N
N

N

HAL

open science

Pacemaker: Fighting Selfishness in Availability- Aware
Large-Scale Networks

Fabrice Le Fessant, Cigdem Sengul, Anne-Marie Kermarrec

» To cite this version:

Fabrice Le Fessant, Cigdem Sengul, Anne-Marie Kermarrec.
Availability-Aware Large-Scale Networks. [Research Report] RR-6594, INRIA. 2008, pp.33.

00305620v2

HAL Id: inria-00305620
https://inria.hal.science/inria-00305620v2
Submitted on 8 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Pacemaker: Fighting Selfishness in
inria-

https://inria.hal.science/inria-00305620v2
https://hal.archives-ouvertes.fr

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMAIQUE

Pacemaker: Fighting Selfishness in
Availability-Aware Large-Scale Networks

Fabrice Le Fessant — Cigdem Sengul — Anne-Marie Kermarrec

N° 6594 — version 2

initial version July 2008 — revised version January 2009

Théme COM

apport
de recherche

ISRN INRIA/RR--6594--FR+ENG

ISSN 0249-6399

INSTITUT NATIONAL

DE RECHERCHE centre de recherche
EN INFORMATIQUE ;‘(I N RIA SACLAY - ILE-DE-FRANCE

ET EN AUTOMATIQUE

Pacemaker: Fighting Selfishness in
Availability-Aware Large-Scale Networks

Fabrice Le Fessantﬂ, Cigdem Sengul*, Anne-Marie Kermarred]

Théme COM — Systémes communicants
Equipes-Projets Asap

Rapport de recherche n° 6594 — version 2 — initial version July 2008 —
revised version January 2009 — B4 pages

Abstract: In this paper, we introduce Pacemaker, a scalable and lightweight
protocol to measure reliably the availability of peers. To the best of our knowl-
edge, Pacemaker is the only protocol resilient to the presence of selfish peers, i.e.
peers lying about their availability and minimizing their contribution to the sys-
tem. Pacemaker relies on a novel pulse-based architecture, where a small set of
trusted peers regularly flood the network with pulses containing cryptographic
values. Collecting these pulses enables peers to later prove their presence in
the system at any time, using cryptographic signatures. This new architecture
overcomes many limitations of ping-based systems, and can be easily deployed
on ad-hoc networks and social-based topologies. Simulation results show that
our protocol provides accurate availability measurements even in the presence of
selfish peers. Furthermore, our results are verified by experiments in Planetlab,
which also illustrate the deployability of Pacemaker in real networks.

Key-words: peer-to-peer, cryptography, availability, monitoring

* INRIA Saclay — Ile de France
T INRIA Rennes - Bretagne Atlantique

Centre de recherche INRIA Saclay — lle-de-France
Parc Orsay Université

4, rue Jacques Monod, 91893 ORSAY Cedex
Téléphone : +33 172 92 59 00

Pace-Maker: mesure de disponibilité d’un pair
dans les réseaux large échelle

Résumé : La mesure de disponibilité dans un réseau pair-a-pair peut revétir
une trés grande importance pour beaucoup d’applications collaboratives. Ainsi,
cette information est inestimable pour identifier les pairs les plus stables, ou
les groupes de pairs similaires par leur disponibilité. Cependant, comme de
nombreuses applications veulent récompenser les pairs les plus stables, il existe
une incitation claire pour les pairs & mentir sur leur disponibilité réelle. Dans
ce papier, nous présentons un protocol léger et scalabe qui permet aux nceuds
de mesurer la disponibilité d’un pair en présence de pairs égoistes. Dans notre
protocole, chaque pair est chargé de maintenir sa propre disponibilité en col-
lectant des pulsations disséminées par une entité de confiance en utilisant des
signatures cryptographiques. Celles-ci permettent & tout pair de vérifier par des
challenges les informations de disponibilité transmise par un pair.

Mots-clés : pair-a-pair, cryptographie, disponibilité, monitorage

Pace-Maker 3

1 Introduction

A peer-to-peer network is composed of thousands of independent computers,
which aggregate their resources over the Internet to run collaborative distributed
applications. Such networks are subject to high dynamics: computers (peers)
may join and leave arbitrarily or be subject to frequent disconnections. However,
it has been observed that peers with high availability in the system are more
likely to remain in the system for a longer time [E, [I6, 23]. As a consequence,
many peer-to-peer networks rely on peer availability to measure the stability of
peers, and use this parameter to select peers for specific purposes. For example,
the most stable peers can be elected as super-peers [9, [24], or as privileged peers
to store replicas [B, 2, [, 10].

Yet, to the best of our knowledge, current research does not address how
availability can be measured securely and efficiently. As we discuss in Section [,
current systems either use expensive and incomplete measurement techniques,
or rely on peers to give an honest estimation of their availability in the network.
The fact that stable peers are usually rewarded in a peer-to-peer network creates
a clear incentive to appear very stable, for instance by lying about the real
availability, in order to be granted a better status in the network. Subsequently,
such selfish nodes may get access to more resources than they should be able
to access (i.e., free riders). For instance, in a peer-to-peer backup system, peers
that lie about their stability might get undue and undeserved access to storage
on the most stable peers in the system.

Motivated by these observations, we present a simple and lightweight proto-
col, called Pacemaker, to measure availability in a trusted way in peer-to-peer
networks. The main idea of Pacemaker is to disseminate pulses by trusted peers
in the network. These pulses are then used by peers as proofs of presence in
the system at a given time. Essentially, through this simple scheme, peers are
able to verify the accuracy of the availability claims by randomly challenging
each other. Since challenged peers are expected to use the correct pulse for the
queried period, Pacemaker is able to detect selfish peers trying to appear more
available in the system. An overview of the protocol is given in Section Pl and
the complete specification in Section H.

In addition to providing high accuracy in availability measurements, Pace-
maker is also highly scalable. It only requires that peers are connected to enough
neighbors to form a redundant mesh to propagate the pulses. This requirement
makes Pacemaker suitable for both structured (DHTS) and unstructured (gos-
sip [24]) peer-to-peer networks, but also for topologies with limited communica-
tions, such as ad-hoc networks and social-based topologies [20]. Here, we focus
on a simple mesh network, to illustrate that Pacemaker inherits the scalability
characteristics of the underlying network. We describe our system model in
further detail in Section Bl

The main contribution of our research is providing each peer a secure way
to notify its availability to other peers in the system in a completely distributed
manner and through local communications (i.e., communication is only neces-
sary with neighbors) using standard cryptographic mechanisms. In this paper,
we only consider the case of selfish nodes, which are trying to gain access to
more resources than they are allowed to by appearing more available than they
really are, for instance, by lying. For now, we did not consider the case where

RR n°® 6594

4 Le Fessant € Sengul € Kermarrec

nodes may collude to improve their availability, and we discuss this decision in
Section

We evaluated Pacemaker both through analysis, simulations and Planet-Lab
deployment. Our simulation results, which are presented in Section @, confirm
that Pacemaker provides highly accurate availability information with very low
cost for both real and synthetic workloads. Furthermore, Pacemaker remains
highly scalable due to its light load. Section [presents the performance of
Pacemaker under different kinds of selfish behaviors and shows that Pacemaker
is still able to provide high accuracy. For instance, when 5000 peers out of
100,000 lie about their availability, Pacemaker is able to detect these nodes in
less than 5 days by sending challenges only once a day and drive the error in
availability measurements back to negligible. Similarly, Pacemaker is able to
tolerate well the effect of 30% selfish peers, which stop disseminating pulses in
the hopes of improving their availability by reducing the availability of their
neighbors. Finally, we deployed Pacemaker on a 170-node Planet-Lab testbed,
which again confirmed a very good match between the measured and the real
availability (see Section). Based on our simulation results and our experience
with Planet-Lab deployment, we conclude that Pacemaker provides a simple,
low-cost, scalable and accurate way to measure peer availability in the presence
of selfish peers.

2 Pacemaker in a nutshell

Pacemaker is a simple and lightweight protocol to track peer availability in a
large-scale system. In Pacemaker, each peer is in charge of maintaining its
own availability measure and providing it to other peers. Yet this declared
availability can be arbitrarily checked in a peer-to-peer fashion in order to detect
selfish peers.

In a nutshell, Pacemaker works as follows: a server is in charge of periodically
disseminating pulses in the system, say one pulse per hour. Such pulses are
propagated in the system once by all the peers in the network to their neighbors.
Each peer maintains a list of the pulses it has heard of and uses this list to prove
its availability in the system. Using this simple scheme, Pacemaker provides
decentralized verification of peer availability in the presence of selfish peers.

Selfish behaviors considered in this paper include, for instance, trying to
obstruct pulse dissemination or claiming, untruthfully, being connected to the
system when not. To tolerate such selfish behaviors, pulses are generated and
signed by a trusted entity. The signature certifies the association between the
pulse and its diffusion time. Hence, when peers send their availability to other
peers, they might receive a challenge in return. More specifically, a peer A
may ask a peer B to provide a proof for a subset of the time periods that
peer A claims it was available. A liar is detected easily since peers should be
able to compute such a proof using the pulses corresponding to the challenged
periods. Note that we do not consider the case where a peer propagates pulses
indefinitely to provide other peers with pulses generated when they were not
online. Such malicious behaviors are part of the problem of colluding peers, and
just discussed in Section @3

INRIA

Pace-Maker 5

3 Model

3.1 Definitions

The goal of Pacemaker is to secure the measure of peer availability in a peer-
to-peer network. Peer availability can be defined by two metrics according to
the context:

e The ratio of time that the peer spent connected to the network, which is
a value in the interval [0, 1]. This metric can be used directly to estimate
the stability of the peer or its life expectancy.

e The intervals of time when the peer was connected to the network. This
metric can be used to detect regular patterns in peer behaviors, predict fu-
ture connections and disconnections, or differentiate between a temporary
disconnection from a definitive departure.

Pacemaker provides an approximation of the second metric, from which the first
one can be derived. Essentially, we define the system availability as the average
availability over all peers in the network. Finally, a group of peers can be
attached a specific class of availability depending on the associated application.
For instance, peers with availability greater than 95% can be considered to be
in the super-peer class.

In a system that favors highly available peers, peers may exhibit various
selfish and malicious behaviors:

e Opportunistic peers only fulfill the steps of the protocol required to get
a good status, but without impacting the status of other peers.

e Lazy peers only fulfill the steps of the protocol required to get a good
status, and do so even when such a behavior can impact the status of
other peers.

e Lying peers try to improve their own status by lying. They don’t impact
directly the status of others, but they might get undeserved access to
resources.

e Colluding peers collaborate with each other either to improve their own
status or to disrupt the system.

Pacemaker secures the measure of availability against the first three types of
behavior, which are all selfish. Dealing with colluding peers is discussed in
Section

3.2 Network Model

We consider a large-scale network (more than tens of thousands of computers)
composed of nodes (or peers), connected by a communication medium, typically
IP. We assume there exists a logical overlay network where each node is aware
of a small portion of the network, i.e. it knows the IP addresses of a set of D4
neighbors. This is typically the case in both structured and unstructured peer-
to-peer networks. In the network, peers communicate by sending asynchronous
messages. Although there is no bound on communication delays, most messages

RR n°® 6594

6 Le Fessant € Sengul € Kermarrec

are assumed to be received after a short delay and assumed to be lost after a
longer delay. Although not a requirement, we expect nodes to connect through
FIFO channels, which enforces sequentiality of messages. Additionally, there
also exists a global clock, with which computer clocks are loosely coupled. This
is necessary for a peer to know at which periods (the periods are considered
system-wise) it was connected to the system. Hence, peers have an approzimate
agreement on time.

Pacemaker relies on the existence of a trusted entity. In this paper, we
assume there exists particular peers, which are called the servers. Pacemaker
does not require the non-server peers to know the identity of the servers or any
other peer. However, it is assumed that the overlay network is connected enough
to ensure that every peer in the network is reachable from at least one of the
servers. Since servers have a specific role in the protocol, they may have a higher
degree than D,,,,. This helps, for instance, to prevent Sybil attacks that try
to circle servers to disrupt the diffusion of pulses. For the sake of simplicity, in
the rest of the paper, we consider a single-server system. This assumption does
not affect our results, since no communication is required between the servers.

3.3 Cryptographic Model

We assume that peers have access to strong cryptographic primitives, specifically
for public-private key operations, which are the following;:

e generate pair(): Generates a new pair of public-private keys. The
common usage is that the private key, K., is kept secret by the peer,
while the public key, K,.s, is known to other peers in the system.

e sign(data, K,;,): Returns a signature for data using the private key
Kp'r‘iv-

o verify(S, data, K,,;): Verifies that S is a signature for data that was
created using the private key K,,;, associated with K.

e hash(data): Returns the hash of data.

We assume that there is a special pair of keys, one public (called KS,,s)
known by all peers in the system, one secret (called KS,.;,) known only by
the server. Each peer p in the system also owns a pair of keys, noted Ky, pup
and K, priv, to sign data. We also define H, = hash(K, ,.s), and use it as
unique identifier for p in the network. These keys should also be used by a
peer-to-peer application running on top of Pacemaker to prevent selfish peers
from easily changing their identity when they are detected. Furthermore, we
assume there exists a way for peers to exchange their public keys by either using
dedicated messages or due to cryptographic communication protocols already in
place (such as TLS [6]). Finally, we assume these operations provide a high level
of security (i.e., it is almost impossible to break the cryptographic properties of
these functions by such as having a collision in the hash function) in the time
limits needed for the application [I5].

INRIA

Pace-Maker 7

Figure 1: All peers are connected through a redundant mesh to the server. Here, the
number in every node represents a 3-bit availability history as (3rd, 2nd, 1st) rounds.
The arrows depict the pulse propagation. Every hour, a new pulse is propagated in
the mesh by the server.

4 Pacemaker in Detail

Pacemaker is composed of three sub-protocols: (1) the pulse dissemination pro-
tocol; (2) the availability inquiry protocol and (3) the availability verification
protocol, which are presented in their respective sections in the remainder of
this section.

4.1 Pulse dissemination protocol

The server in Pacemaker is in charge of generating one pulse over a given period
of time P. The dissemination of a pulse consists of each peer forwarding it
once to all its neighbors. An example of the pulse dissemination is depicted
in Figure [l The figure shows a redundant mesh network, where there exists
multiple paths between each peer in the network. This redundancy is essential
to decrease the impact of peers that do not follow the protocol (i.e., the impact
of nodes that do not forward the pulse to their neighbors).

A pulse T?, which is generated by the server for time i, is a tuple (i, K;ub,
K}, S'), where K! , and K} , is a new fresh public-private key pair. The
public-private key pairs are generated by the server on-demand. The pulse
also includes S*, which is a signature of (i, K}, ;) using the servers’ private key
KS,,iv. The server diffuses the pulse to its neighbor set (NS) at time 7 (code
Fig. 2.

Every peer keeps an history of these pulses, representing its presence in the
network during a window of time N; x P. On receipt of a new pulse, a peer
first checks if it has already received the same pulse and if not, verifies the

RR n°® 6594

8 Le Fessant € Sengul € Kermarrec

Server at time i:

let (K;)ub’ K;riv) i
let S* = sign(<i, K}
let T' = Pulse(i, K, , Ki .,

Vq € NSgerver, send (¢, TF);

= generate pair ();
wb Kspm'v);
priv s S')3

Figure 2: Pulse generation at the server.

Node p receiving T?= Pulse(i, Kéub, K;Tw, S#):

if T"¢ History, and
verify (S*, <i, K;)
then
add (History,, T);
Vg€ NS,, send(¢q, T®);
end if

b= KSpub)

Figure 3: Pulse diffusion by a peer.

Node p sending to g its availability at time i:

let bits = new bitfield [N¢];
for = in [1..N¢]
if 3 TV eHistoryp|j€[i —aP,i—aP+ P[then

bits [z] = 0
else
bits [z] = 1
end if
end for

let S = sign(< i, bits >, Ky priv)
send (¢, Availability (i,bits ,S));

Figure 4: Advertisement of availability by a peer.

authenticity of the pulse. If the pulse is indeed generated by the server, it
updates its history and forwards the pulse to its neighbors (code Fig. Bl).

4.2 Inquiry Protocol

Depending on the application, peers need to be able to check the availabil-
ity of other peers. This might be done either regularly or just the first time
they connect to each other. The verification of availability requires know-
ing the pulse history of peers. For this purpose, each peer sends a message
Availability(s,bitfield,S), where ¢ is the current time, and bitfield is an array
of bits of size Ny, containing, for each period, 1 if it has the pulse, and 0 other-
wise (code Fig. Hl). The message also contains a signature of the bit field using
the peer private key, K, ,riv. This signature can be used to prove later that
the message was sent by the peer, in particular, if the peer does not reply to a
challenge.

INRIA

Pace-Maker 9

Node p receiving Challenge(i, nonce) from node g:

if Pulse(i, K ,, K;',m, S') € History, thgn
let reply = sign(< nonce, Hp, Hy >, K .)
send(g, Proof(i, nonce, K;ub, S*, reply));

end if

Figure 5: Reply to a challenge by a peer (one bit to simplify)

Node ¢ receiving Proof(i,nonce,K;ub,Si, reply) from node p:

if (i, nonce, p) € challenges, and

verify (8%, <i, K ,>, KS,u) and

P

verify (reply , < nonce, Hp, Hy >, K;ub)
then
good reply (p)
else
bad reply(p)
end if

Figure 6: Verification of a proof by a peer (one bit to simplify).

Using the bit field of another peer, a peer can compute an approximation of
the availability of the peer during the period (N; * P) by counting how many
bits are set to one. Note that, in fact, the bit field only proves that the peer
was online when the pulses were propagated and not during complete hours.
However, we show in our simulations that sending the pulse at a random time
in the current period provides a very good approximation of the real availability.

4.3 Verification Protocol

It is in the interest of some peers to lie about their uptime, especially to get
more resources than they deserve. We thus provide a verification scheme to
allow a peer to verify that the bit field received from another peer is correct.
More specifically, to challenge a given peer, a peer selects one bit set to 1 in the
bit field received from this peer (this can be easily generalized to several bits
challenged at once). It sends a special request Challenge(i,nonce), containing
i, the period of the bit to be verified, and nonce, which is a randomly generated
short string to make the challenge unique. On reception of Challenge(i,nonce),
the peer replies Proof (i,nonce, K7 ,, S*,reply) where K! , and S* are respectively
the public key and the signature from pulse T*, and reply is the signature of nonce
and the hashes of the identities of the two peers by the the private key K;mv
(code Fig. B). On reception of Proof (i, nonce, K;ub, S, reply), the peer can
verify that reply is the signature with the correct key K}, ,,, using the key K!
from the message, and can also verify that K;ub is the public key from the pulse
T? using the signature S* and the well known KS,,; key (code Fig. B).

The actions to be taken when a peer fails to provide a correct reply to a

Challenge message is out of the scope of this paper since it mostly depends

RR n°® 6594

10 Le Fessant € Sengul € Kermarrec

Trace Size Length Sessions Availability Absolute Error
peers days | <1lh | — | >1d| <25% | — | >7% | <1% | — | >3%
Skype Superpeersfil] | 2081 20 | 15% | 80% | 5% | 60% | 22% | 18% | 95% | 4% | 1%
Microsoft Desktops[8] | 51663 10 0% | 85% | 15% 15% | 15% | 70% 9% | 3% 0%
Overnet Clients|T] 1469 7 39% | 61% | 0% 49% | 44% 7% 58% | 32% | 10%
Synth. Uniform 100000 20 30% | 68% 2% 20% 60% 20% 20% | 0% | 10%
Synth. Exponential 100000 20 27% | 61% 2% 80% 15% 5% 20% | 8% 2%

Figure 7: We ran simulations using a few availability traces collected for different
workloads. Except the Skype workload, such systems are not representative
of real applications for Pacemaker: Microsoft network exhibits a very small
churn, typical of company networks, whereas on the contrary, Overnet’s churn
is very high, even for a file-sharing application (actually much higher than recent
observations on the Edonkey network).

on the application using our measurement system. However, our protocol is
designed so that it is possible to propagate both the Availability and the
Challenge messages to other peers in the network. Hence, other peers are
allowed to use a not replied Challenge message to challenge the same peer
again. To avoid false claims, the peers might use the Availability messages
to check that the message was indeed signed by a selfish peer. If some pulses
are damaged on a peer due to a failure, thus preventing verification, the peer is
expected to clear the corresponding bits from its availability history.

5 Evaluation Road-map

The main goal of our evaluation study is to illustrate that Pacemaker is:

e Scalable: It can accommodate the growth of the system; it is able to
work with millions of peers connected together.

e Accurate: The error between the measured and real availability of a peer
is negligible.

e Low-cost: It is less expensive than other systems providing a similar
measure.

e Secure: The measure still reflects the reality even though selfish peers
may try to modify it. Furthermore, it is able to detect lying nodes timely.

e Easy-to-deploy: It can be implemented easily and deployed with mini-
mal configuration on the peers.

We studied Pacemaker via a combination of analysis, simulations using real
and synthetic traces and an implementation on a 170 node Planetlab testbed.
In the remainder of this paper, we first present the performance of Pacemaker
as an availability measurement system using simulation results on the synthetic
traces. Although, we also ran simulations with real traces (see Fig.), we omit
these results for the sake of brevity, especially because synthetic traces allow
us to evaluate Pacemaker on larger-scale networks (100,000 peers) with more
extreme availability distributions (uniform and exponential).

INRIA

Pace-Maker 11

Next, we present results where Pacemaker operates in the presence of selfish
peers that try to cheat the system by advertising a higher availability. Our
goal in these experiments is to show that Pacemaker is able to provide accu-
rate availability measurements in an efficient manner even in the presence of
such selfish peers. Finally, we conclude with a discussion on implementation
details. Essentially, the Planetlab experiments illustrate the ease of deployment
of Pacemaker in a realistic setting.

6 Availability Monitoring with Pacemaker

The first goal of our evaluation study is to prove the scalability of Pacemaker,
the accuracy of its availability measurements and the negligible load it adds
to the system. To this end, our simulation setup consists of two parts: (1)
the availability patterns of peers and (2) the unstructured overlay network (the
mesh) connecting peers and the server. In this section, we first present this
setup in detail and next, the performance results in comparison to a ping-based
availability measurement system.

6.1 Simulating the Availability of Peers

In the synthetic traces used by our simulations, availability follows either a uni-
form or exponential distribution. While working with the uniform distribution
allows us to span all values of availability, the exponential distribution is more
representative of real peer-to-peer systems [I]. Based on these two distributions,
the availability of a peer y, a,, is calculated as:

L {0.02 +0.98-U(0,1) if uni.
, =

1-In (2+65-U(0»1)))) if exp. W

max(0.02, min(1, e
Additionally, the number of disconnections per day, d, for each peer follows
a uniform distribution: d, = U(0,10). Using a, and d,, the probabilities to
switch between “ON” (i.e., online and available) and “OFF” (i.e., offline and not
available) states are computed as follows.

d

Ay = 5560 (2)
A

Hy = af/_x—ayy (3)

Using these two probabilities, the Markov chain depicted in Fig. B drives the
state changes. Additionally, to account for the effect of the timezones, this
Markov chain is modified to obtain a diurnal pattern: during the day, peers
have twice their normal probability of switching to ON and half their normal
probability of switching to OFF.

The resulting availability patterns are presented in Fig. @l and Fig. [0, which
depict the number of online peers and the session lengths of peers, respectively,
for uniform and exponential distributions. Fig. @ shows that the number of
available peers per round is lower with exponential distribution compared to
uniform distribution. Essentially, while with exponential distribution, the num-
ber of available peers per round is approximately 25,000 during the day and
10,000 during the night, for the uniform distribution, the number of available

RR n°® 6594

12 Le Fessant € Sengul € Kermarrec

1—)\ L= py

Hj

Figure 8: Online and offline times of a peer are computed using a Markov chain with
probabilities A and pu.

80000

100,b00 peers, ‘unif. dist.

100,000 peers, exp. dist. -~~~
70000 |

60000 - 1

50000

40000 | N

30000 b

Number of available peers

20000

10000

O L L L L L
0 5000 10000 15000 20000 25000

Time (minutes)

Figure 9: Number of peers online over time. Since the timezones of peers are only on
12 hours, the number of peers follow a diurnal pattern, which would not be the case
if the distribution was over 24 hours.

INRIA

Pace-Maker 13

100,00‘0 peers, éxp. dist
10000 100,000 peers, unif. dist -]
1day - -
1 hour -
%\
= 1000 ‘ @ 1
2 . e
E " el
£ u oo° ©
=3 .
S 100 F " &© o0 1
4 S Y <
c o
i)] pSs
g : @,@
n I |
10 | @
l .‘ Il Il Il Il Il Il

0 le+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06
CDF of sessions

Figure 10: CDF of Sessions lengths. The median session length is around two hours.

peers is 65,000 during the day and 35,000 during the night. Fig. [0 shows that,
as expected from Fig. @ there are a higher number of sessions in the case of
uniform distribution compared to exponential distribution. The session lengths
range from a minute to a few days for both distributions and the median session
length is around two hours.

6.2 Overlay Network Setup

We use a mesh that connects all peers and a single server. The server diffuses
pulses through this mesh every hour (i.e., unit time P = 1 hour) to measure
the availability of peers. In our simulations, the mesh is formed as follows: the
server has an out-degree of 10 (called children in the sequel), and each peer
has a out-degree (children) and in-degree (parents) of 5. Although many other
approaches could be considered to build the mesh, we used the simple following
protocol: to connect to the mesh, a peer first sends an AskRoot message to the
server, which replies with a list of its children in the graph. The peer then sends
AskParent messages to the children. Every child either accepts the peer as a
child, or sends a random child among its children. The process iterates until
the peer is connected to 5 different parents.
We added the following local optimizations to improve the mesh:

e At every round, if a peer has a free child slot, it chooses among all the
child candidates the one with the best measured availability. To this end,
in our simulations, each peer delays its response to AskParent messages
by 1 minute to be able to choose the best candidate.

e To decrease the diameter of the network, a peer disconnects the children
that are at the same distance from the server. The distance information
is learned either from the AskParent or the Distance update messages,
which are sent by a peer each time its distance to the server changes.

RR n°® 6594

14 Le Fessant € Sengul € Kermarrec

100000 peers, unif. dist. —+—
100000 peers, exp. dist. ---><---
1 10000 peers, unif. dist. —%—

0000 10000 peers, exp. dist. 13—
1000 peers, unif. dist. ——

3
c
£ 1000 F
E SIVENEVENEVESS RS St Ol x
g PEEEVESESSSS e
[}
()
g H
¢ B B
¢ IS e e L
= -

10

S T)
N s
G OO
e
1 P ‘ | | |
0 5000 10000 15000 20000 25000

CDF of Minutes

Figure 11: The number of AskRoot messages received by the server per minute in
our simulations. The mean rate is 1/50 of the number of nodes, i.e. 100,000 nodes
consume 33 messages per second. Even in our simplified mesh, a few servers can easily
handle a few millions of peers.

Obviously, for peers that do not have a parent, the distance to the server
is infinity. Otherwise, peers advertise their minimum distance to the server
through their current parents. Note that the well-known count-to-infinity
problem might occur during the Distance updates and is resolved similar
to [I2] by choosing a small number (e.g., 10) for infinity.

While we chose this specific mesh generation protocol here for its simplicity,
the mesh could be built differently based on the application requirements and
the service desired. Pacemaker only requires the underlying mesh to be able to
diffuse the pulses successfully, which is a reasonable expectation. Since Pace-
maker relies on diffusion of pulses, the scalability and efficiency of our protocol
and the accuracy of the availability measurement depends on the underlying
mesh. Therefore, we first show the scalability of the mesh used in our simula-
tions by counting the number of AskRoot messages received by the server from
new or reconnecting peers (see Fig. [[1l). We evaluate the number of AskRoot
messages for both uniform and exponential availability distributions with 1,000,
10,000 and 100,000 peers. As expected, as the number of peers increases, the
number of AskRoot messages also increases. Furthermore, with uniform dis-
tribution, since the number of sessions is higher, we observe a higher number
of messages sent per minute. This is because the peers in our simulations are
memoryless and hence, each time they come back online, they need to rediscover
parents. Nevertheless, even with this property, Fig. [l shows that the mesh is
scalable: the number of AskRoot messages grows to only 1000 when the number
of peers increases to 100,000. Note that this basically translates to less than 10
kB/s traffic load on the server, which is very reasonable.

To understand the scalability of the constructed mesh further, Fig. [plots
the maximal hop-distance to the server. As expected, it grows logarithmically

INRIA

Pace-Maker 15

18

100,000 peers, unif. dist. —+—
100,000 peers, exp. dist. --->---
10,000 peers, unif. dist. —%—
10,000 peers, exp. dist. -3
14 1,000 peers, unif. dist. —8—
1,000 peers, exp. dist. -

16

Maximal distance from server

0 . L L L L L
0 5000 10000 15000 20000 25000

CDF of minutes

Figure 12: Maximal distance to the server over time. Note that the diameter of the
network is not too high.

25 T T T T T
100,000 peers, unif. dist., 5,908,795 conns —@—|
100,000 peers, exp. dist., 1,853,893 conns --&-
10,000 peers, unif. dist., 609,272 conns —i—]|
20 10,000 peers, exp. dist., 190,549 conns --£3--

Time to becoming a child (minutes)

1 10 100 1000 10000 100000 1e+06 1e+07
CDF of connections

Figure 13: Time spent between the beginning of a peer session and the connection to

its first parent. Only in some rare cases, it is above 7 minutes. Since in our system, we
focus on long session times (median session length is two hours), this delay is negligible.

RR n°® 6594

16 Le Fessant € Sengul € Kermarrec

1000 |- b

800 i 1

600 1

400 | 1

Mean availability (1/1000)

200 | peers at distance 1 —<— |
peers at distance 2 —¥—
peers at distance 3 —5—
peers at distance 4 —Jl—
peers at distance 5 —5—
om))) | Peers at distance 6 ——

0 5000 10000 15000 20000 25000 30000
CDF of minutes

Figure 14: Mean availability of connected peers depending on their distance to the
server. The peers closer to the server have a higher availability that farther peers.

with the number of peers in the network. More specifically, the maximum
number of hops range between 5 and 12 depending on the number of peers and
the availability distribution. The effect of this is also seen in Fig. [which
shows the time it takes for a new peer to find its first parent. This delay is
more than 10 minutes only for less than 1/1000 of the connections. Essentially,
these delays, which are on the order of a few minutes, can be considered as
negligible, since we are interested in measuring availability for long sessions
(i.e., the median session length is two hours).

Finally, the effect of our local optimizations are depicted in Fig. [[d, where
the mean availability of peers versus their distance to the server is plotted. The
figure shows that peers close to the server have a higher availability than peers
farther away. This is due to prioritizing peers with higher availability when
selecting children. Without such a prioritization, we would not observe this
effect and the mesh would be less stable.

6.3 Results on Accuracy

In this section, we present results in terms of accuracy and cost-effectiveness
of Pacemaker. We simulate 100,000 peers for 20 days (i.e., 28,800 minutes).
Every round in the simulation takes one minute. From a communication point
of view, this puts some timeout on messages, which allows us to detect peer
disconnections (for instance, TCP keepalive is 30 seconds).

For each peer in the network, we compute the accuracy as the difference
between its real availability and the availability measured by our system (i.e. the
availability that it is able to prove to other peers). Essentially, this represents
the absolute error, plotted on Fig. [[A for both the uniform and exponential
distributions. Our measured availability matches the real availability of peers
when the pulse period, P, is 1 hour. Uniform random distribution exhibits the

INRIA

Pace-Maker 17

0.15
0.1

0.03

0.01

0.001

Absolute Error on Availability

abs. error, unif. dist. —%k—
abs. error, exp. dist. —l—

0.0001 ‘ ‘
0 20000 40000 60000 80000 100000

CDF of peers

Figure 15: Measured availability compared to real availability for uniform distribution.
Note that the difference is negligible.

period 120 minutes —@—

period 60 minutes ——
0.1 period 30 minutes —x— E
period 20 minutes —=—

>

= period 10 minutes —&—

3

K

]

he] 0.01 i
I

=}

(%]

®©

Q

1S

c

o

§ 0.001 E
I

0.0001 . L . ! !

0 20000 40000 60000 80000 100000
CDF of peers

Figure 16: The error in measured availability versus P for exponential distribution

worst case: for 70% of the peers, the absolute error is less than 1%, for the next
20% of the peers, it is less than 3%, and never exceeds 10% (of time).
Obviously, if we reduce the pulse period P, we can achieve better accuracy
but at a higher cost. Fig. [[@ and Fig. [show the accuracy of Pacemaker as
P ranges between 10 minutes to 2 hours. For both distributions, while P = 2
hours would achieve the best cost, it also provides the lowest accuracy (i.e., the
error is significantly higher). While the error immediately improves with P = 1
hour, for lower P values, Pacemaker performs with comparable accuracy. This

RR n°® 6594

18 Le Fessant € Sengul € Kermarrec

period 120 minutes —@—
period 60 minutes —l—

0.1} period 30 minutes —%— E

period 20 minutes —H—

period 10 minutes —&—

0.01 o ;

0.001

Error on measured availability

0 . 000 1 L L L L L
0 20000 40000 60000 80000 100000

CDF of peers

Figure 17: The error in measured availability versus P for uniform distribution

1 T T T
pacemaker error (P=1h) ——
pings with 5 observers --£1--
pings with 10 observers -
pings with 15 observers
= 0.1} E
o
wm
2
>
©
%]
<
0.01 ¢ E
0.001 / | | | A |
0 20000 40000 60000 80000 100000

CDF of peers

Figure 18: A comparison between Pacemaker and ping-based system for uniform dis-
tribution. Pacemaker is equivalent to a ping-based system that uses 5 and 10 observers
for each peer.

shows that Pacemaker achieves a good trade-off between accuracy and cost.
Note that in our simulations, peers accept unordered pulses (i.e., a pulse for a
given time would be accepted even if a pulse for a later time has already been
received). Not following this policy can degrade the accuracy of the measure for
small values of P as the peer distance to the server increases.

We believe that even in the worst case, the accuracy of Pacemaker is ac-
ceptable for a majority of the applications since 1-5% error does not change the

INRIA

Pace-Maker

19

paéemaker error (P=1h)
pings with 5 observers
pings with 10 observers

= i

pings with 15 observers -~~~
pings with 20 observers —=—
pings with 25 observers —&—
pings with 30 observers -----

0.1F

Absolute Error

0.01 ¢

80000 100000

0 20000 40000 60000
CDF of peers

0.001

Figure 19: A comparison between Pacemaker and the ping-based system for expo-
nential distribution. Pacemaker performs better than a ping-based system with 20
observers for each peer.

availability class of a peer (as discussed in SectionBl). Furthermore, we compare
Pacemaker with a system where each peer in the network is monitored every
minute using pings by a small set of randomly selected observers (similar to
AVMON [19]). Fig.[® shows that for the uniform distribution, the ping-based
system achieves high accuracy (i.e., negligible error) with only a low number
(5-10) observers. However, this does not hold for the more realistic exponential
distribution, as seen in Fig.[[A In this case, the ping-based system must use a
higher number of observers (e.g., 20 observers) to reach the same accuracy as
Pacemaker. On the other hand, in the worst case, Pacemaker has a cost of 10
Pulse messages per peer (if the mesh degree is 10) and per hour (if the period
P is one hour). Furthermore, note that in a ping-based system, no measure-
ments can be taken if the observers are down, which is often the case for the
exponential distribution. Therefore, Pacemaker provides more accuracy as its
availability measurement does not depend on a fixed set of observers.

7 Pacemaker against Selfish Peers

While Pacemaker achieves good accuracy in environments where no selfish peers
are present, it is essential to maintain similar performance when peers exhibit
selfish behavior. In the following section, we evaluate how Pacemaker handles
different selfish behaviors, which are identified in Section Bl These behaviors,
translated into Pacemaker context, are namely:

e Lazy peers: These peers do not propagate pulses so that other peers
have a lower measured availability.

e Opportunistic peers: These peers only connect to the mesh to receive
the pulses and immediately disconnect afterward.

RR n°® 6594

20

Le Fessant € Sengul € Kermarrec

Error on measured availability

10

0.1

0.01

0.001

0.0001
0

90% lazy peers
50% lazy peers
40% lazy peers
20% lazy peers
0% lazy peers
3%

20000

40000 60000 80000 100000
CDF of peers

Figure 20: Error on measured availability depending on the number of lazy peers in
the system. Although lazy peers do not propagate the pulses to their neighbors, the
error is under 10% with 50% of lazy peers in the network, and almost not affected
with 30% of lazy peers.

Error on measured availability

10

0.001

0.0001 L
0 20000

90% lazy peers
50% lazy peers
40% lazy peers
20% lazy peers
0% lazy peers
3%

40000 60000 80000 100000
CDF of peers

Figure 21: Error on measured availability with lazy peers with a uniform distribution

7.1

Lazy Peers

e Lying peers: These peers lie about their availability.

Lazy peers prevent other peers from benefiting from the system by not prop-
agating the pulses to their neighbors. Basically, lazy peers do not follow the
protocol when the protocol actions have a cost and no direct benefit. As an

INRIA

Pace-Maker 21

1r B -
7
el]
08 r o T
< /l/ ’
¥ L -
£ A S
g _w ..
2 o6} P 1
el x’v“'v/ - I‘ - -
g vv;’,: P
g Tt
04 | e]
.
“ae® I .
ok real availability (uniform) —e—
g5 random diffusion --—o--
0.2 r ~ trusted diffusion (5 min. conns.) - 1
2 trusted diffusion (10 min. conns.) -~
trusted diffusion (30 min. conns.) --=--
0 ‘ trusted diffusion (50 min. conns.) -

0 20000 40000 60000 80000 100000
CDF of peers

Figure 22: Availabilities measured using either random checks or by requiring some
connection length. It shows that sending the pulse randomly (at a random minute
during the pulse hour) performs much better than requiring a minimal session length
(from 5 to 50 minutes) from a child to propagate the pulse.

additional consequence, these peers may improve their ratings in the system by
decreasing the measured availability of other peers rather than claiming a higher
availability like the lying peers. To evaluate the impact of lazy peers, we ran-
domly selected peers as lazy peers in our simulations. The results, depicted in
Fig. @ show that the accuracy of the availability measure is not affected much
(i.e., the error remains under 10%) until the percentage of lazy peers hits 50%.
This good results are a direct property of the degree chosen for our simulation
mesh. Hence, we conclude that:

e When there is a low number of lazy peers (i.e., up to 30% of lazy peers),
their impact is negligible on the measured availability of other peers.
Hence, lazy peers do not succeed in reducing the availability of their neigh-
bors.

e When there is a high number of lazy peers (i.e., greater than 50%), their
impact is more significant but their measured availability is also as dimin-
ished as the one of collaborative peers since they are also affected by other
lazy peers that do not propagate pulses.

7.2 Opportunistic Peers

Opportunistic peers try to cheat the system by connecting to the network only
to get pulses to increase their perceived availability. In our system, such peers
would connect at fixed times, depending on the schedule of pulse diffusion. To
avoid opportunistic behavior, we propose two different policies:

RR n°® 6594

22 Le Fessant € Sengul € Kermarrec

e Random diffusion: Within each period P, the server starts the pulse
diffusion at a random time. Hence, the opportunistic peers cannot forecast
when to connect to the network.

e Trusted diffusion: When a peer receives a pulse, it only propagates
the pulse to children which have been connected for a long time. Hence,
opportunistic peers never receive pulses.

Fig. B2 plots the impact of these policies on the accuracy of measured avail-
ability. It shows that random diffusion performs much better as soon as the
required session length for children becomes too long. Essentially, trusted dif-
fusion requires guessing the average neighbor session length to avoid punishing
good neighbors that do not have long session length. This might be difficult
since the session lengths exhibit a high variance. Hence, we used random diffu-
sion in all our simulations.

7.3 Lying Peers

In contrast to lazy and opportunist peers, lying peers try to achieve a higher
status in the network by advertising false availability information. In our sys-
tem, this is simply done by switching a 0 bit to 1 in the availability bit field.
Pacemaker provides peers with the ability to challenge peers based on their
advertised availability. Using this scheme, the probability that a challenger y
discovers that x is lying in a given try is determined by two factors:

e How many bits x lied about (i.e., how many bits are switched from 0 to
1)
e How many bits y challenges

In this paper, we did not consider the case of challenging the entire bit field
due to the high computational overhead and the growth in message size. Hence,
in a given try, only a fixed number of bits, denoted as i, are challenged. Our
goal is to calculate the probability that a challenge sent to peer x succeeds
when i bits are challenged. Given the number of switched bits, nswitched, and
the number of correct bits, ncorrect, (Which add up to the total number of 1-bits
in the bit field) p(z, 1) can be calculated as:

Nswitched () (4)

z,1) =
p() Necorrect (SC) + Nswitched (SC)

This can be generalized to i bits as follows. A challenge would not succeed if
and only if all the challenged ¢ bits are correct. Hence,

' . ncorrect(x) —k
=1-11-1 ’
p((E, ,L) k=0 Necorrect (1') + nswitched(z) —k ()

Fig. B3 shows how p(x, 1) increases with ¢ when the percentage of nsyitchea bits
among the total number of 1-bits is 5, 10, 25 and 50%, respectively. Note that
when the lying percentage is low, p(x,4) is also low - even though it improves
with increasing ¢. On the other hand, at a given challenge, when the lying
percentage is high, it is more probable to detect liars even when ¢ is low. For
instance, for i = 3, p(z,4) = 0.89 when lying percentage is 50%.

INRIA

Pace-Maker 23

1.2 T T
5% switched bits —+—
10% switched bits ----><---
25% switched bits &
1r 50% switched bits {3 ‘ — ;_1,@]
5 .
0.8 |
[

T 06 %]
04 R
0.2 | |

0 Il Il Il Il Il
0 2 4 6 8 10

Number of challenged bits (i)

Figure 23: p(z,i) when 5, 10, 25 and 50% of the 1-bits are switched. p(z,i) increases
as the lying percentage and the number of challenged bits increase.

However, the probability of detecting a lying peer does not only depend on
p(x,i) but also on how and when the challenges are sent by the peers. Our
protocol does not explicitly specify when challenges should be sent to peers and
how the system should react when a peer fails to reply to a challenge since
these are strictly application-dependent. However, in this section, we outline a
generic strategy for dealing with lying peers and based on this strategy analyze
the probability and the time to detect them in a given system.

We assume that each peer is working with m peers on average for the needs
of the application. A peer y can challenge a peer x as a step of one of their
connections, and that a successful response is mandatory for any interaction af-
terwards. Hence, both peers should be awake (which is governed by the Markov
chain depicted in Fig.B). The probability that y is in ON state is p, y = /\y’i—yuy
Similarly, the probability that = is ON is p§ . Since these probabilities are in-
dependent, the probability that = can be connected to and challenged by y,
pe(,y), is

pe(®,9) = PoN - PN (6)
Let’s assume y challenges & with a known frequency, f. Depending on this

frequency, the probability that the lying peer z is detected by vy, pdetect(x,),
during the system time ¢ is:

pdetect(‘ray) =1- (1 —pc(ﬂc,y) : p(le'))f‘ts (7)

In other words, a lying peer will only be not detected if all the successfully sent
challenges have a successful response during ¢s;. Note that pgetect(x, y) is simply
the probability of finding the switched bits in the bit field of . The actual
detection happens when x cannot respond to the challenge (e.g., by not sending
a proof or sending a false proof).

RR n°® 6594

24 Le Fessant € Sengul € Kermarrec

With m peers working with z and thus challenging x, the probability of
detecting an lying peer x, pgetect (), is:

DPdetect (SC) =1- ;nzl(l — Pdetect (1'5 y)) (8)

Again, x will only be not detected, if all m peers fail to detect its lie.

In addition to detection probability, average detection time is also important
as it affects how fast we can recover from availability measurement errors. To
calculate the average detection time, ¢getect, We first need to calculate the prob-
ability of detecting a lying peer z on the n'* try. We denote this probability as
Pl et (2, y) and calculate it as:

Phetect (@, y) = (1 = pe(@,y) - p(a, 1))~ - pe(a, y) - p(a, i) (9)

Since this follows a geometric distribution, the mean number of tries necessary
for y to detect x is m. Since there are m peers challenging x, = will be
detected whenever one of these peers discovers its lie. Hence, average detection
time of z depends on the minimum of the average number of tries necessary
among m peers. Since the time between each challenge is %, the average time
to detect a lying peer, tgetect iS:

1
tdetect = — - mi 10
detect f mympc(()

To understand if Pacemaker can detect lying peers efficiently, we study a net-
work where each peer is challenged by m = 5 peers. Peers send a challenge once
every day (i.e, f = 1) for a system time, ts = 15 days. Note that under uniform
distribution, the average availability of a challenging peer is 51%, whereas this
is 8% for exponential distribution. Furthermore, based on Fig. B3 i is selected
as 3. We next analyze the pgerect(r) when the lying peer z is 5%, 10%, 25%
and 50% available in the system. Moreover, we assume z lies uniformly random
based on its availability. In other words, if it is 5% available it tries to improve
its availability by U(1%,95%). Based on this lying behaviour, the following
(availability, average lying) values are analyzed: (0.05, 0.48), (0.1, 0.46), (0.25,
0.38) and (0.5, 0.26). Given this setting, using Eqs. Bl we plot pgetect(x) in
Fig. B4l As expected, due to the low average availability of peers, the proba-
bility of detecting a lying peer is lower for exponential distribution compared
to uniform distribution. However, note that, for both cases, the probability of
detection is high if the lying peers are online 50%. Actually, it is important to
catch these peers since lying peers with less than 10% availability are not using
the system anyway. Similarly, Fig. shows that under uniform distribution,
the lying peers are expected to be caught faster than exponential distribution.
However, as a lying peer’s presence increases in the system, the detection time
decreases accordingly for both distributions.

Our analysis results are also confirmed by simulation results, which are de-
picted in Fig. B8 and Fig. P4 for uniform and exponential distributions, respec-
tively. In our simulations, 5% of the population consists of lying peers. We
wait for five days to reach a stable network before sending challenges (this is
the reason why the number of lying peers stays flat in both figures upto 5 days
and then starts decreasing). The results show that the lying peers are detected
in accordance with the analysis: faster for uniform distribution and slower for

INRIA

Pace-Maker

0.8

0.6

Pdetect

0.4

0.2

Figure 24:

300

250

200

150

tdetect

100

50

Figure 25:

RR n°® 6594

unif. dist —+—

exp, dist. --—>---

(0.05,0.48) (0.1,0.46) (0.25,0.38) (0.5,0.26)
(Real availability, Average lying)

Pdetect () with different availability and lying characteristics

unif. dist ——
exp, dist. -—>---

(0.05,0.48) (0.1,0.46) (0.25,0.38) (0.5,0.26)
(Real availability, Average lying)

taetect (z) with different availability and lying characteristics

26

Le Fessant € Sengul € Kermarrec

System Availability

0.52

0.5

0.48

0.46

0.44

0.42

0.4

T

real availability, exp. dist.
measured availability (1 challenges, 5 observers) —@—
measured availability (2 challenges, 5 observers) —ll— - 10000
measured availability (3 challenges, 5 observers) —w—
number of liars (1 challenges, 5 observers) -2~
number of liars (2 challenges, 5 observers) —{-
number of liars (3 challenges, 5 observers) —<7-

8000

6000

Number of Liars

- 4000

- 2000

Time (days)

Figure 26: The measured and real availability, and the remaining number of lying
peers in the system with time (for uniform distribution).

System Availability

0.2

0.18 A

T

real availability, exp. dist.
measured availability (1 challenges, 5 observers) —@—
measured availability (2 challenges, 5 observers) —ll— 4 10000
measured availability (3 challenges, 5 observers) —w—
number of liars (1 challenges, 5 observers) —+2-
number of liars (2 challenges, 5 observers) -4~
number of liars (3 challenges, 5 observers) —<7--

8000

6000

Number of Liars

4000

2000

Time (days)

Figure 27: The measured and real availability, and the remaining number of lying
peers in the system with time (for exponential distribution).

exponential distribution. More specifically, as predicted from Fig. BA almost
all lying peers are caught after the 10" day (i.e., in 5 days) for uniform distri-
bution. On the other hand, for exponential distribution, almost 20% liars are
waiting to be detected after 15 days (see Fig. Z7). However, we see that once
the system starts detecting and removing lying peers from the network, the
measured system availability approaches the real system availability for both
distributions.

INRIA

Pace-Maker 27

8 Implementation

As a first step towards real deployment, we ran Pacemaker over 170 nodes of the
Planet-Lab network for one month since September 24, 2008. In this section,
we present the details of our implementation and initial results.

8.1 Implementation Details

Pacemaker was implemented as a single program, written in Objective-Caml.
It uses openSSL for cryptography and network libraries for peer-to-peer com-
munications from our previous work (MLdonkey [14], Peerple [8]), specifically,
for marshaling messages and establishing communications. One of the most
important features of Pacemaker is its ease of deployability: It took a single
programmer less than a week to implement and fully deploy it (including an
additional auto-upgrade feature).

In our implementation, an option is used to decide the role of the node in
the system at start-up. These roles are:

e Client: A standard peer in the network.
e Server: A server peer, which diffuses pulses in the network periodically.

e Master: A logger peer, which doesn’t run the Pacemaker protocol but
instead, all peers connect to it every hour to upload their logs. This is done
to be able to analyze these logs to evaluate the performance of Pacemaker.

The entire system can be divided into three parts: (1) our Pacemaker proto-
col, (2) a mesh protocol for building the network and (3) a file sharing protocol
for logging and software update purposes. All of these protocols contain 12
messages in total, as listed below:

e Pacemaker: 4 messages, which are Pulse, Availability, Challenge
and Proof, and their handlers have been implemented. However, since we
are not running any real application and have no selfish nodes, only Pulse
messages are sent in our experiments.

e Mesh: The mesh protocol builds the underlying network using 3 mes-
sages. The AskParent and AskParentReply messages are used to estab-
lish permanent links between peers and propagate other parent candidates.
The Distance message helps decreasing the diameter of the network.

e File sharing: Finally, we use 5 messages to transfer files between peers
and synchronize directories. These messages allow:

— Logging: The log directory of every peer is synchronized with the
master. In each synchronization only new or modified files are trans-
fered.

— Software updates: To diffuse a new binary in the network, one of the
clients is updated, which in turn starts a gossip of this update.

The final program is 2000 lines of Objective-Caml code, where 400 lines are
message descriptions (among which 140 lines are for Pacemaker), 700 lines are
handlers (among which only 70 lines are for Pacemaker; the file sharing feature
is the most verbose) and 250 lines are for the main functionality.

RR n°® 6594

28 Le Fessant € Sengul € Kermarrec

1r ‘pacer‘naker. one-hour pulée i
pings, 5 observers --&---
pings, 20 observers --<--
3%
S
i
> 0.1 ¢ E
z
©
g
<
Q
5
3 0.01 | E
Qo
<
0.001 Il I\ ! Il Il Il Il Il Il Il

120 125 130 135 140 145 150 155 160 165
CDF of peers

Figure 28: Availability Error in Planet-Lab evaluation, 165 nodes

8.2 Deployment Details

To deploy Pacemaker, we used three computers in our lab. One of these served
as the server and also propagated software updates in the network. The second
computer acted as a normal client to enable local debugging of problems. The
third computer was the master. Next, we got access to one Planet-Lab slice,
where we first started with 10 nodes, then 50 nodes after two days, and finally
deployed Pacemaker on 170 nodes. However, due to a restarting problem with
crond daemon after node crashes, the number of nodes running Pacemaker
was observed to go down as low as 145 before the crond daemon is restarted
manually. Therefore, the results presented in the next section are on one day
including 165 nodes.

8.3 Results

The initial results with our Planet-Lab deployment are depicted in Fig.
These results show that using Pacemaker, the error in availability measure re-
mained below 1% for 90% of the peers. Only for the 6% of the peers, the error
was higher than 3%. We also deployed a ping-based availability measurement
system to be able to compare it against Pacemaker. The figure shows that the
ping-based system both with 5 and 20 observers perform similarly to Pacemaker
in terms of accuracy. However, note that Pacemaker achieves this accuracy level
with a lower cost. Furthermore, the similarity in accuracy performance is also
not surprising because the availability of nodes in our slice did not show much
variation. Comparing ping-based system with 5 observers against 20 observers
also confirms this as the increase in the number of observers did not improve
the availability measure. In the future, we plan to use Pacemaker in a real peer-
to-peer backup storage system to evaluate its performance in more dynamic
settings.

INRIA

Pace-Maker 29

8.4 Discussion

Our goal with a Planet-Lab implementation was to show the ease-of-deployment
of Pacemaker. However, since there were no selfish peers in the network, we
were not able to test the availability notifications and the verification of peer
availability. Nevertheless, it is important to evaluate the cost of Pacemaker
when Availability, Challenge and Proof messages are sent. Especially the
cost of bandwidth needs to be considered since it is usually the rarest resource
in peer-to-peer networks.

In Pacemaker, bandwidth is mainly consumed during the exchange of sig-
natures and keys in pulse messages. With RSA, these signatures and keys are
typically 256 bytes long. This cost can further be reduced by using elliptic
curves, which achieve a good level of security with around 15 bytes. Therefore,
we do not expect Pacemaker to incur high costs. For instance, if we use RSA,
the size of the messages sent by Pacemaker can be calculated approximately for
a year (i.e, Ny = 8760) as:

e Pulse : 800 B (2 keys and 1 signature)

o Awailability : 1400 B (bit field[N _t] + 1 signature)
e Challenge : 70 B (a nonce of 64 B)

e Proof : 900 B (nonce + 1 key + 2 signatures)

Note that the pulse message is sent once per period P to all the neighbors.
Other messages would probably only be sent once a day between two peers
working together. Consequently, we expect the bandwidth cost of Pacemaker
to be negligible.

9 Related Work

In this section, we first present current research on peer-to-peer networks that
relies on availability information. Such systems serve as our main motivation to
provide availability information securely in the presence selfish peers. Next, we
discuss related work on availability measurement, focusing specifically on their
operation in the presence of selfish peers.

9.1 Uses of Availability Information in P2P Networks

The majority of the research on building peer-to-peer networks heavily relies
on information about stability or availability of peers. Indeed, many systems
rely on a stable core or super-peers, which are selected for their high availability
in the system. For instance, [I] and [4] report that, in Gnutella and Overnet,
respectively, the peers with higher availability tend to be more stable than
other peers. Based on this result, [I] proposes a protocol that builds a more
stable network by selecting peers with higher availability. However, the proposed
solution cannot cope with selfish peers that might lie about their real availability
to get a better status in the system. Similarly in [21], a gradient topology is built
so that the most stable peers are at the core of the network and the less stable
peers stay on the border. However, selfish peers can claim higher availability
to be included in the core, and then refuse to serve requests even though they

RR n°® 6594

30 Le Fessant € Sengul € Kermarrec

Pacemaker AVMON
Architecture Pulses Pings
Durability Unlimited | Limited (churn)
Supported Topologies
Internet Yes Yes
Ad-hoc Networks Yes No
Social Networks Yes No
Firewalled Peers Yes No
Vulnerabilities
Selfish Peers Resilient Not Treated
Colluding Peers Not Treated Vulnerable

Figure 29: Comparison with AVMON [19]. See section for details.

benefit from their good position in the network. In [9], availability information is
used to select super-peers in the network to build a top-level Chord Distributed
Hash Table (DHT) over another less stable DHT. Again, selfish peers might
manage to be included in the top-level DHT, and use their position to decrease
their load.

In addition to help build more stable networks, availability information is
also useful for repairing the network. For instance, using availability informa-
tion, replacement policies decrease the effect of churn in a peer-to-peer sys-
tem [I0]. Tt was shown that, although performing well, the performance of
a random replacement cannot reach the performance of a replacement policy
based on choosing peers with maximum availability. Similarly, in [7], availabil-
ity information is used to proactively repair fragments in a peer-to-peer storage
system based on an estimation of the failure rate. Finally, in [22] an object
replica maintenance system is studied under temporary and permanent failures
for different peer-to-peer systems. It is shown that data tends to accumulate on
nodes with high availability and unlimited capacity. Essentially, if the capac-
ity is limited, the performance degrades when the nodes with high availability
become saturated as the nodes with low availability trigger many repairs. Ob-
viously, if the availability information is compromised in any of these systems,
repairs would not be possible.

9.2 Comparison with AVMON

Availability measurement systems can be classified into two categories: clock-
based systems, where measures are based on the local clock and ping-based sys-
tems where measures are done by hello messages. Pacemaker introduces a new
category, pulse-based systems, where measures are based on pulses flooded in the
network. Clock-based systems such as [I8] are obviously vulnerable to selfish
peers.

We introduced and evaluated ping-based systems in Section B3l Our results
show that, to get the same level of accuracy as Pacemaker in a realistic sys-
tem, a peer in a ping-based system needs to send 25 ping messages per hour,
while a peer in Pacemaker only needs to send 5 diffusion messages per hour.
Indeed, in ping-based systems, peers can only monitor availability when they
are online, so more monitors are needed to cope with churn. Moreover, their

INRIA

Pace-Maker 31

measures become unavailable as soon as they leave the system. Finally, peers
behind firewalls cannot be monitored, whereas Pacemaker can still reach them.
Therefore, measurements are less accurate, less efficient and less durable.

To the best of our knowledge, AVMON [19] is the only ping-based system
designed with security in mind. By using a hash function to match observers
and observed peers, AVMON tries to avoid that peers claim higher availability
than the reality by colluding with other peers. AVMON suffers from both the
drawbacks of ping-based systems and the drawbacks of its hash-based scheme,
as detailed in [I3]. From a security point-of-view, selfish observers can still lie
about the availability of the peers that they are supposed to monitor. Moreover,
the hash mechanism is vulnerable to collusion: peers can change their listening
port until they are accepted as observers for the peers with whom they want to
collude.

9.3 Colluding Peers

As other availability measurement systems, Pacemaker cannot yet cope with
colluding peers, but it is, to the best of our knowledge, the only one resilient to
selfish peers. Nevertheless, we think that, first, collusion is harder to implement
than selfishness, and second, it should be possible to extend Pacemaker to cope
with collusion.

Indeed, selfishness requires only small modifications of the software (to lie
on bitmaps) or of the environment (to filter out pings or requests in ping-
based systems). On the contray, collusion requires deep modifications of the
software (extension of the protocol) and complicity of other peers that need to
be discovered on the network. For the first part, there is a game-theoric incentive
not to diffuse such modified software for colluding: the bigger the number of
peers colluding, the smaller the benefit for each colluding client. Moreover,
clients trying to discover other colluding clients openly can be detected by honey-
pots, i.e. clients accepting to collude only to detect colluders, and able to
blacklist them on a system-wide scale. Consequently, collusion can be expected
to be limited to a few manually created groups of modified clients trusting each
other.

There are also several approaches to extend Pacemaker to cope with collu-
sion. A first approach would be to insert in the pulse the path of IP addresses
followed during its diffusion. Such a scheme would help blacklisting clients that
keep diffusing old pulses to other peers to disrupt the system. Another approach
would be to track modifications of the history of pulses of a client, to detect if
an old pulse is added, to limit the time during which collusion can happen. Fi-
nally, we are also investigating a more interesting approach, closer to Pacemaker
spirit, based on the use of Merkle trees [I7], to actually encode the presence of
a peer in the system directly in the pulse.

10 Conclusion

In this paper, we have presented a simple but efficient way of monitoring avail-
ability in peer-to-peer systems in the presence of selfish peers. Our protocol,
Pacemaker, uses a set of servers to propagate cryptographic pulse messages in a
mesh of peers, allowing them to measure and check the history of availability of

RR n°® 6594

32 Le Fessant € Sengul € Kermarrec

other peers easily at any time. Pacemaker is resistant to selfish behaviors, and
in particular to lying peers, which lie about their availability to gain access to
more resources in the system.

We have evaluated Pacemaker through analysis, simulations and deployed
the protocol on a Planet-Lab testbed. Our results show that Pacemaker is
accurate, able to detect selfish behaviors, less expensive than competitors and
easy to deploy. Furthermore, the low overhead induced by Pacemaker enables
not to hamper the scalability of the peer-to-peer overlay network.

Pacemaker also introduces a new network architecture, pulse-based systems,
that, we think, could have multiple applications in self-organizing systems. We
are now investigating some of these applications, for example in the context of
sensor networks. As discussed in section B3] we are also working on different
approaches to extend Pacemaker to cope with colluding peers.

References

[1] Ranjita Bhagwan, Stefan Savage, and Geoffrey Voelker. Understanding
availability. In IPTPS, Int’l Work. on Peer-to-Peer Systems, 2003.

[2] Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage, and Ge-
offrey M. Voelker. Total recall: system support for automated availability
management. In NSDI, Symp. on Networked Systems Design and Imple-
mentation, 2004.

[3] William J. Bolosky, John R. Douceur, David Ely, and Marvin Theimer.
Feasibility of a serverless distributed file system deployed on an existing
set of desktop pcs. In SIGMETRICS, Int’l Conf. on Measurement and
Modeling of Computer Systems, 2000.

[4] Fabian E. Bustamante and Yi Qiao. Friendships that last: peer lifespan
and its role in p2p protocols. In Int’l workshop on Web content caching
and distribution, 2004.

[5] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica. Wide-area cooperative storage with CFS. In SOSP, ACM Sympo-
sium on Operating Systems Principles, 2001.

[6] T. Dierks and E. Rescorla. RFC 4346: The Transport Layer Security (TLS)
protocol version 1.1. TETF, April 2006.

[7] Alessandro Duminuco, Ernst W Biersack, and Taoufik En Najjary. Proac-
tive replication in distributed storage systems using machine availability
estimation. In CoNEXT, Int’l Conf. on emerging Networking EXperiments
and Technologies, 2007.

[8] Anh-Tuan Gai, Fabrice Le Fessant, and Laurent Viennot.
http://www.peerple.net/, 2007.

[9] L. Garcias-Erice, E.-W. Biersack, P.A. Felber, K.W. Ross, and G. Urvoy-
Keller. Hierarchical peer-to-peer systems. In FEuro-Par, Intl. Conf. on
Parallel and Distributed Computing, 2003.

INRIA

Pace-Maker 33

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

P. Brighten Godfrey, Scott Shenker, and Ton Stoica. Minimizing churn in
distributed systems. In SIGCOMM, Int’l Conf. on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications, 2006.

Saikat Guha, Neil Daswani, and Ravi Jain. An Experimental Study of the
Skype Peer-to-Peer VoIP System. In IPTPS, Int’l Work. on Peer-to-Peer
Systems, 2006.

C. Hendrik. Routing information protocol.
http://wuw.ietf.org/rfc/rfcl1058.txt, June 1998.

Fabrice Le Fessant. Limitations of the AVMON system.
http:/ /fabrice.lefessant.net/AVMON//.

Fabrice Le Fessant. http://mldonkey.sourceforge.net/, 2002.

Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes.
In PKC, Int’l Work. on Practice and Theory in Public Key Cryptography,
2000.

Petar Maymounkov and David Maziéres. Kademlia: A peer-to-peer in-
formation system based on the XOR metric. In IPTPS, Int’l Work. on
Peer-to-Peer Systems, 2002.

Ralph Merkle. Secrecy, authentication, and public key systems. PhD thesis,
1979.

James W. Mickens and Brian D. Noble. Exploiting availability prediction
in distributed systems. In NSDI, Symp. on Networked Systems Design and
Implementation, 2006.

Ramses Morales and Indranil Gupta. AVMON: Optimal and scalable dis-
covery of consistent availability monitoring overlays for distributed systems.
In ICDCS: Int’l Conf. on Distributed Computing Systems, 2007.

Bogdan C. Popescu, Bruno Crispo, and Andrew S. Tanenbaum. Safe and
private data sharing with turtle: Friends team-up and beat the system. In
SPW, Security Protocols Work., 2004.

Jan Sacha, Jim Dowling, Raymond Cunningham, and René Meier. Discov-
ery of stable peers in a self-organising peer-to-peer gradient topology. In
DAIS, IFIP Int’l Conf. Distributed Applications and Interoperable Systems,
2006.

Kiran Tati and Geoffrey M. Voelker. On object maintenance in peer-to-peer
systems. In IPTPS, Int’l Work. on Peer-to-Peer Systems, 2006.

Jing Tian and Yafei Dai. Understanding the dynamic of peer-to-peer sys-
tems. In IPTPS, Int’l Work. on Peer-to-Peer Systems, 2007.

Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. CYCLON:
Inexpensive membership management for unstructured P2P overlays. J.
Network System Management., 13(2), 2005.

RR n°® 6594

http://www.ietf.org/rfc/rfc1058.txt

34 Le Fessant € Sengul € Kermarrec

Contents

10

11
11
13
16

19
20
21
22

27
27
28
28
29

29
0.1 Uses of Availability Information in P2P Networkd 29

0.2 Comparison with AVMON 30

[L0 Conclusiod 31

INRIA

/<

Centre de recherche INRIA Saclay — lle-de-France
Parc Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 Orsay Cedex (France)

Centre de recherche INRIA Bordeaux — Sud Ouest : Domainedsitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble — Rhéne-Alpes : 655, ele I'Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille — Nord Europe : Parc Scieq#i de la Haute Borne - 40, avenue Halley - 59650 Villeneuvect
Centre de recherche INRIA Nancy — Grand Est : LORIA, Techfegé Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les-dyaBedex
Centre de recherche INRIA Paris — Rocquencourt : Domaineotiee®au - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes — Bretagne Atlantique SARCampus universitaire de Beaulieu - 35042 Rennes Cedex
Centre de recherche INRIA Sophia Antipolis — Méditerran2604, route des Lucioles - BP 93 - 06902 Sophia Antipolis €ede

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 hesbay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

	Introduction
	Pacemaker in a nutshell
	Model
	Definitions
	Network Model
	Cryptographic Model

	Pacemaker in Detail
	Pulse dissemination protocol
	Inquiry Protocol
	Verification Protocol

	Evaluation Road-map
	Availability Monitoring with Pacemaker
	Simulating the Availability of Peers
	Overlay Network Setup
	Results on Accuracy

	Pacemaker against Selfish Peers
	Lazy Peers
	Opportunistic Peers
	Lying Peers

	Implementation
	Implementation Details
	Deployment Details
	Results
	Discussion

	Related Work
	Uses of Availability Information in P2P Networks
	Comparison with AVMON
	Colluding Peers

	Conclusion

