Learning a classifier with very few examples: knowledg based and analogy generation of new exemples for character recognition.

Sabri Bayoudh 1 Harold Mouch?e 2 Laurent Miclet 1 Eric Anquetil 2
1 CORDIAL - Human-machine spoken dialogue
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, INRIA Rennes, ENSSAT - École Nationale Supérieure des Sciences Appliquées et de Technologie
2 IMADOC - Interprétation et Reconnaissance d’Images et de Documents
UR1 - Université de Rennes 1, INSA Rennes - Institut National des Sciences Appliquées - Rennes, CNRS - Centre National de la Recherche Scientifique : UMR6074
Abstract : This paper is basically concerned with a practical problem: the on-the-fly quick learning of handwritten character recognition systems. More generally, it explores the problem of generating new learning examples, especially from very scarce (2 to 5 per class) original learning data. It presents two different methods. The first one is based on applying distortions on original characters using knowledge on handwriting properties like speed, curvature etc. The second one consists in generation based on the notion of analogical dissimilarity which quantifies the analogical relation “A is to B almost as C is to D”. We give an algorithm to compute the k-least dissimilar objects D, hence generating k new objects from three examples A, B and C. Finally, we experimentally prove on 12 writers the efficiency of both methods, especially when used in conjunction.
Type de document :
Communication dans un congrès
European Conference on Machine Learning, Sep 2007, Warsaw, Poland. Springer Berlin / Heidelberg, 2007, Lecture Notes in Computer Science. 〈10.1007/978-3-540-74958-5_49〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00300717
Contributeur : Harold Mouchère <>
Soumis le : vendredi 18 juillet 2008 - 18:16:44
Dernière modification le : vendredi 25 mai 2018 - 01:07:46

Lien texte intégral

Identifiants

Citation

Sabri Bayoudh, Harold Mouch?e, Laurent Miclet, Eric Anquetil. Learning a classifier with very few examples: knowledg based and analogy generation of new exemples for character recognition.. European Conference on Machine Learning, Sep 2007, Warsaw, Poland. Springer Berlin / Heidelberg, 2007, Lecture Notes in Computer Science. 〈10.1007/978-3-540-74958-5_49〉. 〈inria-00300717〉

Partager

Métriques

Consultations de la notice

181