
HAL Id: inria-00305560
https://inria.hal.science/inria-00305560v1
Submitted on 24 Jul 2008 (v1), last revised 29 Jul 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New algorithms to compute the strength of a graph
Jérôme Galtier

To cite this version:
Jérôme Galtier. New algorithms to compute the strength of a graph. [Research Report] RR-6592,
2008, pp.17. �inria-00305560v1�

https://inria.hal.science/inria-00305560v1
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
65

92
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

New algorithms to compute the strength of a graph

Jérôme Galtier

N° 6592

July 2008

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

New algorithms to compute the strength of a

graph

Jérôme Galtier∗

Thème COM — Systèmes communicants
Équipe-Projet Mascotte

Rapport de recherche n° 6592 — July 2008 — 14 pages

Abstract: We investigate the problem of computing the strength of a graph.
We describe in this article the first polyhedral formulation for the weighted
strength in polynomial size of the problem, that isO(mn), where n is the number
of vertices andm the number of edges. Moreover, we describe a surprisingly sim-
ple FPTAS that gives the strength within 1 + ǫ in time O(m log2(n) log(m

n)/ǫ2)

and space O(m), outperforming by a factor of roughly min(n
√
m,n5/3) the best

known exact algorithm of Trubin associated with the Goldberg and Rao maxflow
algorithm for that problem, and of roughly σ(G) the FPTAS of Plotkin, Shmoys,
and Tardos.

Key-words: strength of a graph, matroid, partition, connectivity, community
detection, small-world.

∗ Orange Labs

Nouveaux algorithmes pour le calcul de la force

des graphes

Résumé : Nous nous penchons sur le problème du calcul de la force d’un
graphe. Nous décrivons la premième formulation polyhédrale pour le calcul de
la force pondérée d’un graphe de taille polynomiale en la taille du problème,
à savoir O(mn), où n est le nombre de sommets et m le nombre d’arètes du
graphe. Nous décrivons aussi un FPTAS surprenamment simple qui donne la
force d’un graphe à un facteur 1 + ǫ près en temps O(m log2(n) log(m

n)/ǫ2) et

en espace O(m), dépassant d’un facteur d’environ min(n
√
m,n5/3) le meilleur

algortihme connu de Trubin associé à l’algorithme postérieur de Goldberg and
Rao pour le flot maximum et d’environ σ(G) le FPTAS de Plotkin, Shmoys, et
Tardos.

Mots-clés : force d’un graphe, matröıde, partition, connectivité, détection de
communauté, graphe petit-monde

Strength of a graph 3

1 Introduction

In this paper we investigate the strength of a graph. The notion was intro-
duced by Cunningham to evaluate the resistance of a network under attack [4].
Moreover, it has a strong interest in the field of connectivity and community
detection (small world) [8, 13]. We are given a graph G = (V,E), let Π be the
set of all partitions over V , and for P ∈ Π, δP is the set of edges of G crossing
between parts of P (also called the cocycle of P), then the strength is given by

min
P∈Π

|δP |
|P | − 1

. (1)

A weighted notion of strength can also be defined, if w(e) is the positive
weight assigned to edge e, and w(X) is the sum of all edges X ⊆ E, as:

min
P∈Π

w(δP)

|P | − 1
. (2)

If c is the minimum cut of G, note that the strength will be between c/2
and c. An important result on strength of graphs was found by Tutte and
Nash-Williams [18, 12]:

Theorem 1 ([18, 12]) G contains k edge-disjoint spanning trees if and only
if the strength of G is larger than or equal to k.

Most of the previous work that was found to evaluate the strength of a
graph depends on the complexity MF (n,m) of finding a maximum s − t flow
in a digraph with n vertices and m arcs. The best algorithm we know for that
has a complexity of O(min(

√
m,n2/3)m log(n2/m+ 2)) [7].

Given a max-flow algorithm, Cunningham gave the first algorithm for the
strength, with a complexity of O(nm MF (n, n2)) [4]. Later, Gabow and West-
ermann gave an algorithm to computer the integer value of the strength in
O
(

min
(

m
√

m
n (m+ n logn) log m

n , nm log m
n

))

[6]. Gusfield obtained a O(n3m)
algorithm[9]. The same year, a FPTAS for that problem is obtained in time
O(m log2(n)σ(G)/ε2) by Plotkin, Shmoys and Tardos [14]. The complexity
of computing the strength of a graph was also found in O(n2 MF (n, n2))
by Barahona [2]. Finally, Trubin, and after Cheng and Cunningham gave an
O(n MF (n,m)) algorithm [17, 3]. For a general perspective on that topic, we
point the reader to [15, Chapter 51] and [16].

The article is organized as follows. We recall in Section 2 the basics of the
theory of strength of graphs, starting from an alternative definition and showing
equivalence to (1). We describe in Section 3 our approximation algorithm and
give a proof of correctness. In Section 4 we show an original polyhedral approach
of the problem, which is, to our knowledge, the first to be in polynomial size.
Note that Sections 3 and 4 are completely independent and therefore Section 3
can be skipped to understand Section 4.

2 Some basic results

We start from an alternative definition for the strength that was used in [1, 15,
16], and prove that it is equivalent respectively to (1) and (2). Let T be the set
of all spanning trees of the graph G.

RR n° 6592

4 J. Galtier

Definition 1

σ(G) := max

(

∑

T∈T

λT : ∀T ∈ T , λT ≥ 0, ∀e ∈ E,
∑

T∋e

λT ≤ 1

)

(3)

and if there are weights on the edges :

σw(G) := max

(

∑

T∈T

λT : ∀T ∈ T , λT ≥ 0, ∀e ∈ E,
∑

T∋e

λT ≤ w(e)

)

(4)

By linear duality we can reformulate definition 1 as follows:

Fact 1

σ(G) = min

(

∑

e∈E

ye : ∀e ∈ E, ye ≥ 0, ∀T ∈ T ,
∑

e∈T

ye ≥ 1

)

, (5)

and

σw(G) = min

(

∑

e∈E

w(e)ye : ∀e ∈ E, ye ≥ 0, ∀T ∈ T ,
∑

e∈T

ye ≥ 1

)

. (6)

Note that this simple fact can be used in practice to compute the strength of
a graph. Computing a minimum spanning tree using the algorithm of Kruskal
[10] takes O(m logm) steps, and since the associated linear program is of size
O(m)×O(m), we can use the claimed result of Fomin [5] to obtain a complexity
of O(m2 log2(m)) per iteration.

2.1 Properties of the optimal solution

Fact 2 Let y∗ be an optimal solution in (6). For each e with ye nonzero, there
is a tree Ti such that e ∈ Ti and

∑

f∈T yf = 1.

Proof. Suppose it is not the case. Then for some ǫ > 0, for each Ti with
e ∈ Ti we have

∑

f∈T y
∗
f ≥ 1 + ǫ. Then replacing y∗e by max(0, ye − ǫ) will

improve the optimal solution. �

Fact 3 Let y∗ be an optimal solution in (6). Removing the set {e ∈ E : y∗e > 0}
disconnects G.

Proof. Suppose on the contrary that the subgraph with the edges e such that
y∗e = 0 is connected. Then there is a spanning tree of weight 0, contradicting
the definition of y∗. �

Fact 4 Let y∗ be an optimal solution in (6). Let P = {C1, . . . , Ck} be the
connected components obtained by removing the e such that y∗e > 0. Then
w(δP)
|P |−1 =

∑

e∈E w(e)y∗e .

INRIA

Strength of a graph 5

Proof. Define ze by ze = 1/(|P | − 1) if e ∈ δP , and ze = 0 otherwise. Hence
∀T ∈ T ∑

e∈T ze ≥ 1. By optimality of y∗,
∑

e∈E w(e)y∗e ≤ ∑

e∈E w(e)ze,
and therefore

∑

e∈E

w(e)y∗e ≤ w(δP)

|P | − 1
. (7)

Let ymin = mine:y∗
e >0 y

∗
e . Let T be a tree such that

∑

e∈T y
∗
e = 1. Since T

connects all the components of P , |δP ∩ T | ≥ |P | − 1. So we have

1 =
∑

e∈T

y∗e ≥ (|P | − 1)ymin.

Therefore ymin(|P | − 1) ≤ 1. Let us distinguish two cases.
Suppose that ymin(|P | − 1) = 1, then

∑

e∈E

w(e)y∗e ≥ yminw(δP) =
w(δP)

|P | − 1
,

which completes with (7) the fact.
Suppose that, on the reverse, ymin(|P | − 1) < 1, then set for e ∈ E

y′e =
y∗e − yminχ(y∗e > 0)

1 − (|P | − 1)ymin

where χ(y∗e > 0) equals 1 if y∗e > 0, and 0 otherwise. Then, for a tree T on G,
we have

∑

e∈T

y′e =

∑

e∈T y
∗
e − ymin|δP ∩ T |

1 − (|P | − 1)ymin
. (8)

Then construct a setW = T∪{e : y∗e = 0}. Since T is a tree onG, W connects all
the vertices of G. We want to construct a tree T ′ of W with minimum

∑

e∈T ′ y∗e .

Since δP = {e : y∗e > 0}, and W = T ∪ δP , we need only |P | − 1 edges of δP in
T ′ to connect G. So |T ′∩ δP | = |P |−1 and |(T −T ′)∩ δP | ≥ |T ∩ δP |− |P |+1.
As a consequence

∑

e∈T

y∗e =
∑

e∈T ′

y∗e +
∑

e∈T−T ′

y∗e ≥ 1 + ymin(|T ∩ δP | − |P | + 1),

and replacing in (8), we have
∑

e∈T y
′
e ≥ 1. This is true for all tree T , therefore

y′ satisfies the optimization constraints of (6). Since y∗ is an optimal solution,

∑

e∈E

w(e)y∗e ≤
∑

e∈E

w(e)y′e =

∑

e∈E w(e)y∗e − yminw(δP)

1 − (|P | − 1)ymin
.

So we obtain
∑

e∈E w(e)y∗e ≥ w(δP)
|P |−1 , which completes with (7) the fact. �

Fact 5 We have that

σw(G) = min
Q∈π

w(δ(Q))

|Q| − 1
.

RR n° 6592

6 J. Galtier

With this fact we can say that the defined σw(G) corresponds to the weighted
strength of (2). Simply setting w(e) = 1 shows that σ(G) is the strength of (1).
Also facts 2, 3 and 4 hold when y∗ is the optimal solution of (5).

Proof. Fact 4 shows that σw(G) ≥ minQ∈π
w(δ(Q))
|Q|−1 . The reverse is obtained

by noticing that, for Q ∈ π, we can define ze by ze = 1/(|Q| − 1) if e ∈ δQ, and
ze = 0 otherwise. And we have:

∑

e∈E

w(e)ze =
w(δQ)

|Q| − 1
≥ σw(G).

�

2.2 Antitonicity of the strength

We show here that the strength of a graph is always smaller than the strength
of its induced subgraphs. We denote G(S) the subgraph induced by the vertices
S ⊆ V . Note that we have the following important fact:

Fact 6 Let P = {S1, . . . , Sp} be a partition of G that achieves the strength of
G, that is

σw(G) =
w(δ{S1, . . . , Sp})

p− 1

then, for all i ∈ {1, . . . , p}, we denote G(Si) the restriction of G to Si, and we
have:

σw(G(Si)) ≥ σw(G).

Proof. Indeed suppose on the contrary that there is one partition S1
i , . . . , S

k
i

of one Si with

σw(G) > σw(G(Si)) =
w(δ{S1

i , . . . , S
k
i })

k − 1
.

Then consider the partition S1, . . . , Si−1, S
1
i , . . . , S

k
i , Si+1, . . . , Sp of G. We have

w(δ{S1, . . . , Si−1, S
1
i , . . . , S

k
i , Si+1, . . . , Sp})

k + p− 2

=
(p− 1)σw(G) + (k − 1)σ(Gw(Si))

p+ k − 2

< σw(G),

which is absurd. �

3 A fast approximation

We give in this section a fast algorithm in polynomial time to approximate the
strength of a graph. This is inspired from the pre-push flow methods as in [19].
Note that similar method are applied by Plotkin, Shmoys and Tardos [14] but
the particular techniques that we use here allow to remove the σ(G) factor of
this previous work. We allow multiple edges in the following.

INRIA

Strength of a graph 7

Theorem 2 Given a connected graph G and a positive real ε ≤ 1/2, there ex-
ists an algorithm of computational time O(m log(n)2 log(m

n)/ε2) and maximum
memory space O(m) that returns a set of trees T1, . . . , Tp of G, associated to
real positive numbers λ1, . . . , λp with

∀e ∈ E
∑

i∈{1,...,p}:Ti∋e

λi ≤ 1 (9)

and
∑

i∈{1,...,p} λi ≥ 1
1+εσ(G).

We introduce the following simple definition coming out of matroid theory.

Definition 2 A subset F of E is called independent if it contains no cycle.

According the this definition, the independent subsets of E are the forests
and trees are forests of size n− 1. Then our algorithm, denoted in the following
by A is as follows:

Step 1: Set δ := (n(1 + ε))−⌈ 3
ε
⌉(1 + ε), k := ⌊m⌈1+log1+ε(1

δ
)⌉

n−1 ⌋, Tj := ∅, tj := 0
for j ∈ {1, . . . , k + 1}.

Step 2:

For i := 0 to ⌈log1+ε(
1
δ)⌉ do

For each edge e ∈ E do
begin

Find the minimum j ∈ {1, . . . , k + 1} such that
e /∈ Tj and Tj ∪ {e} is independent.

If j ≤ k Then
∣

∣

∣

∣

∣

∣

Set tj := tj + 1
Set z(j, tj) := i
Set Tj := Tj ∪ {e}

end

Step 3: Find the maximum r ∈ {1, . . . , k} such that tr = n− 1.

Step 4: Find the minimum p ∈ {1, . . . , r} such that
∑

l∈{1,...,n−1}

δ(1 + ε)z(p,l) ≥

1.

Step 5: Let ∀j ∈ {1, . . . , p} λj :=

(

max
e∈E

|{g ∈ {1, . . . , p} : e ∈ Tg}|
)−1

.

Definition 3 We say that the independent set A ⊆ E dominates the indepen-
dent set B ⊆ E if there is no edge in e in B such that e /∈ A and A ∪ {e} is
independent.

Lemma 1 The algorithm can be run in O(m) space size without increasing the
computational time by more than a (small) constant factor.

RR n° 6592

8 J. Galtier

Proof. This can be seen by repeating steps 2 to 3 restricting k over succesive
intervals of size of ⌊m

n ⌋. When an edge cannot be inserted into the current
interval, we store the index i in step 2 when it occurs and do not introduce
it anymore in step 2 until next interval for k comes. We store that in a list of
indexes i when such hits occurs, each i being associated by the edges in question.
If steps 3 and 4 succeed to find respectively a proper maximum r and p, then we
stop. Otherwise, we resume the computation by considering next interval for k.
We then start resuming by the lowest index i for an edge where the computation
was stopped, and only introduced edges with such i that have not been used
before.

Notice that in each such phase, at least m
n (n−1) edges are required to build

the tree (i.e. we perform at least O(m) actual steps of the described algorithm)
and the overhead of computation is at most O(m) (constructing the list of
passive edges and reintroducing them as active in next phase). �

Lemma 2 Suppose that A and B are independent sets, and A dominates B.
The following assumptions are then true:

(i) If there is a path in B between vertices u and v, there is also a path in A
between u and v.

(ii) If for e ∈ E −B, B ∪ {e} is not independent then either e ∈ A or A∪ {e}
is not independent.

(iii) |A| ≥ |B|.

Proof. We show (i) by induction on the length l of the path in B between
u and v. If l = 1, {{u, v}} ∈ B, then either e ∈ A or A ∪ {{u, v}} contains a
cycle, and therefore there exists a path in A between u and v. Suppose (i) is
true for some l, and there is a path between u and v in B of length l+ 1. Then
there is some w with a path in B between u and w of length l, and {w, v} ∈ B.
Then u is connected to w by a path in A, and w is connected to v by a path in
A, which proves the induction.

Now, B ∪ {{u, v}} is not independent if and only if there is a path in B
between u and v, which proves (ii). (iii) comes by induction on |A| by noticing
that the number of connected components induced by A is n− |A|. �

Lemma 3 At each time in algorithm A, for i < j, Ti dominates Tj, therefore
ti = |Ti| ≥ |Tj| = tj.

Proof. An edge e can be added to Tj only if e ∈ Ti or Ti ∪ {e} is not
independent. �

Lemma 4 Algorithm A runs in O(m log(n)2 log(m
n)/ε2) time.

Proof.

Step 2: First note that log1+ε(
1
δ) = O(log(n)/ε2). So there is O(m log(n)/ε2)

iterations in step 2. By lemma 3 a simple dichotomy is enough to find j,

INRIA

Strength of a graph 9

therefore using Kruskal algorithm [15, pp. 98,99,858], required operations
for given i and e are up to a constant less than log(n) log(k). Also using
lemma 1 replacing k by k0 = ⌊m

n ⌋ in enough. So an edge insertion is done
in O(log(n) log(m

n)) .

Step 3: For a given r, the value tr is the number of edges in tree Tr. We have
tr = n − 1 if and only if Tr is a spanning tree. Since a spanning tree
is an independent subset of E that dominates all the other independent
sets, we can also find Tr by a simple dichotomy. Note also that since
n− 1 edges are necessary to build a spanning tree, and step 2 introduces
in all m⌈log1+ε(

1
δ)⌉ edges, k is indeed the maximum possible number of

spanning trees.

Step 4: During each operation in step 2, tj is decreasing with j (see lemma 3).
Since i is increasing in step 2, for l ∈ {1, . . . , n− 1} the quantity z(j, l) is
increasing with j. Hence the value

v(j) =
∑

l∈{1,...,n−1}

δ(1 + ε)z(j,l),

is also increasing with j. Moreover, in the iteration of step 2 where i =
⌈log1+ε(

1
δ)⌉, all the edges of E are added and therefore at most one tree

is completed. This tree Tj receives the weight δ(1 + ε)i which is more
than 1, and verifies j ≤ r. Therefore p can be found by dichotomy in
O(n log(k0)) = O(n log(m

n)) computational time.

�

Lemma 5 For an edge e and an integer i ∈ {0, . . . , ⌈log1+ε(
1
δ)⌉} by β(e, i) the

index j of the tree Tj to which it is added in step 2. Consider

ζj(e) := δ(1 + ε)y where y = min

{

i ∈ {0, . . . , ⌈log1+ε(
1

δ
)⌉} : β(e, i) ≥ j

}

.

Then for j ∈ {1, . . . , p} Tj is a tree of minimum weight on G with weights ζj .

Proof. Note that ζj is well defined on each e because j ≤ p.
Consider, from the point of view of Tj, for some j, all the edges that would

have been integrated to Tj if e /∈ Tj or Tj ∪ {e} would have been independent.
Those are the edges such that at the begining of an iteration i on step 2, there
is no j′ < j such that e /∈ Tj′ and Tj′ ∪ {e} is independent, i.e. those with
β(e, i) ≥ j. Therefore ζj defines an appropriate weight. Conclude saying that
Tj is built with the edges considered in increasing weight, as in the Kruskal
algorithm. �

Lemma 6 We have max
e∈E

|{j ∈ {1, . . . , p} : e ∈ Tj}| ≤ log1+ε

(

1 + ε

δ

)

.

Proof. Step 2 can introduce an edge e only 1 + log1+ε(
1
δ) times. �

RR n° 6592

10 J. Galtier

Proof. [Theorem 2]. For each j ∈ {1, . . . , p− 1} we have
∑

e∈E

ζj+1(e) =
∑

e∈E

ζj(e) + ε
∑

e∈Tj

ζj(e),

so we can conclude by lemma 5 that for s ∈ {1, . . . , p− 1},
∑

e∈E

ζs+1(e) − ζ1(e) = ε
∑

j∈{1,...,s}

α(ζj),

where α(w) = min{w(T) : T ∈ T }. Note that, by fact 1,

σ(G) = min

{
∑

e∈E ζ(e)

α(ζ)
: ζ ∈ IRE

+

}

.

Therefore σ(G) ≤
∑

e∈E ζs+1(e)−ζ1(e)

α(ζs+1−ζ1) and we have (α(ζs+1)−δn)σ(G) ≤ α(ζs+1−
ζ1)σ(G) ≤∑e∈E ζs+1(e) − ζ1(e). It gives:

α(ζs+1) ≤ δn+
ε

σ(G)

∑

j∈{1,...,s}

α(ζj). (10)

We now show by induction on κ that

δn+
ε

σ(G)

∑

j∈{1,...,κ}

α(ζj) ≤ δne
κε

σ(G) . (11)

It is clear for κ = 0. Note that for κ > 0, using the induction hypothesis and
(10), we have

δn+
ε

σ(G)

∑

j∈{1,...,κ}

α(ζj) = δn+
ε

σ(G)

∑

j∈{1,...,κ−1}

α(ζj) +
ε

σ(G)
α(ζκ)

≤
(

1 +
ε

σ(G)

)

δne
(κ−1)ε

σ(G)

.

And finaly, equation (11) comes from the fact that 1 + x < ex for x > 0.
Putting together (10) and (11) on the particular case of p (step 4), we have:

δne
pε

σ(G) ≥ α(ζp) ≥ 1,

which gives p ≥ σ(G)
ε ln(1

nδ). Then we can bound the algorithm as follows:

∑

j∈{1,...,p}

λj =
p

maxe∈E |{j ∈ {1, . . . , p} : e ∈ Tj}|

≥
σ(G)

ε
ln(1

nδ
)

log1+ε(1+ε
δ

)
=

σ(G) ln(1+ε)(⌈ 3
ε
⌉−1) ln(n(1+ε))

ε⌈ 3
ε
⌉ ln(n(1+ε))

=
σ(G) ln(1+ε)(1− 1

⌈ 3
ε
⌉
)

ε

(see lemma 6)

≥ σ(G)(1− ε
3) ln(1+ε)

ε ≥ σ(G)
1+ε

(

since for ε < 1
2 ln(1 + ε) ≥ ε

(1+ε)(1− ε
3)

)

and we conclude the proof by noticing that (9) is guaranteed by step 5. �

INRIA

Strength of a graph 11

4 A polyhedral approach

We consider the oriented symmetric graph of G, that is, let ~E be the set of arcs
derived from E, that is an edge of E gives two arcs in ~E. We also denote e the
non-oriented version of ~e. Let r be an arbitrary vertex of V .

Theorem 3 The value of σw(G) is given by the solution of the following linear

problem in the real variables ye, e ∈ E, γk
v , v, k ∈ V , µk

~e , k ∈ V,~e ∈ ~E, and ϕ:

Minimize
∑

e∈E

w(e)ye

−γk
v + γk

w + µk
−→vw ≥ 0, ∀−→vw ∈ ~E, ∀k ∈ V − {r}

ϕ−
∑

k∈V −{r}

µk
~e + ye ≥ 0 ∀~e ∈ ~E

−
∑

k∈V −{r}

γk
r +

∑

k∈V −{r}

γk
k + (n− 1)ϕ ≤ −1

µk
~e ≥ 0 ∀~e ∈ ~E, ∀k ∈ V − {r}
ϕ ≥ 0.

(12)

Moreover the minimum value verifies

∑

e∈T

ye ≥ 1

for any spanning tree T of G.

Proof. We can reformulate fact 1, writing

σw(G) = min(
∑

e∈E

w(e)ye : ∀e ∈ E, ye ≥ 0, ∀T ∈ T ,
∑

e∈E

χ{e∈T}ye ≥ 1), (13)

where χ{e∈T} is equal to 1 if e ∈ T , and 0 otherwise.

Consider the set of IRE given by:

S = {z ∈ IRE : ∃T ∈ T ∀e ∈ E ze = χ{e∈T}}.

Now we can say:

σw(G) = min

(

∑

e∈E

w(e)ye : ∀e ∈ E, ye ≥ 0, ∀z ∈ S,
∑

e∈E

zeye ≥ 1

)

, (14)

or

σw(G) = min

(

∑

e∈E

w(e)ye : ∀e ∈ E, ye ≥ 0, min
z∈conv(S)

∑

e∈E

zeye ≥ 1

)

. (15)

RR n° 6592

12 J. Galtier

According to [11, pp.534-535], the set conv(S) can be described as follows.

For ~e ∈ ~E and k ∈ V we introduce the positive variable fk
~e of flow of multicom-

modities.
∑

~e∈δ−(r)

fk
~e −

∑

~e∈δ+(r)

fk
~e = −1 ∀k 6= r

∑

~e∈δ−(v)

fk
~e −

∑

~e∈δ+(v)

fk
~e = 0 ∀v 6= r, v 6= k, ∀k 6= r

∑

~e∈δ−(k)

fk
~e −

∑

~e∈δ+(k)

fk
~e = 1 ∀k 6= r

∑

~e∈ ~E z~e = n− 1

fk
~e ≤ z~e ∀k 6= r ∀~e ∈ ~E,

fk
~e ≥ 0 ∀k, ∀~e ∈ ~E.

(16)

We introduce matrix A and vector b to write problem (16) as A ·
(

f
z

)

≤ b.

Let us fix for a while the values of ye, e ∈ E, and give some ε > 0. What are
the conditions for which problem







A ·
(

f
z

)

≤ b
∑

zeye ≤ 1 − ε

has no solutions in z and f? Farkas lemma answers that there exists some vector
x0 ≥ 0 and ψ ≥ 0 with xt

0 ·A+ ψy = 0 and xt
0 · b + (1 − ε)ψ < 0.

Suppose we have found such a (x0, ψ) with ψ = 0. Then x0 ≥ 0 verifies
xt

0 · A = 0 and xt
0 · b < 0, which means, by Farkas lemma again, there is no

solution in (f, z) for A ·
(

f
z

)

≤ b. This implies that the tree polytope of G is

empty, which is absurd.
So we have necessarily ψ > 0. By division of x0 by ψ, we see that some x1

verifies xt
1 ·A+ y = 0 and xt

1 · b+ (1 − ε) < 0. If this is true for all ε > 0, since
the polyhedron {x ≥ 0 : xt · A+ y = 0} is a closed set, then there also exists a
x2 ≥ 0 with xt

2 · A+ y = 0 and xt
2 · b+ 1 ≤ 0.

We have then the following equivalent propositions:

(i)
∑

e∈E

yeze ≥ 1 ∀z ∈ S,

(ii)
∑

e∈E

yeze ≥ 1 ∀z ∈ conv(S),

(iii)
∑

e∈E

yeze ≥ 1 ∀(z, f) such that A ·
(

f
z

)

≤ b,

INRIA

Strength of a graph 13

(iv) For all ε > 0, there are no solution for







A ·
(

f
z

)

≤ b
∑

zeye ≤ 1 − ε,

(v) For all ε > 0, there exists a x ≥ 0 such that

{

xt ·A+ y = 0
xt · b+ (1 − ε) < 0,

(vi) There exists a x ≥ 0 such that

{

xt · A+ y = 0
xt · b+ 1 ≤ 0.

Reformulating the variable x in µ, γ, and ϕ gives the linear program of
theorem 3. Moreover the existence of such a x that verifies xt · A + y = 0 and
xt · b+ 1 ≥ 0, gives that, for any tree T of G, we have

∑

e∈T

ye ≥ 1.

�

Acknowledgements. I would like to thank A. Laugier, J.-C. Bermond,
J. Fonlupt and C. Caspar for many helpful remarks. This paper is also an
output of discussions done in the European COST 293 project (GRAAL) and
the AEOLUS project.

References

[1] M. Baiou and F. Barahona. A linear programming approach to increasing
the weight of all minimum spanning trees. Technical Report Cahier no
2005-12, Ecole Polytechnique - Laboratoire d’Econometrie, May 2005.

[2] F. Barahona. Separating from the dominant of the spanning tree polytope.
Op. Research Letters, 12:201–203, 1992.

[3] E. Cheng and W. H. Cunningham. A faster algorithm for computing the
strength of a network. Information Processing Letters, 49:209–212, 1994.

[4] W. H. Cunningham. Optimal attack and reinforcement of a network. J. of
ACM, 32:549–561, 1985.

[5] S. Fomin. Novy� pribli�enny� algoritm dl� zadaqi polo�itel~nogoline�nogo programmirovani�. Diskretny� analiz i issledovanie op-era
i�, 2(8):52–72, 2001.

[6] H. Gabow and H. Westermann. Forests, frames and games: algorithms
for matroid sums and applications. In Proceedings of the twentieth annual
ACM symposium on Theory of computing (STOC), pages 407–421, 1988.

RR n° 6592

14 J. Galtier

[7] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal
of the ACM, 45:783–797, 1998.

[8] D. Gusfield. Connectivity and edge-disjoint spanning trees. Inform. Pro-
cess. Lett., 16(2):87–89, 1983.

[9] D. Gusfield. Computing the strength of a graph. Siam J. Comput,
20(4):639–654, 1991.

[10] J. B. Kruskal. On the shortest spanning subtree of a graph and the trav-
elling salesman problem. Proc. Am. Math. Soc., 7(1):48–50, Feb. 1956.

[11] T. Magnanti and L. Wolsey. Handbooks in OR & MS, volume 7, chapter
Optimal trees. M. O. Ball et al., Eds., Elsevier Science B. V., 1995.

[12] C. S. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. J.
London Math. Soc., 36:445–450, 1961.

[13] Y. Ou and C.-Q. Zhang. Method for data clustering and classification
by a graph theory model- network partition into high density subgraphs.
International Publication Number WO 2006/119482 A2, November 2006.

[14] S. Plotkin, D. Shmoys, and E. Tardos. Fast approximation algorithms for
fractional packing and covering problems. In IEEE Symposium on Foun-
dations of Computer Science, pages 495–504, 1991.

[15] A. Schrijver. Combinatorial optimization. Springer, 2003.

[16] A. Skoda. Force d’un graphe, multicoupes et fonctions sous-modulaires:
aspects structurels et algorithmiques. PhD thesis, Université Pierre et Marie
Curie, 2007.

[17] V. A. Trubin. Proqnost~ grafa i upakovka derev~ev i vetvleni�.Kibernetika i Sistemny� Analiz, 3:94–99, May-June 1993.

[18] W. T. Tutte. On the problem of decomposing a graph into n connected
factors. J. London Math. Soc., 36:221–230, 1961.

[19] N. Young. Randomized rounding without solving the linear program. In
Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algo-
rithm, pages 170–178, 1995.

INRIA

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	Some basic results
	Properties of the optimal solution
	Antitonicity of the strength

	A fast approximation
	A polyhedral approach

