Morgan Kaufman Publisher, ch. Real
Pixels, 80-83.

