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Coloration par listes du carré d’un graphe planaire

Résumé : En 1977, Wegner a conjecturé que le nombre chromatique du carré d’un graphe planaire G

de degré maximum ∆ ≥ 8 est au plus
⌊

3
2 ∆

⌋
+ 1. Nous montrons qu’il vaut au plus 3

2 ∆ (1 + o(1)), et que

c’est en fait vrai pour le nombre chromatique par liste et des classes de graphes plus générales.

Mots-clés : coloration, coloration par listes, graphe planaire, carré d’un graphe
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1 Introduction

Most of the terminology and notation we use in this paper is standard and can be found in any text book

on graph theory ( such as [5] or [8] ). All our graphs and multigraphs will be finite. A multigraph can

have multiple edges; a graph is supposed to be simple. We will not allow loops.

The degree of a vertex is the number of edges incident with that vertex. We require all colourings,

whether we are discussing vertex, edge or list colouring, to be proper : neighbouring objects must receive

different colours. We also always assume that colours are integers, which allows us to talk about the

“distance” |γ1 − γ2| between two colours γ1, γ2.

Given a graph G, the chromatic number of G, denoted χ(G), is the minimum number of colours

required so that we can properly colour its vertices using those colours. If we colour the edges of G,

we get the chromatic index, denoted χ′(G). The list chromatic number or choice number ch(G) is the

minimum value k, so that if we give each vertex v of G a list L(v) of at least k colours, then we can find a

proper colouring in which each vertex gets assigned a colour from its own private list. The list chromatic

index is defined analogously for edges. See [37] for a survey of research on list colouring of graphs.

1.1 Colouring the Square of Graphs

Given a graph G, the square of G, denoted G2, is the graph with the same vertex set as G and with an

edge between all pairs of vertices that have distance at most two in G. If G has maximum degree ∆,

then a vertex colouring of its square will need at least ∆ + 1 colours; the greedy algorithm shows it is

always possible with ∆2 + 1 colours. Diameter two cages such as the 5-cycle, the Petersen graph and

the Hoffman-Singleton graph ( see [5, page 239] ) show that there exist graphs that in fact require ∆2 + 1

colours, for ∆ = 2, 3, 7, and possibly one for ∆ = 57.

From now on we concentrate on planar graphs. The celebrated Four Colour Theorem by Appel and

Haken [2, 3, 4] states that χ(G) ≤ 4 for planar graphs. Regarding the chromatic number of the square

of a planar graph, Wegner [35] posed the following conjecture ( see also the book of Jensen and Toft [13,

Section 2.18] ), suggesting that for planar graphs far less than ∆2 + 1 colours suffice.

Conjecture 1.1 ( Wegner [35] )

For a planar graph G of maximum degree ∆,

χ(G2) ≤





7, if ∆ = 3,

∆ + 5, if 4 ≤ ∆ ≤ 7,⌊
3
2 ∆

⌋
+ 1, if ∆ ≥ 8.

Wegner also gave examples showing that these bounds would be tight. For even ∆ ≥ 8, these examples are

sketched in Figure 1. The graph Gk consists of three vertices x, y and z together with 3 k − 1 additional

vertices of degree two, such that z has k common neighbours with x and k common neighbours with y,

x and y are connected and have k − 1 common neighbours. This graph has maximum degree 2 k and yet

all the vertices except z are adjacent in its square. Hence to colour these 3 k +1 vertices, we need at least

3 k + 1 = 3
2 ∆ + 1 colours.

Kostochka and Woodall [20] conjectured that for every square of a graph the list chromatic number

equals the chromatic number. This conjecture and Wegner’s one imply directly the following.

Conjecture 1.2

For a planar graph G of maximum degree ∆,

ch(G2) ≤





7, if ∆ = 3,

∆ + 5, if 4 ≤ ∆ ≤ 7,⌊
3
2 ∆

⌋
+ 1, if ∆ ≥ 8.

RR n➦ 6586
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Figure 1: The planar graphs Gk.

Wegner also showed that if G is a planar graph with ∆ = 3, then G2 can be 8-coloured. Very recently,

Thomassen [34] established Wegner’s conjecture for ∆ = 3, and Cranston and Kim [7] showed that the

square of every connected graph ( not necessarily planar ) which is subcubic ( i.e., with ∆ ≤ 3 ) is 8-

choosable, except for the Petersen graph. However, the 7-choosability of the square of subcubic planar

graphs is still open.

The first upper bound on χ(G2) for planar graphs in terms of ∆, χ(G2) ≤ 8 ∆ − 22, was implicit

in the work of Jonas [14]. ( The results in [14] deal with L(2, 1)-labellings, see below, but the proofs are

easily seen to be applicable to colouring the square of graphs as well. ) This bound was later improved by

Wong [36] to χ(G2) ≤ 3 ∆ + 5 and then by Van den Heuvel and McGuinness [11] to χ(G2) ≤ 2 ∆ + 25.

Better bounds were then obtained for large values of ∆. It was shown that χ(G2) ≤
⌈

9
5 ∆

⌉
+1 for ∆ ≥ 750

by Agnarsson and Halldórsson [1], and the same bound for ∆ ≥ 47 by Borodin et al. [6]. Finally, the

asymptotically best known upper bound so far has been obtained by Molloy and Salavatipour [29] as a

special case of Theorem 1.7 below.

Theorem 1.3 ( Molloy and Salavatipour [29] )

For a planar graph G,

χ(G2) ≤
⌈

5
3 ∆

⌉
+ 78.

As mentioned in [29], the constant 78 can be reduced for sufficiently large ∆. For example, it was

improved to 24 when ∆ ≥ 241.

In this paper we prove the following theorem.

Theorem 1.4

The square of every planar graph G of maximum degree ∆ has list chromatic number at most (1+o(1)) 3
2 ∆.

Moreover, given lists of this size, there is a proper colouring in which the colours on every pair of adjacent

vertices of G differ by at least ∆1/4.

A more precise statement is as follows. For each ǫ > 0, there is a ∆ǫ such that for every ∆ ≥ ∆ǫ we

have : for every planar graph G of maximum degree at most ∆, and for all vertex lists each of size at

least
(

3
2 + ǫ

)
∆, there is a proper list colouring, with the further property that the colours on every pair

of adjacent vertices of G differ by at least ∆1/4.

The o(1) term in the theorem is as ∆ −→ ∞. The first order term 3
2 ∆ in Theorem 1.5 is best

possible, as the examples in Figure 1 show. On the other hand, the term ∆1/4 is probably far from best

INRIA



List Colouring Squares of Planar Graphs 5

possible; it was chosen to keep the proof simple. The main point, to our minds, is that this parameter

tends to infinity as ∆ −→ ∞.

In fact, we prove a more general theorem. Let G be a graph with vertex set V (G) and edge set

E(G). For U,W ⊆ V (G) we define e(U,W ) = |{uw ∈ E(G) | u ∈ U, w ∈ W }|. Note that this means

that any edge between two vertices in U ∩W is counted twice. A family F of graphs is called nice if it is

closed under taking minors and the following condition holds : there exists an absolute constant βF such

that for any graph G ∈ F and any vertex set B ⊆ V (G), the set A of vertices in V \ B which have at

least three neighbours in B satisfies e(A,B) ≤ βF |B|. Note that this condition means that a nice class

can not be the class of all graphs.

Theorem 1.5

Let F be a nice family of graphs. The square of every graph G in F of maximum degree ∆ has list

chromatic number at most (1 + o(1)) 3
2 ∆. Moreover, given lists of this size, there is a proper colouring

in which the colours on every pair of adjacent vertices of G differ by at least ∆1/4.

It is not difficult to prove that planar graphs form a nice family ( see Section 2 ). But there are many

other families which also are nice, such as graphs embeddable on a given surface, or K3,k-minor free

graphs for a fixed k.

Note that K3,7 has K4 as a minor, and so K4-minor free graphs ( that is, series-parallel graphs ) form

a nice class. Lih, Wang and Zhu [24] showed that the square of K4-minor free graphs with maximum

degree ∆ has chromatic number at most
⌊

3
2 ∆

⌋
+ 1 if ∆ ≥ 4 and ∆ + 3 if ∆ = 2, 3. The same bounds,

but then for the list chromatic number of K4-minor free graphs, were proved by Hetherington and

Woodall [12].

1.2 L(p, q)-Labellings of Graphs

Vertex colourings of squares of graphs can be considered a special case of a more general concept : L(p, q)-

labellings of graphs. This topic takes some of its inspiration from so-called channel assignment problems.

The channel assignment problem in radio or cellular phone networks is the following : we need to assign

radio frequency channels to transmitters ( each station gets one channel which corresponds to an integer ).

In order to avoid interference, if two stations are very close, then the separation of the channels assigned

to them has to be large enough. Moreover, if two stations are close ( but not very close ), then they must

also receive channels that are sufficiently apart.

Such problem may be modelled by L(p, q)-labellings of a graph G, where p and q are non-negative

integers. The vertices of this graph correspond to the transmitters and two vertices are linked by an edge

if they are very close. Two vertices are then considered close if they are at distance two in the graph. Let

dist(u, v) denote the distance between the two vertices u and v. An L(p, q)-labelling of G is an integer

assignment f to the vertex set V (G) such that :

• |f(u) − f(v)| ≥ p, if dist(u, v) = 1, and

• |f(u) − f(v)| ≥ q, if dist(u, v) = 2.

It is natural to assume that p ≥ q.

The span of f is the difference between the largest and the smallest labels of f plus one. The

λp,q-number of G, denoted by λp,q(G), is the minimum span over all L(p, q)-labellings of G.

The problem of determining λp,q(G) has been studied for some specific classes of graphs ( see the

survey of Yeh [38] ). Generalisations of L(p, q)-labellings in which for each i ≥ 1, a minimum gap of pi

is required for channels assigned to vertices at distance i, have also been studied ( see for example [21]

or [25] ).

RR n➦ 6586
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Moreover, very often, because of technical reasons or dynamicity, the set of channels available varies

from transmitter to transmitter. Therefore one has to consider the list version of L(p, q)-labellings. A

k-list assignment L of a graph is a function which assigns to each vertex v of the graph a list L(v) of k

prescribed integers. Given a graph G, the list λp,q-number, denoted λl
p,q(G) is the smallest integer k

such that, for every k-list assignment L of G, there exists an L(p, q)-labelling f such that f(v) ∈ L(v)

for every vertex v. Surprisingly, list L(p, q)-labellings have received very little attention and appear only

very recently in the literature [18]. However, some of the proofs for L(p, q)-labellings also work for list

L(p, q)-labellings.

Note that L(1, 0)-labellings of G correspond to ordinary vertex colourings of G and L(1, 1)-labellings

of G to vertex colourings of the square of G. So we have that λ1,0(G) = χ(G), λl
1,0(G) = ch(G),

λ1,1(G) = χ(G2), and λl
1,1(G) = ch(G2).

It is well known that for a graph G with clique number ω ( the size of a maximum clique in G ) and

maximum degree ∆ we have ω ≤ χ(G) ≤ ch(G) ≤ ∆ + 1. Similar easy inequalities may be obtained for

L(p, q)-labellings :

q ω(G2) − q + 1 ≤ λp,q(G) ≤ λl
p,q(G) ≤ p ∆(G2) + 1.

As ω(G2) ≥ ∆(G) + 1, the previous inequality gives λp,q(G) ≥ q ∆ + 1. However, a straightforward

argument shows that in fact we must have λp,q(G) ≥ q ∆ + p − q + 1. In the same way, ∆(G2) ≤ ∆2(G)

so λl
p,q(G) ≤ p ∆2(G) + 1. The “many-passes” greedy algorithm ( see [27] ) gives the alternative bound

λl
p,q(G) ≤ q ∆ (∆ − 1) + p ∆ + 1 = q ∆2(G) + (p − q) ∆(G) + 1.

Taking an L(⌈p/k⌉, ⌈q/k⌉)-labelling and multiplying each label by k, for some positive integer k, we

obtain an L(p, q)-labelling. We can extend this easy observation.

Proposition 1.6

For all graphs G and positive integers p and q, we have λl
p,q(G) ≤ q λl

t,1(G) where t =
⌈p − 1

q

⌉
+ 1.

To prove this, consider lists L(v) for v ∈ V (G) each of size at least q · λl
t,1(G). For each v let L̃(v) =

{ ⌈k/q⌉ | k ∈ L(v) }, and note that |L̃(v)| ≥ |L(v)|/q ≥ λl
t,1(G). Thus there is a colouring f̃ for G such

that we always have f̃(v) ∈ L̃(v), |f̃(u) − f̃(v)| ≥ t if dist(u, v) = 1 and f̃(u) 6= f̃(v) if dist(u, v) = 2.

For each v let f(v) be any number in L(v) such that ⌈f(v)/q⌉ = f̃(v). It suffices to show that f is an

L(p, q)-labelling for G. But clearly f(u) 6= f(v) if dist(u, v) = 2, and if dist(u, v) = 1, then

|f(u) − f(v)| ≥ q
(
|f̃(u) − f̃(v)| − 1

)
+ 1 ≥ q (t − 1) + 1 ≥ p.

Because for many large-scale networks, the transmitters are laid out on the surface of the earth,

L(p, q)-labellings of planar graphs are of particular interest. There are planar graphs for which λp,q ≥
3
2 q ∆+ c(p, q), where c(p, q) is a constant depending on p and q. We already saw some of those examples

in Figure 1. The graph Gk has maximum degree 2 k and yet its square contains a clique with 3 k + 1

vertices ( all the vertices except z ). Labelling the vertices in the clique already requires a span of at least

q · 3 k + 1 = 3
2 q ∆ + 1.

A first upper bound on λp,q(G), for planar graphs G and positive integers p ≥ q was proved by Van

den Heuvel and McGuinness [11] : λp,q(G) ≤ 2 (2 q−1) ∆+10 p+38 q−24. Molloy and Salavatipour [29]

improved this bound by showing the following.

Theorem 1.7 ( Molloy and Salavatipour [29] )

For a planar graph G and positive integers p, q,

λp,q(G) ≤ q
⌈

5
3 ∆

⌉
+ 18 p + 77 q − 18.

INRIA



List Colouring Squares of Planar Graphs 7

Moreover, they described an O(n2) time algorithm for finding an L(p, q)-labelling whose span is at most

the bound in their theorem.

As a corollary to our main result Theorem 1.5 we get that, for any fixed p and every nice family F

of graphs, we have λl
p,1(G) ≤ (1 + o(1)) 3

2 ∆(G) for G ∈ F . Together with Proposition 1.6, this yields :

Corollary 1.8

Let F be a nice family of graphs and let p and q be positive integers. Then for graphs G in F we have

λl
p,q(G) ≤ (1 + o(1)) 3

2 q ∆(G).

Note that the examples discussed earlier show that for each positive integer q the factor 3
2 q is optimal.

2 Nice Families of Graphs

The following proposition shows that the family of planar graphs is nice.

Proposition 2.1

Let B be a non-empty set of vertices of the planar graph G, and let A be the collection of vertices in V \B

which have at least three neighbours in B. Then we have e(A,B) < 6 |B|.

Proof Consider the bipartite graph H with parts A and B, and the edges of G between the parts.

Then e(A,B) = |E(H)| ≥ 3 |A|. But since H is planar and bipartite, it has average degree less than 4.

Hence we have

4 >
2 |E(H)|

|A| + |B|
≥

6 |A|

|A| + |B|
.

From the outer inequality, 6 |A| < 4 (|A| + |B|) and so |A| < 2 |B|; and now from the left inequality

|E(H)| < 2 (|A| + |B|) < 6 |B|. �

A similar proof shows that graphs embeddable on a given surface form a nice family.

Theorem 2.2 ( Mader [26] )

For any graph H, there is an constant CH such that every H-minor free graph has average degree at

most CH .

In the proof of Theorem 2.2, Mader showed that CH ≤ c |V (H)| log |V (H)|, for some constant c.

This upper bound was later lowered independently by Kostochka [19] and Thomason [33] to CH ≤

c′ |V (H)|
√

log |V (H)|, for some constant c′.

Corollary 2.3

Any H-minor free graph with n vertices has at most
(CH

2

)
n triangles.

Proof We prove the result by induction on n, the result holding trivially if n ≤ 3. Let G be a H-minor

free graph with n vertices. By Theorem 2.2, its average degree is at most CH . So G has a vertex v of

degree at most CH . The vertex v is in at most
(CH

2

)
triangles. Now by induction, G − v has at most

(CH

2

)
(n − 1) triangles. Hence G has at most

(CH

2

)
n triangles. �

For an extension of this result see Lemma 2.1 of Norine et al. [30].

Theorem 2.4

A class of graphs is nice if and only if it is minor-closed and does not contain K3,k for some k.

RR n➦ 6586



8 F. Havet, J. van den Heuvel, C. McDiarmid and B. Reed

Proof First suppose that F is nice, with constant βF from the definition of nice. And suppose there

is a graph G ∈ F with K3,k as a minor for some k. Since F is minor-closed, this means K3,k itself is a

graph in F . By taking B the set of three vertices in K3,k from one part of the bipartition, and A the

remaining k vertices, we see that we must have 3 k = e(A,B) ≤ βF |B| = 3 βF . It follows that every

graph in F is K3,k-minor free if k > βF .

Next suppose that every graph in F is K3,k-minor free. We want to prove that F is nice. Note that

by Theorem 2.2, the average degree of a K3,k-minor free graph is bounded by some integral constant Ck.

Let G ∈ F , B a set of vertices of G, and A the set of vertices in V \B having at least three neighbours

in B. Construct a graph H with vertex set B as follows : For each vertex of A, one after another, if two

of its neighbours in B are not linked yet in H, choose a pair of those non-adjacent neighbours and add

an edge between them.

Let A′ ⊆ A be the set of vertices for which an edge has been added to H, and set A′′ = A \ A′.

Then H is K3,k-minor free because G was, and hence |A′| = |E(H)| ≤ 1
2 Ck |B|. Now for every vertex

a ∈ A′′, the neighbours of a in B form a clique in H ( otherwise we would have used a to link two

of its neighbours in B ). Moreover, k vertices of A′′ may not be adjacent to the same triangle of H,

otherwise G would contain a K3,k-minor. Hence |A′′| is at most k − 1 times the number of triangles

in H, which is at most
(Ck

2

)
|B| by Corollary 2.3. We find that |A′′| ≤ (k − 1)

(Ck

2

)
|B|, and hence

|A| = |A′| + |A′′| ≤
(

1
2 Ck + (k − 1)

(Ck

2

))
|B|.

Since the subgraph of G induced on A ∪ B is K3,k-minor free, there are at most 1
2 Ck (|A| + |B|)

edges between A and B; that is, at most 1
2 Ck

(
1
2 Ck + (k − 1)

(Ck

2

)
+ 1

)
|B|. �

3 Sketch of the proof of Theorem 1.5

To prove Theorem 1.5, for a fixed nice family F , we need to show that for every ǫ > 0, there is a ∆ǫ such

that for every ∆ ≥ ∆ǫ we have : for every graph G ∈ F of maximum degree at most ∆, given lists of size

cǫ =
⌊(

3
2 + ǫ

)
∆

⌋
for each vertex v of G, we can find the desired colouring.

We proceed by induction on the number of vertices of G. Our proof is a recursive algorithm. In each

iteration, we split off a set R of vertices of the graph which are easy to handle, recursively colour G2 −R

( which we can do by the induction hypothesis ), and then extend this colouring to the vertices of R. In

extending the colouring, we must ensure that no vertex v of R receives a colour used on a vertex of V −R

which is adjacent to v in G2. Thus, we modify the list L(v) of colours available for v by deleting those

which appear on such neighbours.

We note that (G−R)2 need not be equal to G2 −R, as there may be non-adjacent vertices of G−R

with a common neighbour in R but no common neighbour in G−R. When choosing R we need to ensure

that we can construct a graph G1 in F on V −R such that G2−R ⊆ G2
1. We also need to ensure that the

connections between R and V − R are limited, so that the modified lists used when list colouring G2[R]

are still reasonably large. Finally, we will want G2[R] to have a simple structure so that we can prove

that we can list colour it as desired.

We begin with a simple example of such a set R. We say a vertex v of G is removable if it has at

most ∆1/4 neighbours in G and at most two neighbours in G which have degree at least ∆1/4. We note

that if v is a removable vertex with exactly two neighbours x and y, then setting G1 = G−v + e, where e

is an edge between x and y, we have that G1 is in F and G2 − v ⊆ G2
1. On the other hand, if v is a

removable vertex with at least three neighbours, then it must have a neighbour w of degree at most ∆1/4.

In this case, the graph G2 obtained from G − v by adding an edge from w to every other neighbour of v

INRIA



List Colouring Squares of Planar Graphs 9

in G is a graph of maximum degree at most ∆ such that G2 − v ⊆ G2
2. Furthermore, G2 ∈ F as it is

obtained from G by contracting the edge wv.

Thus, for any removable vertex v, we can recursively list colour G2 − v using our algorithm. If, in

addition, v has at most cǫ − 1 − 2 ∆1/2 neighbours in G2, then our bound on dG2(v) ensures that there

will be a colour in L(v) which appears on no vertex adjacent to v in G2 and is not within ∆1/4 of any

colour assigned to a neighbour of v in G. To complete the colouring we give v any such colour.

The above remarks show that no minimal counterexample to our theorem can contain a removable

vertex of low degree in G2. We are about to describe another, more complicated, reduction we will use.

It relies on the following easy result.

Lemma 3.1

If R is a set of removable vertices of G, then there is a graph G1 ∈ F with vertex set V −R and maximum

degree at most ∆ such that G2 − R is a subgraph of G2
1.

Proof For each v ∈ R of degree at least three in V −R, choose a neighbour of v of degree less than ∆1/4

onto which we will contract v. Add an edge between the two neighbours of any vertex in R with exactly

two neighbours in V − R ( if they are not already adjacent ). The degree of a vertex x in the resultant

graph G1 is at most the maximum of ∆1/2 or dG(x). �

For any multigraph H, we let H∗ be the graph obtained from H by subdividing each edge exactly once.

For each edge e of H, we let e∗ be the vertex of H∗ which we placed in the middle of e and we let E∗ be

the set of all such vertices. We call this set of vertices corresponding to the edges of H the core of H∗.

A removable copy of H∗ is a subgraph of G isomorphic to H∗ such that the vertices of G corresponding

to the vertices of the core of H∗ are removable, and each vertex of H∗ arising from H has degree at

least ∆1/4.

Note that the subgraph J of G2 induced by the core of some copy of H∗ in G contains a subgraph

isomorphic to L(H), the line graph of H. So the list chromatic number of J is at least the list chromatic

number of L(H). If the copy is removable, then removing the edges of this copy of L(H) from J yields a

graph in which the vertices in the core have degree at most ∆1/2. Thus, the key to list colouring J will

be to list colour L(H). Fortunately, list colouring line graphs is much easier than list colouring arbitrary

graphs ( see e.g. [15, 17, 28] ). In particular, using a sophisticated argument due to Kahn [15], we can

prove the following lemma which specifies certain sets of removable vertices which we can use to perform

reductions.

Lemma 3.2

Suppose R is the core of a removable copy of H∗ in G, for some multigraph H, such that for any set X

of vertices of H and corresponding set X∗ of vertices of the copy of H∗, we have that the sum of the

degrees in G − R of the vertices in X∗ exceeds the number of edges of H out of X by at most
ǫ |X|∆

10
.

Then, any cǫ-colouring of G2 − R can be extended to a cǫ-colouring of G2.

The following lemma shows that we will indeed be able to find a removable set of vertices which we can

use to perform a reduction.

Lemma 3.3

For any ε > 0, there exists ∆ε such that any graph G ∈ F of maximum degree ∆ ≥ ∆ε contains at least

one of the following :

(A) a removable vertex v which has degree less than 3
2 ∆ + ∆1/2 in G2, or
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(B) a removable copy of H∗ with core R, for some multigraph H which contains an edge and is such

that for any set X of vertices of H we have : the sum of the degrees in G−R of the vertices in X

exceeds the number of edges of H out of X by at most |X|∆9/10.

Combining Lemmas 3.1, 3.2, and 3.3 yields Theorem 1.5. Thus, we need only prove the last two of these

lemmas. The proof of Lemma 3.3 is given in the next section. The proof of Lemma 3.2 is much more

complicated and forms the bulk of the paper. We follow the approach developed by Kahn [15] for his

proof that the list chromatic index of a multigraph is asymptotically equal to its fractional chromatic

number. We need to modify the proof so it can handle our situation in which we have a graph which

is slightly more than a line graph and in which we have lists with fewer colours than he permitted. We

defer any further discussion to Section 5.

4 Finding a Reduction

In this section we prove Lemma 3.3. Throughout the section we assume that F is a nice family of graphs.

Since F is minor-closed and not the class of all graphs, there exists a graph H so that every graph in F is

H-minor free. By Theorem 2.2, every graph in F has average degree at most CF for some constant CF .

Let G be a graph in F with vertex set V and maximum degree at most ∆. We set n = |V |.

We let B be the set of vertices of degree exceeding ∆1/4. Since the average degree of G is at most CF ,

we have |B| <
CF n

∆1/4
. Then from property (c) of the definition of nice family, we obtain that G contains

a set R0 of at least n − O
( n

∆1/4

)
removable vertices. We note that if a vertex in R0 sees a vertex in B

of degree less than 1
2 ∆ or sees at most one vertex in B, then its total degree in the square is at most

3
2 ∆ + ∆1/2 and conclusion (A) of Lemma 3.3 holds. So, we can assume this is not the case.

We let V0 be the set of vertices of G which have degree at least 1
2 ∆. Since every vertex in R0 has

exactly two neighbours in V0, the sum of the degrees of the vertices in V0 is at least 2 |R0|. This gives

|V0| ≥
2 n

∆
− O

( n

∆5/4

)
.

We let S0 be the set of vertices in V0 which see more than ∆7/8 vertices of V \ R0. Since the total

number of edges within V \R0 is O
( n

∆1/4

)
, we find that |S0| = O

( n

∆9/8

)
. We set V1 = V0 \S0 and note

|V1| ≥
2 n

∆
− O

( n

∆9/8

)
. We can conclude that

|V1| ≥
n

∆
, for large enough ∆. (1)

We let R1 be the set of vertices in R0 adjacent to ( exactly ) two vertices in V1. So every vertex in

R0 \R1 has one or two neighbours in S0. By our bound on the size of S0 this means |R0 \R1| = O
( n

∆1/8

)

and hence |R1| = n−O
( n

∆1/8

)
. By our choice of S0 we have that e(V1, V \R0) ≤ ∆7/8 |V1|. Since every

vertex in R0 \ R1 has at most one neighbour in V1, we have e(V1, R0 \ R1) ≤ |R0 \ R1| = O
( n

∆1/8

)
≤

O(∆7/8) |V1| ( here we used (1) ). We obtain

e(V1, V \ R1) = e(V1, V \ R0) + e(V1, R0 \ R1) ≤ O(∆7/8) |V1|.
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We let F1 be the bipartite graph formed by the edges between the vertices of R1 and the vertices

of V1. We remind the reader that each vertex of R1 has degree two in this graph. We let H1 be the

multigraph with vertex set V1 from which F1 is obtained by subdividing each edge exactly once.

We check if F1 is a removable copy of H1 as in (B). The only reason that it might not be is that

there is some subset Z ⊆ V1 of vertices of H1 such that the sum of the degrees in G − R1 of the vertices

in Z exceeds the number of edges of H1 out of Z by more than |Z|∆9/10. In other words we have

e(Z, V \ R1) =
∑

v∈Z

dG−R1(v) > eH1(Z, V1 \ Z) + |Z| ∆9/10. (2)

In this case, we set V2 = V1 \ Z, let R2 be the subset of R1 containing no neighbours in Z, let F2 be

the bipartite subgraph of G induced by the edges between the vertices of R2 and the vertices of V2, and

let H2 be the graph on V2 from which F2 is obtained by subdividing each edge exactly once.

We note that the edges from V2 to V \ R2 are the edges from V1 to V \ R1 minus the edges from Z

to V \ R1, plus the edges from V2 to vertices of R1 \ R2 :

e(V2, V \ R2) = e(V1 \ Z, V \ R2) = e(V1, V \ R1) − e(Z, V \ R1) + e(V2, R1 \ R2).

For every vertex v in R1 \ R2 adjacent to a vertex in V2, there also is a vertex in Z it is adjacent to.

Hence e(V2, R1 \ R2) is precisely the number of edges of H1 out of Z : e(V2, R1 \ R2) = eH1(Z, V1 \ Z).

Using (2) gives e(V1, V \ R1) > e(V2, V \ R2) + |Z| ∆9/10.

Now we check if F2 is a removable copy of H2 as in (B). If not we can proceed in the same fashion

deleting a set of vertices from V2 and R2 to obtain a new graph.

At some point this process stops. We have constructed new sets V1, R1, V2, R2, . . . , . . . Vi, Ri. We

must show that Ri 6= ∅ since then the corresponding graph Hi has at least one edge. Letting Z ′ be

V1 \ Vi, we know that the number of edges from V1 to V \ R1 exceeds the number of edges from Vi to

V \ Ri by at least |Z ′|∆9/10. Using the estimate of e(V1, V \ R1) from above, this implies

|Z ′| ≤
e(V1, V \ R1) − e(Vi, V \ Ri)

∆9/10
≤

O(∆7/8) |V1|

∆9/10
= |V1|O(∆−1/40),

and hence |Vi| ≥ |V1| (1 − O(∆−1/40)), which also gives |V1| ≤ (1 + O(∆−1/40)) |Vi|.

Since Vi is a subset of V1, we know that e(Vi, V \ R0) ≤ ∆7/8 |Vi|. Using the earlier estimate of

e(V1, R0 \ R1) we also know

e(Vi, R0 \ R1) ≤ e(V1, R0 \ R1) ≤ O(∆7/8) |V1| ≤ O(∆7/8) |Vi|.

Finally, for each edge between Vi and R1 \Ri, we have at least one edge between R1 \Ri and Z ′ as well.

We find

e(Vi, R1 \ Ri) ≤ |Z ′|∆ ≤ |V1|O(∆39/40) ≤ O(∆39/40) |Vi|.

Combining these estimates we obtain

e(Vi, V \ Ri) = e(Vi, V \ R0) + e(Vi, R0 \ R1) + e(Vi, R1 \ Ri) ≤ O(∆39/40) |Vi|.

But each vertex in Vi has degree at least 1
2 ∆. This means that e(Vi, Ri) > 0 for large enough ∆. In

particular, it follows that Ri is non-empty. Thus, Hi contains an edge. We have shown that (B) holds.

This completes the proof of Lemma 3.3. �
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5 Reducing using Line Graphs

In this section we focus our attention on multigraphs. We always assume that H is a multigraph with

vertex set V and maximum degree ∆.

We abuse notation by writing e = uv when we want to say that e is an edge with endvertices u and v

( there can be many such edges ). For U,W ⊆ V , define e(U,W ) = |{ e = uw | u ∈ U, w ∈ W }|. As

before this means that any edge with two endvertices in U ∩ W is counted twice.

In this section we prove the following result and then derive Lemma 3.2 as a corollary.

Lemma 5.1

For every ǫ > 0 there is a ∆ǫ such that the following holds for all ∆ ≥ ∆ǫ. Let H be a multigraph with

vertex set V and maximum degree at most ∆. For each edge we are given a list L(e) of acceptable colours.

Additionally, J1 is a graph on E(H) of maximum degree at most ∆1/2 and J2 is a graph on E(H) of

maximum degree at most ∆1/4. Suppose the following two conditions are satisfied.

1. For every edge e with endvertices v and w :

|L(e)| =
⌈(

3
2 + ǫ

)
∆ − (∆ − d(v)) − (∆ − d(w)) − 3 ∆1/2

⌉
.

2. For any set X of an odd number of vertices of H :

∑

v∈X

(∆ − d(v)) − e(X, V \ X) ≤
ǫ |X|∆

10
.

Then we can find a proper colouring of L(H) such that any pair of edges of H joined by an edge of J1

receive different colours, and the colours of the endvertices of any edge of J2 differ by at least ∆1/4.

Remark 5.2 Condition 2 of the previous lemma applied to the set X = {v} implies that for any

vertex v, d(v) ≥
(

1
2 − 1

20 ǫ
)
∆. By taking ∆ large enough this implies that for any edge e the right hand

side in Condition 1 is positive.

To prove the lemma, we will analyse a procedure which chooses matchings of each colour at random

in H. Basically, for each colour γ and edge e with γ ∈ L(e), we would like the probability that e is in the

random matching Mγ of colour γ to be near |L(e)|−1. Thus the expected number of matchings chosen

which contain e will be near one. By using the Lovász Local Lemma to guide these choices carefully, we

can actually ensure that each edge is indeed chosen by one matching. Before we describe our approach

any further, we state the Local Lemma, and restate our problem in terms of line graphs.

5.1 The Lopsided Local Lemma

The Lovász Local Lemma is a powerful tool which allows one to prove results about the global structure

of an object using a local analysis. There are many variants of this lemma ( see e.g. [28, Chapters 4

and 8] ). We will use the following variant, which can be found in [10].

Lemma 5.3 ( Erdős and Lovász [10] )

Suppose that B is a set of ( bad ) events in a probability space Ω. Suppose further that there are p and d

such that we have :

1. for every event B in B, there is a subset SB of B of size at most d, such that the conditional

probability of B, given any conjunction of occurrences or non-occurrences of events in B \ SB, is

at most p, and
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2. e p d < 1.1

Then with positive probability, none of the events in B occur.

We will analyse the behaviour of the set of random matchings we choose using this lemma. When we do

so, the bad events we consider will typically be indexed by the edges of H and for an event Be indexed

by e, the events in SBe
will typically be events indexed by an edge w within a specified distance d of e

in H. To be able to apply the lemma, we need to ensure that conditioning on the edges chosen by a

matching in one part of the multigraph will not have too great an effect on the edges it picks in distant

parts of the multigraph.

5.2 Probability Distributions on Matchings

For a probability distribution p, defined on the matchings of a multigraph H, we let xp(e) be the prob-

ability that e is in a matching chosen according to p. We call the value of xp(e) the marginal of p at e.

The vector xp = (xp(e)) indexed by the edges e is called the marginal of p. We are interested in finding

probability distributions where the marginal at e is |L(e)|−1.

We are actually interested in using special types of probability distributions on the matchings of H

which have independence properties which will allow us to apply the Local Lemma. Most of the material

presented in this section may be found in [28, Chapter 22].

A probability distribution p on the matchings of H is hard-core if it is obtained by associating a non-

negative real λp(e) to each edge e of H so that the probability that we pick a matching M is proportional

to
∏

e∈M λp(e). I.e., setting λp(M) =
∏

e∈M λp(e) and letting M(H) be the set of matchings of H, we

have

p(M) =
λp(M)∑

N∈M(H)

λp(N)
.

We call the values λp(e) the activities of p.

Our interest in these special distributions is motivated by the following result which makes them

suitable for use with the Local Lemma.

Suppose that we are choosing a random matching M from some probability distribution. For a

vertex v we say that an event Q is t-distant from v if it is completely determined by the choice of all the

matching edges at distance t or greater from v. We say that an event is t-distant from an edge e if it is

t-distant from both ends of e.

Lemma 5.4 (Kahn and Kayll [16] )

Fix K > 0 and 0 < ǫ < 1. Let t = tǫ =
8 (K + 1)2

ǫ
+ 2. Consider a multigraph H and hard-core

distribution p whose activities satisfy for all x ∈ V (H) :
∑
e∋x

λp(e) < K. If we choose a matching M

according to p, then the following is true.

• For any edge e and event Q which is t-distant from e,

(1 − ǫ) Pr(e ∈ M) ≤ Pr(e ∈ M | Q) ≤ (1 + ǫ) Pr(e ∈ M).

This result shows that hard-core probability distributions with bounded activities are amenable to analysis

via the Local Lemma. Our next step is to prove that there are such probability distributions with the

marginals we desire.

1To avoid confusion between an edge “e” and the base of the natural logarithms 2.718. . . , we will use the roman letter “e”

for the latter one.
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Finding an arbitrary probability distribution on the matchings of H with marginals x is equivalent

to expressing x as a convex combination of incidence vectors of matchings of H. So, we can use a seminal

result due to Edmonds [9] to understand for which x this is possible.

The matching polytope MP(H) is the set of non-negative vectors x indexed by the edges of H which

are convex combination of incidence vectors of matchings.

Theorem 5.5 ( Edmonds [9] ) ( Characterisation of the Matching Polytope )

A non-negative vector x indexed by the edges of H is in MP(H) if and only if

1. for every vertex v of H :
∑
e∋v

xe ≤ 1, and

2. for all F ⊆ H with |V (F )| ≥ 3 odd :
∑

e∈E(F )

xe ≤ 1
2 (|V (F )| − 1).

Remark 5.6 It is easy to see Conditions 1 and 2 are necessary as they are satisfied by all the incidence

vectors of matchings and hence by all their convex combinations. It is proving that they are sufficient

which is difficult.

It turns out that we can choose a hard-core distribution with marginals x provided all of the inequalities

are strict.

Lemma 5.7 ( Lee [23]; Rabinovitch, Sinclair and Widgerson [31] )

There is a hard-core distribution with marginals x if and only if

1. for every vertex v of H :
∑
e∋v

xe < 1, and

2. for all F ⊆ H with |V (F )| ≥ 3 odd :
∑

e∈E(F )

xe < 1
2 (|V (F )| − 1).

We are interested in hard-core distributions where the λp are bounded because, as we saw above, they

have the independence properties we need. It turns out that to ensure this is the case, we need to stay

slightly further away from the boundary of the Matching Polytope.

Lemma 5.8 (Kahn and Kayll [16] )

For all δ, 0 < δ < 1, there is a β such that, for each multigraph H, if p is a hard-core distribution in

(1 − δ)MP(H), then

1. for every edge e of H : λp(e) < β xp(e), and

2. for every vertex v of H :
∑
e∋v

λp(e) < β.

To complete this subsection, we show that the marginals for which we need to construct probability

distributions are indeed well inside the Matching Polytope.

Lemma 5.9

Let 0 < ǫ ≤ 1/4. Then there is a ∆ǫ such that for every ∆ ≥ ∆ǫ the following holds. Let H be a

multigraph with vertex set V and maximum degree at most ∆, and for each edge e let L(e) be a list of

acceptable colours. Suppose the following conditions are satisfied :

1. For every edge e with endvertices v and w :

|L(e)| ≥
(

3
2 + ǫ

)
∆ − (∆ − d(v)) − (∆ − d(w)) − 3 ∆1/2.
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2. For any set X of an odd number of vertices of H :

∑

v∈X

(∆ − d(v)) − e(X, V \ X) ≤
ǫ |X|∆

10
.

Then, the vector obtained by setting xe =
1 + 1

2 ǫ

|L(e)|
for each edge e of H is in the Matching Polytope of H.

Proof We need only show that x satisfies the inequalities in Edmond’s Characterisation of the Matching

Polytope, Theorem 5.5. Whenever an inequality requires ∆ to be large enough, we use “≥∗”.

To begin, we note that the second condition of the lemma implies that every vertex w of H has

degree at least
(

1
2 − 1

20 ǫ
)
∆. Thus, for any edge e = vw of H, the first condition of the lemma implies

|L(e)| ≥ d(v) + 19
20 ǫ ∆ − 3 ∆1/2 ≥∗ d(v) + 3

4 ǫ ∆ ≥
(
1 + 3

4 ǫ
)
d(v). We shall use this fact repeatedly

throughout the proof.

As the first application, we note that we have for all v ∈ V ,
∑
e∋v

xe < 1. This shows that the first

inequality in the characterisation in Theorem 5.5 is satisfied.

Consider next a subgraph F of H with a vertex set X containing three vertices x, y, z, and with α ∆

edges. Applying the second condition gives

3 ∆ − d(x) − d(y) − d(z) ≤ e(X, V \ X) +
3

10
ǫ ∆.

Since we also have 3 ∆ − d(x) − d(y) − d(z) = 3 ∆ − 2 α ∆ − e(X, V \ X), we obtain

3 ∆ − d(x) − d(y) − d(z) ≤
(3 + 3

10 ǫ

2
− α

)
∆,

which we can rewrite as

3

2
∆ ≥ 3 ∆ − d(x) − d(y) − d(z) −

3

20
ǫ ∆ + α ∆.

Substituting this into the first condition of the lemma yields that for any edge e = uv in F :

|L(e)| ≥ ∆ + (d(u) + d(v) − d(x) − d(y) − d(z)) +
(
α +

17

20
ǫ
)

∆ − 3 ∆1/2.

Since ∆ − d(w) is non-negative for any w in X, this yields

|L(e)| ≥
(
α +

17

20
ǫ
)

∆ − 3 ∆1/2 ≥∗

(
α + 3

4 ǫ
)
∆.

Since α ≤ 3
2 , this gives that for any edge e in F , xe ≤

1 + 1
2 ǫ(

α + 3
4 ǫ

)
∆

≤
1

α ∆
. We can conclude

∑
e∈E(F )

xe ≤

(α ∆) ·
1

α ∆
= 1. This shows that the second inequality in the Characterisation of the Matching Polytope

is satisfied for all X with three vertices.

Next consider any subgraph F of H with vertex set X, where |X| ≥ 5 is odd. For each vertex v of F

we let E(v) be the set of edges of F incident to v. We partition the vertices of F into a set B of vertices

of degree at least 3
4 ∆ and a set S of vertices of degree less than 3

4 ∆.

Case 1 : There is a vertex of B whose degree is not more than 7
8 ∆ or a vertex of S whose degree is not

more than 5
8 ∆.
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Recall first that for any edge e = vw, |L(e)| ≥
(
1 + 3

4 ǫ
)
d(v), so xe ≤

1

d(v)
. Moreover, for w ∈ B,

applying the first condition of the lemma, we obtain |L(e)| ≥ d(v)+ 1
4 ∆+ǫ ∆−3 ∆1/2 ≥∗

(
1+ 1

2 ǫ
)

5
4 d(v).

So, for each vertex v ∈ B we get

∑

e∈E(v)

xe ≤
4

5 d(v)
|E(v)| +

1

5 d(v)
|{ e = vw | w ∈ S }|;

while for each vertex v in S we can write

∑

e∈E(v)

xe ≤
1

d(v)
|E(v)| −

1

5 d(v)
|{ e = vw | w ∈ B }|.

We estimate, using that the vertices in S have smaller degree than the vertices in B,

2
∑

e∈E(F )

xe ≤
∑

v∈X

∑

e∈E(v)

xe

≤
∑

v∈B

4

5 d(v)
|E(v)| +

∑

v∈S

1

d(v)
|E(v)| +

∑

e∈E(F )
e=vw, v∈B, w∈S

( 1

5 d(v)
−

1

5 d(w)

)

≤
∑

v∈B

4

5 d(v)
|E(v)| +

∑

v∈S

1

d(v)
|E(v)|

≤
4

5
|B| + |S| −

4

5
e(X, V \ X)

1

∆
.

Now, applying the second condition of the lemma and the presumption for this Case 1, we see that

e(X, V \ X) ≥ 1
4 ∆ |S| + 1

8 ∆ −
ǫ |X|∆

10
.

Combining the two estimates, we thus obtain

2
∑

e∈E(F )

xe ≤ |X|
(4

5
+

2 ǫ

25

)
−

1

10
.

For ǫ ≤ 1/4 and |X| ≥ 5, the right hand side is at most |X| − 1, which shows that such X satisfy the

second inequality in the Characterisation of the Matching Polytope.

Case 2 : Every vertex in B has degree at least 7
8 ∆ and every vertex in S has degree at least 5

8 ∆.

Applying the first condition of the lemma as in Case 1, we see that for an edge e with endvertices

v, w, we have |L(e)| ≥ d(v) + 1
8 ∆ + ǫ ∆ − 3 ∆1/2 ≥∗

(
1 + 1

2 ǫ
)

9
8 d(v), and if w ∈ B, then we get

|L(e)| ≥ d(v) + 3
8 ∆ + ǫ ∆ − 3 ∆1/2 ≥∗

(
1 + 1

2 ǫ
)

11
8 d(v). So, for each vertex v ∈ B we have

∑

e∈E(v)

xe ≤
8

11 d(v)
|E(v)| +

16

99 d(v)
|{ e = vw | w ∈ S }|;

while for each vertex v in S we can write

∑

e∈E(v)

xe ≤
8

9 d(v)
|E(v)| −

16

99 d(v)
|{ e = vw | w ∈ B }|.
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Following the same argumentation as in Case 1, this leads to

2
∑

e∈E(F )

xe ≤
∑

v∈X

∑

e∈E(v)

xe ≤
∑

v∈B

8

11 d(v)
|E(v)| +

∑

v∈S

8

9 d(v)
|E(v)|

≤
8

11
|B| +

8

9
|S| −

8

11
e(X, V \ X)

1

∆
.

Now, applying the second condition of the lemma, we see that

e(X, V \ X) ≥ 1
4 ∆ |S| −

ǫ |X|∆

10
.

Combining the two estimates, we thus obtain

2
∑

e∈E(F )

xe ≤ |X|
( 8

11
+

8 ǫ

110

)
.

Since ǫ < 1 and |X| ≥ 5, this yields that 2
∑

e∈E(F )

xe ≤ 4
5 |X| ≤ |X| − 1, as required. �

5.3 Kahn’s Algorithm

In this subsection we assume we are given a multigraph H with lists L(e) for each edge e. For any

colour γ, Hγ is the subgraph of H induced by the edges that contain γ in their list. For the sake of

simplicity, we do not distinguish between a subgraph J of H and the graph obtained from J by removing

its isolated vertices ( since we are interested in colouring edges, isolated vertices are irrelevant ).

Kahn presents an algorithm in [15] which shows that the list chromatic index of a multigraph exceeds

its fractional chromatic index by o(∆). Actually, the algorithm implicitly contains a subroutine which

does more than this, providing a proof of the following result.

Theorem 5.10 ( Kahn [15] )

For every δ, 0 < δ < 1, and C > 0 there exists a ∆δ,C such that the following holds for all ∆ ≥ ∆δ,C .

Let H be a multigraph with maximum degree at most ∆, and with a list L(e) of acceptable colours for

each edge e. Define the graphs Hγ as above.

Suppose that for each colour γ there exists a hard-core distribution pγ on the matchings of Hγ , with

corresponding marginal xpγ on the edges, satisfying the following conditions :

1. For every edge e :
∑

γ∈L(e)

xpγ (e) = 1.

2. For every colour γ : the marginal xpγ is in (1 − δ)MP(H).

3. For every edge e and colour γ : xpγ (e) ≤
C

∆
.

Then we can find a proper colouring on the edges of H, using colours from L(e) for each edge e.

Notice that if a hard-core distribution satisfies the hypotheses in the theorem above, then applying

Lemma 5.8 and setting K = β C using the β in that lemma, we obtain that the hard-core distributions

also satisfy :

4. For every edge e and colour γ : λpγ (e) ≤
K

∆
.

At the heart of Kahn’s analysis is the following lemma, Lemma 3.1 in [15].
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Lemma 5.11 (Kahn [15] )

For every K, δ > 0, there exist ξ = ξδ,K , 0 < ξ ≤ δ, and ∆δ,K such that the following holds for all

∆ ≥ ∆δ,K . Let H be a multigraph with maximum degree at most ∆, and with a list L(e) of acceptable

colours for each edge e. Define the graphs Hγ as before.

Suppose that for each colour γ we are given a hard-core distribution pγ on the matchings of Hγ with

activities λpγ = λγ and marginals xpγ = xγ , satisfying :

1. For every edge e :
∑

γ∈L(e)

xγ(e) > e−ξ.

2. For every colour γ and edge e : λγ(e) ≤
K

∆
.

Then for all γ there exist matchings Mγ in Hγ , so that if we set H ′ = H −
⋃

γ∗ Mγ∗ , H ′
γ = Hγ −

V (Mγ) −
⋃

γ∗ Mγ∗ , we form lists L′(e) be removing no longer allowed colours from L(e), and we let x′
γ

be the marginals corresponding to the activities λγ on H ′
γ , we have :

• For every edge e of H ′ :
∑

γ∈L′(e)

x′
γ(e) > e−δ.

• The maximum degree of H ′ is at most
1 + δ

1 + ξ
e−1∆.

( The expression (1+δ)/(1+ξ) is only there to make further analysis somewhat easier; removing it would

give a completely equivalent statement. )

The proof of the lemma utilises the Local Lemma to show that selecting matchings according to the

hard-core distribution will, with positive probability, give the required matchings. This proof forms the

bulk of Kahn’s paper. Once it is proved, Theorem 5.10 follows fairly easily ( although it requires some

careful selection of the constants involved ), using the following iterative “construction”.

Given a multigraph with lists of acceptable colours and distributions satisfying the hypotheses in the

theorem, start with setting H0 = H, and H0
γ = Hγ for all γ. Once we have obtained Hi−1 and Hi−1

γ , in

iteration i we do the following.

I. For each colour γ, choose the matching M i
γ in Hi−1

γ according to the lemma.

II. If an edge e is in one or more M i
γ ’s, then assign it a colour chosen uniformly at random from the

matchings containing that edge.

III. Form Hi by removing from Hi−1 all edges that have been assigned a colour during this stage.

Form Hi
γ by removing from Hi−1

γ all edges that have been assigned some colour γ∗ at this stage,

and all vertices that are incident to an edge that got assigned colour γ this stage.

The procedure is repeated until for each γ we have obtained matchings Nγ =
⋃

i M i
γ , whose removal

from H leaves a subgraph U of uncoloured edges such that U has maximum degree at most
∆

2 e K
,

whereas for each edge e of U there are at least
∆

e K
colours in L(e) which have not been used on any

edges incident to e. At this point he finishes the colouring greedily.

This proof is given in Section 3 of Kahn’s paper, and is fairly easy to extract from what he has

actually written there. The bulk of his paper involves guaranteeing the performance desired in each

iteration. This done by applying Lemma 3.1 in his paper [15]. As the reader can check from the lemma

as given above, it assumes precisely the hypotheses in the theorem above, so can also be applied in

our situation. Kahn deduces his main result from this lemma in Section 3 of his paper. To do so, he

first deduces that he can find probability distributions that satisfy the conditions in Theorem 5.10 ( this

is done between equations (18) and the unlabelled equation between (21) and (22) ), and then proves

that given distributions satisfying these conditions the result can be proved using the iterative approach
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described above. So to extend his result we simply need to drop the part of the proof where he derives

our hypotheses from his.

A few more remarks about Kahn’s proof are in order. The iterative construction requires O(1)

iterations. The bad events which he avoids by applying the Local Lemma are defined in the middle of

page 136 of his article [15]. There are two kinds : an event Tv such that its non-occurrence guarantees

the degree of a vertex v drops sufficiently, and an event Te such that its non-occurrence ensures that the

marginals at an edge e of the hard-core distribution for the next iteration sum to a number close to 1.

He defines a distance t > 1 which is a function of δ and K ( and independent of ∆ ) and shows that the

probability that a bad event occurs given all the edges of every matching at distance at least t in H from

the vertex or edge indexing it is at most p for some p which is ∆−ω(1). ( A few remarks : Kahn uses D

where we use ∆, and ∆1 + ∆2 where we use t. The result we have just stated is Lemma 6.3 on page 137.

The ω(1) here is with respect to ∆. ) He can then apply the Local Lemma, where the set STz
( z a vertex

or an edge ) is the set of events indexed by an edge or vertex within distance 2 t of z ( this is also done on

pages 136–137 ). The key point is that this set has size at most d = 2 (∆+1) ∆2t, so we have e p d = o(1).

5.4 Modifying the Algorithm

We will adopt Kahn’s approach to prove Lemma 5.1. We use his iterative algorithm to colour most of

the graph. We simply impose an extra condition that very few edges incident to any vertex of H are

involved in conflicts because of their neighbours in J1 or J2. Then, in the final phase, we recolour these

edges as well as colouring the uncoloured edges. Our bound on the number of such edges incident to each

vertex will ensure that we can do this greedily, even when we take into account colours which cannot be

used because of coloured neighbours in J1 or J2. Forthwith the details.

We use the strengthening of Theorem 5.10, obtained by :

(i) adding at the end of the first paragraph of that theorem :

Suppose further that J1 is a graph of maximum degree ∆1/4 on L(e) and J2 is a graph of maximum

degree ∆1/2 on L(e),

(ii) and adding at the end of the last sentence of the theorem :

So that no edge of J2 is monochromatic, and the colours assigned to the endpoints of an edge of j1
differ by at least ∆1/4.

We call this strengthening Theorem 5.10∗. We first show that it implies Lemma 5.1 and then discuss its

proof.

Without loss of generality we will assume that ǫ < 1/200. We set δ = 1 −
(
1 + 1

2 ǫ
)−1

and C = 3.

We insist that ∆ǫ exceeds the ∆δ,C of Theorem 5.10∗. We also assume ∆ǫ is large enough that certain

implicit inequalities used below to bound o(1) terms using ǫ hold. For each edge e and each colour γ

in L(e) we set xγ(e) = |L(e)|−1. Thus, for each edge e we have that
∑

γ xγ(e) = 1. Also, we know that

for each edge e with endvertices v and w, applying the second condition of Lemma 5.1 with X = {v} and

X = {w}, we have that d(v) + d(w) ≥
(
1 − 1

5 ǫ
)
∆. Hence applying the first condition of the lemma, we

have that |L(e)| ≥
(

1
2 − 2

5 ǫ
)
∆ ≥ 1

3 ∆. Thus all of our marginals are at most
C

∆
. Applying Lemma 5.9

we see that each of these marginal vectors is in (1 − δ)MP(H) and hence in (1 − δ)MP(Hγ). We can

now apply Theorem 5.10∗ to obtain a list colouring of the edges of H.

We now turn to the proof of Theorem 5.10∗. We let K = β C, using the β from Lemma 5.8 as in

the last section, so each activity is bounded by
K

∆
. We let H ′ be the graph obtained from H by adding

an edge between two vertices if they are endvertices of two edges which are joined in J1 or J2. We note

that H ′ has maximum degree less than ∆2.
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To resolve a conflict because of J1 or J2, we recolour the conflicting edge which was coloured last,

recolouring both edges if they were coloured in the same iteration. Unfortunately, Kahn’s algorithm may

multi-colour an edge. To deal with this we say that an edge is coloured with the first colour assigned to

it. If it is assigned more than one colour in the iteration in which it receives a colour, we colour it with

the choice which is smallest.

In each iteration, for each vertex v of H, we let Xv be the number of edges e of H incident to v which

are coloured with a colour, which is used to colour a neighbour of e in J1 or is within ∆1/4 of a neighbour

of e in J2. For technical reasons, in this definition if the neighbour f in J1 or J2 was uncoloured at the

beginning of this iteration we consider conflicts involving all the colours γ such that Mγ contains f . We

let F (e) be the colours forbidden on e, either because they were assigned to a J2 neighbour in a previous

iteration, or because they are too close to a colour assigned to a J1 neighbour in a previous iteration.

We will use the variant of Lemma 5.11 in which we add :

(i) at the beginning of its first paragraph :

Suppose further that we have a list F (e) of at most ∆2/3 colours for each edge e, and graphs J1

and J2, where J1 has degree at most ∆1/3 and J2 has degree at most ∆2/3,

(ii) at the very end a new bullet point item :

• for every vertex v, Xv has at most ∆4/5 elements.

We call this variant Lemma 5.11∗, and use it to obtain Theorem 5.10∗

To prove the lemma, we follow closely the proof of Lemma 5.11 in [15]. We introduce for each vertex v

of H, a new event Sv that Xv exceeds ∆4/5. In each iteration, along with insisting that all the Te and Tv

fail, we also insist that all the Sv fail. In doing so we use the following claim.

Claim 5.12

The conditional probability that Sv holds, given that for every γ we have conditioned on Mγ−v−NH′(v) =

Lγ for some matching Lγ , is ∆−ω(1).

Given the claim, to prove our variant of the lemma, we can use the Local Lemma, just as Kahn did.

Because just as with the other events, we have a ∆−ω(1) bound on the probability that any Sv fails given

the choice of all the matching edges at distance at least t from the neighbours of v in H ′ ( by applying

our claim to all the choices of Lγ which extend this choice ). We can therefore apply the Local Lemma

iteratively as in the last section. Note here that the set STz
for an event with index z ∈ V (H) ∪ E(H)

will consist of all of those events the index of which is within distance 2 t of z in H ′ rather than H. ( This

gives a bound of ∆4t for d rather than ∆2t but this is still much less than p−1. ) Thus, we can indeed

prove Lemma 5.11∗.

To prove Theorem 5.10∗, we apply Lemma 5.11∗, mimicking Kahn’s proof of Theorem 5.10. We

eventually obtain a colouring of E(H)−U for some subgraph U of H with maximum degree
∆

2 eK
, such

that for each edge e there are at least
∆

eK
colours on L(e) which appear on no edge incident to e.

We extend U to U ′ by uncolouring every edge e which is involved in a J1 or J2 conflict with an

edge f coloured before or at the same time as e. Because we perform O(1) iterations and all the Sv hold,

we know that U ′ has maximum degree
∆

2 eK
+ O(∆4/5). If we choose ∆ǫ large enough, then this is less

than
∆

eK
− 3 ∆1/2 − 1. Hence we can extend our edge-colouring to an edge-colouring of H by colouring

the edges of U ′ greedily, whilst at the same time avoiding conflicts due to J1 or J2. This completes the

proof of Theorem 5.10∗ modulo the claim.
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Proof of Claim 5.12 To prove our claim we first bound the conditional expected value of Xv. We

consider each edge e incident to v separately. We show that the conditional probability that e is in a

conflict is O(∆−1/2). Summing up over all e incident to v yields that the expected value of Xv is O(∆1/2).

We prove this bound for the conflicts involving edges coloured in a previous iteration and edges coloured

in this iteration separately.

To begin we consider the previously coloured edges. We actually show that for any edge e, the

conditional probability that e is involved in a conflict with a previously coloured edge given for each

colour γ a matching Nγ such that Mγ is either Nγ or Nγ + e, is O(∆−1/2). Summing up over all the

choices for the Nγ which extend the Lγ , then yields the desired result. If Nγ contains an edge incident

to e, then Mγ = Nγ . Otherwise, by the definition of a hard-core distribution :

Pr(Mγ = Nγ + e) =
λγ(e)

1 + λγ(e)
≤ λγ(e) ≤

K

∆
.

The conditional probability we want to bound is the sum over all colours γ of the conditional probability

that e is coloured γ and involved in a conflict with a previously coloured J1 or J2 neighbour. There are

at most ∆(J1) + 2 ∆1/4 ∆(J2) colours for which this probability is not zero. For each of these colours,

the conditional probability that a conflict actually occurs is at most the conditional probability that e is

in Mγ . Since this is O(∆−1), the desired bound follows.

We next consider conflicts with edges coloured in this iteration. It is enough to show that the

conditional probability that e conflicts with any particular uncoloured J1 neighbour is O(∆−1) and the

probability that it conflicts with a J2 neighbour is O(∆−3/4). We actually show that for any edge f

joined to e by an edge of J1 ∪ J2, the conditional probability that e is involved in a conflict with f , given

for each colour γ a matching Nγ such that Mγ is one of : Nγ , Nγ + e, Nγ + f , Nγ + e + f , is O(∆−1) if f

is in J1, and O(∆−3/4) if f is in J2. Summing up over all the choices for the Nγ which extend the Lγ ,

then yields the desired result. Suppose first that f is adjacent to e in J1. We obtain our bound on the

probability that e and f get the same colour by summing the probability they both get a specific colour γ

over all the at most
⌈(

3
2 +ǫ

)
∆

⌉
colours on L(e). For each such colour, as in the last paragraph, we obtain

that given the conditioning

Pr(Mγ = Nγ + e + f) ≤ λγ(e) λγ(f) ≤
(K

∆

)2

.

Summing over our choices for γ yields the desired result. If f is adjacent to e in J2, then having picked

a choice for γ we have at most 2 ∆1/4 choices for a colour γ′ on f that cause a conflict. Proceeding as

above, we can show that the conditional probability that e is coloured γ and f is coloured γ′ is at most
(K

∆

)2

. This yields the desired result.

We next bound the probability that Xv exceeds ∆4/5 by showing that it is concentrated. We note

that if we change the choice of one Mγ , leaving all the other random matchings unchanged, then the only

new J1 or J2 conflicts counted by Xv involve edges coloured with a colour within ∆1/4 of γ. There are

at most 2 ∆1/4 + 1 such edges incident to v. Thus, such a change can change Xv by at most 2∆1/4 + 1.

Furthermore, each conflict involves at most two of the matchings ( only one if it also involves a previously

coloured vertex ). So, to certify that there were at least s conflicts involving edges incident to v in an

iteration we need only produce at most 2 s matchings involved in these conflicts. It follows by a result of

Talagrand [32] ( see also [28, Chapter 10] ) that the probability that Xv exceeds its median M by more

than t is at most exp
(
−Ω

( t2

∆1/2 M

))
= exp

(
−Ω

( t2

∆1/2

))
. Since the median of Xv is at most twice its

expectation, setting t = 1
2 ∆4/5 yields the desired result.

This completes the proof of the claim, and hence of Lemma 5.11∗, Theorem 5.10∗ and Lemma 5.1.

�
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5.5 The Final Stage : Deriving Lemma 3.2

With Lemma 5.1 in hand, it is an easy matter to prove Lemma 3.2. In doing so we consider the natural

bijection between the core R of H∗ and E(H), referring to these objects using whichever terminology is

convenient. We sometimes use both names for the same object in the same sentence.

Before we really start, one observation concerning degrees. For a vertex v in H, the condition in

Lemma 3.2, taking X = {v}, gives dG−R(v) − dH(v) ≤ 1
10 ǫ ∆. Since dG−R(v) = dG(v) − dH(v), this

means that dH(v) ≥ 1
2 dG(v) − 1

20 ǫ ∆, and hence

dG(v) − dH(v) ≤
1

2
dG(v) + 1

20 ǫ ∆ ≤
(

1
2 + 1

20 ǫ
)
∆.

This will guarantee that all the lists of colours we will consider below are not empty.

Next, for two vertices x, y from R, if x and y are adjacent in G, we add the edge xy to J2, and if x

and y are adjacent in G2, but do not correspond to adjacent edges in H, then we add the edge xy to J1.

Since vertices in R have degree at most ∆1/4 in G, we get the required bounds on the degree for vertices

in J1 and J2 in Lemma 5.1.

Now first suppose that every vertex v in H has degree ∆ in G. For an edge e = vw in H, set L′(e) to

be a subset of
⌈(

3
2 +ǫ

)
∆−(∆−dH(v))−(∆−dH(w))−3 ∆1/2

⌉
colours in L(e) which appear on no vertex

of V −R which is a neighbour of e in G2 and are not within ∆1/4 of any colour appearing on a neighbour

of e in G. This is possible because in G2, e is adjacent to at most (∆− dH(v))+ (∆− dH(w)) neighbours

of v and w in V − R, and at most ∆1/2 other vertices of V − R ( since the vertex in G representing the

edge e is removable, hence has at most ∆1/4 neighbours non-adjacent to v and all these vertices have

degree at most ∆1/4 ). Finally, the condition in Lemma 5.1 on the edges leaving an odd set X of vertices

of H holds because of the corresponding condition for all sets X in the statement of Lemma 3.2. So

applying Lemma 5.1, we are done in this case.

In general this approach does not work because for a vertex v of H of degree less than ∆, we do not

have that ∆−dH(v) is equal to the number of edges from v to V −R, so our two conditions are not quite

equivalent. In order to fix this, we use a simple trick. Form G by taking two disjoint copies G(1) and G(2)

of G, with corresponding copies H(i), R(i), J
(i)
1 , J

(i)
2 , i = 1, 2, and copy all the lists of colours on the

vertices. For each vertex v of H, we add ∆−dG(v) subdivided edges between its two copies v(1) and v(2).

Give an arbitrary list of
⌈(

3
2 + ǫ

)
∆

⌉
colours to the vertices at the middle of these new subdivided edges.

Let H be the multigraph formed from combining H(1) and H(2) with the new multiple edges between

copies of vertices of H. Similarly, take R the union of R(1), R(2) and all vertices in the middle of the new

edges, and set Jj = J
(1)
j ∪ J

(2)
j , j = 1, 2. Note that the degrees in J1 and J2 haven’t changed, so we can

still use them in Lemma 5.1.

Recall that for i ∈ {1, 2} and all v ∈ H(i), we have ∆ − dH(v) = dG(v) − dH(i)(v). Now we choose

lists of colours on the edges of H. Each new edge v(1)v(2) gets an arbitrary list of
⌈(

3
2 + ǫ

)
∆ − (∆ −

dH(v(1)))−(∆−dH(v(2)))−3 ∆1/2
⌉

=
⌈(

3
2 +ǫ

)
∆−2 (dG(v)−dH(v))−3 ∆1/2

⌉
colours from the

⌈(
3
2 +ǫ

)
∆

⌉

colours we gave on the vertex in the middle of it. On the two copies of an edge e = vw of H we take

the same list of
⌈(

3
2 + ǫ

)
∆ − (∆ − dH(v)) − (∆ − dH(w)) − 3 ∆1/2

⌉
colours. Since this is equal to⌈(

3
2 + ǫ

)
∆ − (dG(v) − dH(v)) − (dG(w) − dH(w)) − 3 ∆1/2

⌉
, we can still choose this list to be distinct

from the colours used on the neighbours of this edge in G2 − R.

We note that if we can find a proper colouring of L(H) using the chosen lists which avoids conflicts,

then we get two colourings of G2 −R that can be extended to R. We apply Lemma 5.1 to prove that we

can indeed find such an acceptable colouring. To do so, we only need to show that for every odd set X

of vertices of H, we have

∑

v∈X

(∆ − dH(v)) − e(X, V (H) \ X) ≤
ǫ |X|∆

10
.
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In fact, we will do this for all subsets X of V (H). We set X(i) = X ∩ V (H(i)), i = 1, 2. We immediately

get that e(X, V (H) \ X) ≥ e(X(1), V (H(1)) \ X(1)) + e(X(2), V (H(2)) \ X(2)) ( since on the right hand

right we are ignoring the edges between the two copies of H ). Recall that ∆− dH(v) = dG−H(v) for a v

in H. Using the condition in Lemma 3.2 for the two copies of H, this gives

∑

v∈X

(∆ − dH(v)) − e(X, V (H) \ X)

≤
∑

v∈X(1)

dG−H(v) +
∑

v∈X(2)

dG−H(v)

− e(X(1), V (H(1)) \ X(1)) − e(X(2), V (H(2)) \ X(2))

≤
ǫ |X(1)|∆

10
+

ǫ |X(2)|∆

10
=

ǫ |X|∆

10
.

and we are done. �

6 Conclusions and Discussion

In this paper, we showed that the chromatic number of the square of a graph G of a fixed nice family,

χ(G2), is at most
(

3
2 +o(1)

)
∆(G). Planar graphs form a nice family of graphs. In fact, we can characterise

nice families of graphs in Theorem 2.4. But many questions remain.

One can prove a bound of constant times the maximum degree for the chromatic number of the

square of graphs from a minor-closed family. Krumke, Marathe and Ravi [22] showed that if a graph G

is q-degenerate ( there exists an ordering v1, v2, . . . , vn of the vertices such that every vi has at most q

neighbours in {v1, . . . , vi−1} ), then its square is ((2 q − 1) ∆(G))-degenerate — the same ordering does

the job. But for every minor-closed family F , there is a constant CF such that every graph in F is

CF -degenerate ( see Theorem 2.2 and the first paragraph of Section 4 ). Hence G2 is ((2 CF − 1) ∆(G))-

degenerate for every G ∈ F and so its list chromatic number is at most (2CF − 1) ∆(G) + 1.

But it unlikely that this is the best possible bound.

Question 6.1

For a given minor-closed family F graphs ( with F not the set of all graphs ), what is the smallest

constant DF so that χ(G2) ≤ (DF + o(1))∆(G) for all G ∈ F ?

The following examples show that for F the class of K4,4-minor free graphs we must have DF ≥ 2. Let

V1, . . . , V4 be four disjoint sets of m vertices, and let X = {x12, x13, x14, x23, x24, x34} be a further six

vertices. Let Gm be the graph with vertex set X ∪ V1 ∪ · · · ∪ V4, and edges between any xij and all

vertices in Vi ∪ Vj , 1 ≤ i < j ≤ 4. It is easy to check that Gm is K4,4-minor free. For m ≥ 2 we

have ∆(Gm) = dGm
(xij) = 2 m. Moreover, all vertices in V1 ∪ · · · ∪ V4 are adjacent in G2

m, and hence

χ(G2
m) ≥ 4 m = 2∆(Gm).

It is easy to generalise these examples to show that for F the class of Kk,k-minor free graphs, k ≥ 3,

we must have DF ≥ 1
2 k.

But even for nice classes of graphs, many open problems remain. Our proof on the bound of the

( list ) chromatic number does not provide an efficient algorithm. So, for a nice family F , it would be

interesting to find an efficient algorithm to find a colouring of a graph G ∈ F with at most
(

3
2 +o(1)

)
∆(G)

colours.

Moreover, our result suggests that Wegner’s Conjecture should be generalised to nice families of

graphs and to list colouring.
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Conjecture 6.2

Let F be a nice family of graphs. Then for any graph G ∈ F with ∆(G) sufficiently large, χ(G2) ≤

ch(G2) ≤
⌊

3
2 ∆(G)

⌋
+ 1

The results of Lih, Wang and Zhu [24] and Hetherington and Woodall [12] show that the conjecture is

true when F is the family of K4-minor free graphs.

As ω(G2) ≤ χ(G2), our result implies ω(G2) ≤
(

3
2 + o(1)

)
∆(G). But does there exist a simple proof

showing this inequality ? Furthermore, another step towards Wegner’s Conjecture would be to prove that

ω(G2) ≤
⌊

3
2 ∆(G)

⌋
+ 1 for all planar graphs G with ∆(G) ≥ 8. Note that this last inequality is tight

as shown by the examples of Figure 1. More generally, can we prove that ω(G2) ≤
⌊

3
2 ∆(G)

⌋
+ 1 for all

graphs G in a nice family F with ∆(G) large enough ?

A major part of the proof of our result is a reduction to list edge-colouring of line graphs. For

edge-colourings, Kahn [15] proved that asymptotically the list chromatic number equals the fractional

chromatic number. This may suggest that the same could be true for squares of planar graphs, or more

generally for squares of graph of a nice family.

Problem 6.3

Let G be a graph of a fixed nice family F . Is it true that ch(G2) = (1 + o(1))χf (G2) ?

Finally, the already mentioned conjecture of Kostochka and Woodall [20] that for every graph G we have

ch(G2) = χ(G2), is an intriguing problem. This problems mimics the well-known list colouring conjecture

that the list edge-chromatic number of a multigraph is equal to its edge-chromatic number ( see Jensen

and Toft [13, Section 12.20] ). These two conjectures indicate an even deeper relation between colouring

the square of graphs and edge-colouring multigraphs than what we have been able to prove so far.
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[1] G. Agnarsson and M.M. Halldórsson, Coloring powers of planar graphs. SIAM J. Discrete Math. 16

(2003), 651–662.

[2] K. Appel and W. Haken, Every planar map is four colourable. I. Discharging. Illinois J. Math. 21

(1977), 429–490.

[3] K. Appel, W. Haken, and J. Koch, Every planar map is four colourable. II. Reducibility. Illinois J.

Math. 21 (1977), 491–567.

[4] K. Appel and W. Haken, Every Planar Map is Four Colourable. Contemporary Mathematics, 98.

American Mathematical Society, Providence, RI, 1989.

[5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Macmillan, London and Elsevier,

New York, 1976.

[6] O.V. Borodin, H.J. Broersma, A. Glebov, and J. van den Heuvel, Minimal degrees and chromatic

numbers of squares of planar graphs (in Russian). Diskretn. Anal. Issled. Oper. Ser. 1 8, no. 4

(2001), 9–33.

[7] D.W. Cranston and S.-J. Kim, List-coloring the square of a subcubic graph. Manuscript, 2006.

[8] R. Diestel, Graph Theory, 3rd edition. Springer-Verlag, Berlin and Heidelberg, 2005.

[9] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Nat. Bur. Standards

Sect. B 69B (1965), 125–130.
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