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Solution analytique pour la propagation d’ondes en milieu
stratifié hétérogéne acoustique/poroélastique. Partie II : en
dimension 3

Résumé : Nous nous intéressons a la modélisation de la propagation d’ondes dans les milieux
infinis bicouche acoustique/poroélastique. Nous considérons le modele bi-phasique de Biot
dans la couche poroélastique. La premiere partie est consacrée au calcul de la solution
analytique en dimension deux a l’aide de la technique de Cagniard-De Hoop. Dans cette
deuxieme partie nous considérons le cas de la dimension 3.

Mots-clés : Modele de Biot, ondes poroélastiques, ondes acoustiques, couplage acoustique/poroelastique,
solution analytique, technique de Cagniard de Hoop.
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Introduction

The computation of analytical solutions for wave propagation problems is of high importance
for the validation of numerical computational codes or for a better understanding of the
reflexion /transmission properties of the media. Cagniard-de Hoop method [ [6] is a useful
tool to obtain such solutions and permits to compute each type of waves (P wave, S wave, head
wave...) independently. Although it was originally dedicated to the solution of elastodynamic
wave propagation, it can be applied to any transient wave propagation problem in stratified
media. However, as far as we know, few works have been dedicated to the application of this
method to poroelastic medium. In [IZ] the analytical solution of poroelastic wave propagation
in an homogeneous 2D medium is provided and in [I[3] the authors compute the analytical
expression of the reflected wave at the interface between an acoustic and a poroelastic layer
in two dimension but they do not explicit the expression of the transmitted waves.

In order to validate computational codes of wave propagation in poroelastic media, we
have implemented the codes Gar6more 2D [I0] and Gar6more 3D [I1] which provide the com-
plete solution (reflected and transmitted waves) of the propagation of wave in stratified 2D
or 3D media composed of acoustic/acoustic, acoustic/elastic, acoustic/poroelastic or poroe-
lastic/poroelastic The 2D code and the 3D code are freely downloadable at

http://www.spice-rtn.org/library/software/Gar6more2D.
and

http://www.spice-rtn.org/library/software/Gar6more3D.
In previous studies [8, 0] we have presented the 2D acoustic/poroelastic and poroelastic/poroelastic
cases and we focus here on the 3D acoustic/poroelastic case,the 3D poroelastic/poroelastic
case will be the object of forthcoming papers. We first present the model problem we want
to solve and derive the Green problem from it (section 1). Then we present the analytical
solution of wave propagation in a stratified 3D medium composed of an acoustic and a poroe-
lastic layer (section 2) and we detail the computation of the solution (section 3). Finally we
illustrate our results through numerical applications (section 4).

1 The model problem

We consider an infinite three dimensional medium (2 = R?) composed of an homogeneous
acoustic layer QT = R3x] — 00, 0] and an homogeneous poroelastic layer Q= = R? x [0, 400
separated by an horizontal interface I' (see Fig. [l). We first describe the equations in the
two layers (§LI1and §L2 ) and the transmission conditions on the interface I' (§L3), then we
present the Green problem from which we compute the analytical solution (§LI).

RR n°® 6595
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Acoustic Layer

Q+

Poroelastic Layer

Figure 1: Configuration of the study

1.1 The equation of acoustics

In the acoustic layer we consider the second order formulation of the wave equation with a
point source in space, a regular source function f in time and zero initial conditions:

Pt — VAPt =6,6,6. 5, f(1), in QFx]0,T),

3} 1
U =-—vprt, in Q*x]0,T],

P _ (1)
P*(z,y,0) =0,P"(z,y,0) =0, in Q"

U™ (2,9,0)=0,U"(z,9,0) =0, inQ*
where

e PT is the pressure;
e U™ is the displacement field;
e VT is the celerity of the wave;

e pt is the density of the fluid.

INRIA
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1.2 Biot’s model

In the second layer we consider the second order formulation of the poroelastic equations [T,

2 3

p U +p; W —V.37 =0, in Q~x]0, 77,
. . 1 . -
p;U8+p;W +FW + VP =0, inQ*x]O,T],

ST =ANV.-U; Is+2u eU;)— B P I, inQ x]0,T]

1
FP_—Fﬂ_VUS_—FVW_:O, inQ_X]O,T],
U, (2,0) =0, W~ (z,0) =0, in Q°,
U, (2,0)=0, W (z,0) =0, in Q-
with
3 —
)3y
(V-37); = Z W] Vi=1,3, Is is the usual identity matrix of M3(IR),
j=1 "

and (U} ) is the solid strain tensor defined by:

1o ou;
“all) =5 <axj * axi> '

In @), the unknowns are:

U, the displacement field of solid particles;

W~ = qS‘(U]T — U3 ), the relative displacement, U 7 being the displacement field of
fluid particle and ¢~ the porosity;

e P~ the fluid pressure;

3.7, the solid stress tensor.
The parameters describing the physical properties of the medium are given by:

o p =9 py + (1 — ¢ )p; is the overall density of the saturated medium, with p; the
density of the solid and Py the density of the fluid;

® Py =0 p; /&~ , where a~ the tortuosity of the solid matrix;

RR n°® 6595
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e = =k~ /n, k™ is the permeability of the solid matrix and 7 is the viscosity of the fluid;

e m~ and (3~ are positive physical coefficients: 7 =1— K, /K
-1
and m~ = [(b*/Kf_ + (B~ —¢7)/K;| , where K is the bulk modulus of the solid,

Kf_ is the bulk modulus of the fluid and K, is the frame bulk modulus;

e u~ is the frame shear modulus, and A~ = K7 — 2u~ /3 is the Lamé constant.

1.3 Transmission conditions

Let m be the unitary normal vector of I' outwardly directed to. The transmission conditions
on the interface between the acoustic and porous medium are [3] :

W .n=(U"-Uj;)-n,
P~ =Pt 3)

>~ n=—Phtn.

1.4 The Green problem

We won’t compute directly the solution to ([IH2H3) but the solution to the following Green
problem:

]5+ — V+2Ap+ — 51‘ 5y 5,27]1 5t7 in Q+X]O7T]7 (43)
.. 1 ]

Wt = _p_+vP+7 in Q% x]0, 7], (4b)
g +ppi —Vom =0, inQx]0,T], (52)

e — — e 1 79 - i a
pf us +pww +Fw +vp :07 an X]07T]’ (5b)
o =N Veu, Is+2u e(uy ) — " p Is, in Q7 x]0,T], (5¢)

1

—p +7Voug +VewT =0, inQ7x])0,T], (5d)
w_‘n:(u-f—_us_).n’ on F, (6&)
pi e p+’ on F, (6b)
con=-phn, on I'. (6)

The solution to ([[H2H3) is then computed from the solution of the Green Problem thanks to
a convolution by the source function. For instance we have :

PHa,yt) = pt(@,9,.) % () = / p* () f(t — 7) dr
0

INRIA
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(we have similar relations for the other unknowns). We also suppose that the poroelastic
medium is non dissipative, i.e the viscosity n~ = 0. Using the equations (bd Bd) we can
eliminate o~ and p~ in (B) and we obtain the the equivalent system:

p iy +ppw —a” V(Veug)+p” Vx (VXug)—m fV(V-w™) =0, 2<0
(7)
Pyl +ppw —m= BT V(Vug)—m” V(V-w™) =0, z2<0
with a™ = A7 +2u~ + m’ﬁ’2.

And using the equation D)) the transmission conditions (@) on z = 0 are rewritten as:

iy, 4w, = —p% T, (8a)
—-m B V-u;, —m V-w =pt, (8b)
D2Uigy + Opug, = 0, (8¢)
Dy, + Oyu;, = 0, (84)
(A" +m BV ug +2u70uy, +m=f7V w = —pt. (8¢)

We split the displacement fields u, and Uy into irrotationnal and isovolumic fields (P-wave
and S-wave):
u, =VO, +Vx¥, ; w =VO,+VxW¥,. 9)

The vectors ¥,, and W¥,, are not uniquely defined since:
Vx (P, +VC)=Vx ¥, VI {uw}
for all scalar field C'. To define a unique ¥, we impose the gauge condition:
V- ¥,=0

The vectorial space of \Ilzt verifying this last condition is written as:

ay agz
W= | =0z | ¥p1+ o2, Wy o,
0 —02, — 0y,

where Wy 1 and Wy o are two scalar fields. The displacement fields u; and w™ are written in
the form:

02, 9y
02, — 02, 0
(10)
02, 9y
RR n° 6595 w™ =VO; + 02, L =0, | AV, ,

-02, — 0y, 0
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We can then rewrite system () in the following form:

A= O —B " A® =0, 2<0
by~ Vi PAT,, =0, 2<0
. L, 11
b, - VetAl,, =0, z<0 (11)
. Pr . _
b, =-L¥, 2 <0
Pw
where ©~ = (0,,0,))!, A~ and B~ are 2 x 2 symmetric matrices:
PPy AT +2uT +mT(B7) me BT
AT = - ; BT = ,
Py Puw m- 3" m-

and

is the S-wave velocity.

We multiply the first equation of the system ([[Il) by the inverse of A. The matrix A~!B
is diagonalizable: A~'B = PDP~! where P is the change-of-coordinate matrix, D =
diag(Vp. f2, VP_SQ) is the diagonal matrix similar to A~'B, Vp. 7 and Vp_ are respectively the
fast P-wave velocity and the slow P-wave velocity (Vps < Vpy).

Using the change of variables
O = (0, 0p,) =P 'O, (12)

we obtain the uncoupled system on fast P-waves, slow P-waves and S-waves:

= — DAP =0, 2<0
o 72 _ .
-
v, =L 2<0
Pw
Using the transmission conditions (Bd)-(@dl), we obtain:
2020, + 0,(0%, — AU, — 8§ZA\D;2 =0, onT, (14a)
2852'@1: + ay(azz o Al)\y;l + aizA\II;,Q =0, on F, (14b)

with A| =92, + 8§y. Applying the derivative d, to the equation ([Zal), d, to the equation
([[L)) and subtracting the first obtained equation from the second one, we get:

(0:A1)AV, 5 =0, on T, (15)

INRIA
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moreover, using that ¥ -, satisfies the wave equation:
o 72 _
\Ilu,2 - VS A\IIu,Q =0, 2<0

and that u; and w~ satisfy, at t =0, u; =u, = w~ =w = 0, we obtain:

and from (@) we deduce the transmission condition equivalent to (Bd) and(Bd):
2070, + (02, —A1)¥,, =0, onT. (16)

Finally, we obtain the Green problem equivalent to (EHH):

=V Apt = 6,68,0. 1,6, 2>0
b~V PAd; =0, i€ {Pf Ps5 z<0 (17)
B(p™, ®pp, Op,, Pg) =0, z2=0

where we have set ®¢ = ¥, in order to have similar notations for the Pf, Ps and S waves.
The operator B represents the transmission conditions on I':

1 Py -
p—+5z (P11 + Par) 92y (Pia +Pa2) 8%, (L —1)3A, p*
pt ’
_ —(3- —(3— Fig
5 (I)]_Df _ ;. m (3 77_112-1- 7721)6% m” (8 Pi22+ PQZ)@% 0 Py
(I)Ps VPf VPs B
‘I)E 2 q)Ps
0 2P11 0, 2P12 0, 0z, — AL
_ o
L1 B Bas —2pu~0;A -

where P;;, i,j = 1,2 are the components of the change-of-coordinates matrix P, Bj2 and By
are given by:

)\_ A2 A
By — Xm0 ;Pgﬁm 0P g 4o pyyo2.,
pf
A +m g Hp -3~P
843:( +m~ 0 ‘1122+m B~ Pag 0,52254-2/;*7712032.
Ps

To obtain this operator we have used the transmission conditions (BaRDIIARE), the change
of variables (@) and the uncoupled system (I3).

Moreover, we can determine the solid displacement w, by using the change of variables
@) and the fluid displacement u* by using (@L).

RR n°® 6595
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2 Expression of the analytical solution

Since the problem is invariant by a rotation around the z-axis, we will only consider the case
y =0 and z > 0, so that the y-component of all the displacements are zero. The solution for
y # 0 or x <0 is deduced from the solution for y = 0 by the relations

p(x,y,2,t) = p(v/ 22 + 42,0, 2,1) (18)
_ € 2 2

usl‘(w7 y7 Z’ t) - \/mus£( w —"_y 707 Z7 t) (19)
_ Y 2 2

Usy(x7y7z7t) - \/musx( € +y 70727t) (20)

usz(:v,y, Z,t) = usz( z? + yzaoa Z,t) (21)

To state our results, we need the following notations and definitions:

1. Definition of the complex square root. For ¢, € C\IR™, we use the following

definition of the square root ¢g(¢;) = qglc/Q:

9(¢:)*> = ¢z and  Re[g(g.)] > 0.

The branch cut of g(g,) in the complex plane will thus be the half-line defined by
{q: € R™} (see Fig.B). In the following, we’ll use the abuse of notation g(gq,) = iv/—q.
for ¢, € IR™.

%m(qgc)A

AR R
—W\\ J Re(gs)

Figure 2: Definition of the function z — (z)/?

2. Definition of the fictitious velocities For a given ¢ € IR, we define the fictitious
velocities VT (q) and V, (¢) for i € {Pf, Ps, S} by

1 1
VE=VH () =Vt | ————and V; =V, (¢) =V, | ————.
@ 14 V+3¢? @ 1+ Vg

INRIA
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These fictitious velocities will be helpful to turn the 3D-problem into the sum of 2D-
problems indexed by the variable ¢. Note that V*(0) and V; (0) correspond to the real

velocities VT and V™.

we define the functions

+ + 1 2 2 12 1 2
K=K (4, = +q, + = + q
o) = (G 48+ ) V)

1/2
K =k, (g q)z(—1 +q2+q2> :<
T 7 Y V,2 T Yy

1

1/2

and

1/2
2, TG :
Vi (ay)

Definition of the reflection and transmission coefficients. For a given (g, q,) €

Definition of the functions ' and «; . For i € {Pf, Ps,S} and (g5, qy) € C x R,

C x R, we denote by R(qz,qy), Tpf(dz,qy), TrPs(qs,qy) and Ts(qe,qy) the solution of

the linear system

_ _ roo+ .
R4z qy) K (4 @)
p+
A( ) TPf(Qam Qy) 1 1 (22)
qz, qy = - )
TPS(qiL‘7 Qy) 2Rt (Qm; qy)v+2 0
i TS(QJ:a Qy) 1

where the matrix A(qz,qy) is defined by:

p
—f) (62 +a))
0

kg (G qy) + @+ @5

20~ (47 + q3)k5 (4er qy) |

A(qxa Qy) =
[ 5t (geg _ - !
—% (P11 + 7721)pr(%, ay) (Pi2 + Po2)kpy(qas qy) (1 - =
m- _ B _
1 — (87 P11+ Pa1) — (87 P12 + Pa2)
Pf Ps 5
0 2P11“]3f(¢]:m Qy) 27312’{]7—"5(@73:, Qy) s
L 1 -/44,2(@7:13,%) -/44,3(%:,%)
with
(A‘ + m_ﬁ_2> Put+m B Pu
A4,2(Qma Qy) = ) +2p Kpy (e C]y)Pll,
Vi
()\7 + m’ﬁ’2> P1o +m™ 3 Poo o,
A43(qz,qy) = + 21" Kpy (qr, ay)Pr2-

_2
VPS

We also denote by Vihax the greatest velocity in the two media: V. = max(V*, Vp. I Vpgs VS_).

We can now present the expression of the solution to the Green Problem :

RR n°® 6595
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Theorem 2.1. The pressure and the displacement in the top medium are given by

dg;re f

t
vzt —

er(x,O,Z,t) :p+

incl (7, 2,t) and ut (2,0, 2,t) = ul

mc(:v, Z,7T) dT—|—u;f€f(x, y,T)dT,

and the displacement in the bottom medium is given by
ug (2,0,2,t) = upp(z,2,1) + upy(z,2,t) + ug(z, 2,t)
where

o pgnc and u;nc are respectively the pressure and the displacement of the incident wave
and satisfy :

5(t —to)
+ —
xtH(t — to)
U, r,z,t) = ——= ,
ZTLC,JJ( ) 47TV+27°3[)+
(2 — W)EH (¢ — to)
Uine (@2, t) = AnV+2p3pF

where § and H respectively denote the usual Dirac and Heaviside distributions. More-
over we set v = (x> + (2 —h)?)/? and to = r/V+ denotes the time arrival of the incident
wave at point (x,0, z).

o f;fe f and u;fe are respectively the primitive of the pressure with respect to the time and

the displacement of the reflected wave and satisfy :

. 0 Sm k" (v(t, ) R(u(,q))]

67’6 (.%',Z,t) = _/0 _WQT\/W dq,

. 00 Sm|iv(t, q)r" (u(t, )R (v(t,0))|

urefw(x’zvt) = _/0 m2rpt /@ + 2 (1) .
1 Sm_m+2 v(t,q))R(v(t,

g - [ 0 Sm w2 (Wt ) R(v(E q))] "

ref,z 0 7T2Tp+\/m

INRIA
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V+
Vmax ’

x
ifth1<t§t0 (md;>

dq

+ —
57’6 m,z,t) -

i /qm Sm[it(v(t, ) R(W(E0))|
we @ =g
w(®) e[+ (1(t.0)R((1,0))|
_|_/ dg,
0 T/ g () — 42
/qlm Im(iv(t )" (0t DRt 0))]
a0 () mrpt/g* = g5 (t) !

/qo(t) Re [iv(t, Q)" (v(t, @) R(Y(t, C]))}
0

+ - _
uref,x(x’ z,t) =

! RO
. ) n0) Sm[x ot )REED)]
ufeﬁy(x’ »t) = /qo(t) m2rpty/q® — g5 (t) !
wlo) Re |1 (y(H)R((1))|
+ dq,
\ /o wrpt/gg(t) — o
ifto<t<ty and§> ‘ZX
() Re| 5" (4(t,0)R(y(t, )|
+ _ L
gref(x’ 2, t) - /O 7T27” q%(t) — q2 dq,
c o o R[eort 0e)ROEY)]
Upofa (T 24:t) = /0 2ot/ — ¢
/qo@ Re |12 (1RO (D))|
0

+ _
uTeﬁy(wazat) -

dg,
w2rpt\/ad(t) — ¢°

V+

\

+

T T
ifth2<t(md;> 0rz'ft0<tand;§ and

max max

§ref(x,y,t) =0 and w, fx,y,t) =0 else .

We set here r = (22 +(2+h)?)/? and to = r/V+ denotes the arrival time of the reflected
volume wave at point (x,0, z),

1 1 n ||
V+2 Vn%ax Vmax

thy = (z+h) (23)

denotes the arrival time of the reflected head-wave at point (x,0,z) and

T 1 1
thy = = — 24
"2 c+n\[veZ V2, (24)

RR n°® 6595
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denotes the time after which there is no longer head wave at point (x,0, z), (contrary to
the 2D case, this time does not coincide with the arrival time of the volume wave). We
also define the functions v, v, qo and q1 by

xt  z+h [t? 1
’}/.{tER|t>t0}XR#—)C.—’}/(t,qy)—lr—Q—FT T_Q_VT(qy)

(z+h 1 12 T
c 4t t t<t =w(t = - - S RLE)
vi{t € R|ty, <t <tp}xIR+— C:=v(t,qy) 1< . V¥2(q,) ROR >’
. . t2 —1
QQ.RHR.:(]Q(t): ﬁ_VJFQ

and

max max

2
1 1 1 1
¢1:IR— IR:=q(t) = E<t—(2+h) V+2_V2 ) Y2

Remark 2.1. For the practical computation of the pressure, we won’t have to explicitly
compute the derivative of the function éief (which would be rather tedious), since

+ — gt _ et !
pTef* [= atgmf* [ = gref* I
Therefore, we’ll only have to compute the derivative of the source function f.

u;f(x, z,t) is the displacement of the transmitted Pf wave and satisfies:

pgulennt) = =2 [ e [jott. ) Tos (0t 0) G 00| da
B Py [0 B v
upg (o snt) = 2 [ Re [ (000, 0) Ty (0(8.0) 7 (0) | da
) 1
if thy <t <ty and |Sm[y(ty,0)]] < T
- Pu [PO T oy
t) = — — t,q)7; t —(t d
g (2,1 [ e [t T ) G t0) | da
P [ e vt T Gy .0
- 9 € |1vll, q vt,q)) 57,4 q,
™ Jow L Y ot
B P qo(t) [ )
wpplot) = 28 [T Re i 0000 s ) G 00|

P q1(t) [ P
b B[ e [ ) Tos o) G 0.0
q L

T 0 (t) t

INRIA
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1

Zf to <t < thQ and |%’I’I’I, [W(to,o)” < ’
Vinax

- 90(® . oy
upﬁm(x,Z,t) = ——2/0 Re [17(t,q)’]'pf(’y(t,q))g(t,q)] dg,

qo(t)
ool nt) = 28 [T e i 000 o 0.0 5 0,0

1

1
if thy, < t and |Sm[vy(to,0)]| < orif to <t and |Sm[y(to,0)]| >
Vmax Vmax
and wp,(z,z,t) =0 else.

to denotes here the arrival time of the Pf volume wave at point (x,0,z) (we recall in
appendiz the computation of ty),

/ 1 |z
2
Vr121ax Vr121ax - VmaX ( 5)

denotes the arrival time of the Pf head wave at point (z,0, z),

h? + 22 — hz (i—i—ki—;) + x?
thy = h P (26)

c1 co

denotes the time after which there is no longer head wave at point (x,0, z), where

=4 / —— and ¢y =
Vn21ax V]% f V1121ax

The function qo : [to; +o0] — IR" is the reciprocal function of to : IRT ws: [tg, +0o0],
where to(q) is the arrival time at point (z,0,z) of the fictitious Pf volume wave, prop-
agating at a velocity VT (q) in the top layer and at velocity V;f(q) in the bottom layer

(we recall in appendiz the computation of to(q)).

The function q : [t1; to] — IRT is defined by

W= | = [t+2 [
a\t) = |3 z .
x2 VPf max Vr121ax max

The function v : {(t,q) € IRT x IR" |t > to(q)} — C is implicitly defined as the only
root of the function

. 1/2 . 1/2
f(’y,q,t):—z< +72> +h<7+72> + iz —t
Vi (a) V+2(q)

whose real part is positive.
The function v : E1 U Ey — C is tmplicitly defined as the only root of the function

1 1/2 ) 1/2
f(v,q,t)=—2< +v2> +h<—+v2> +ive —t
Vo, (@) V()

RR n°® 6595
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such that Im [Oyu(t, q)] < 0, with
Ey={(t,q) € R" x IR" [t, <t <to and 0 < q < qo(t)}

and
By ={(t,q) € R" x IR" [tg <t <tp, and qo(t) < q < qi(t)}.

e up (x,2,t) is the displacement of the transmitted Ps wave and satisfies:

_ P a(?) . dv
panlozit) = =22 [ et ) T w000 5 00| dn

_ P @ (t) _ dv
pas(o2:0) = 25 [ e i 000). 0T (00,00 G 1.0 o
. 1
Zf thl <t S 750 and |%’I’I’L [W(to,o)” < V. )
( _
B P qo(t) . p)
wpoatet) = = 22 [T [T G e da
’ T 0 L t
P (00 T d
- 22 e w(t,q)fpsw(t,q))—“(t,q)} dq
T qo(t) L dt
B P qo(t) [ d
uPS’z(x,Z,t) = %/0 Re ﬂps(’y(t,q))TpS(’y(t,q))d—Z(t,q)] dq

Pip (20 T _ d
£ 22 [0 e [0l ) T 00,00 G 1) |
q L

T2

o(t)
1
if to <t <tp, and [Sm[y(ty,0)]| < T
_ P [P T d
ups7w(m,2,t) = ——122/ Re [Vy(t,q)Tps(’y(t,q))d—fy(t,q)] dg,
T 0 t
B Py [0 B dy
uPS’z(m,Z,t) = ?/0 e [RPS(V(t,q))’]'ps(fy(t,q))a(t,q)} dq,

1

if thy < t and |Sm[vy(to,0)]| < orif to <t and |Sm[y(to,0)]| >

max Vmax
and up (x,2,t) = 0 else. to denotes here the arrival time of the Ps volume wave at

point (x,0, z),
[1 1 1 1 |z]
thy, = hy|———= —2 — + 27
' V+2 Vr121ax V]_—T 52 Vn%ax Vmax ( )

denotes the arrival time of the Ps head wave at point (x,0,z) and

h2+ 22 — hz (E—i—l—i—;) + a2
thg - h P (28)
a1 o

INRIA
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denotes the time after which there is no longer head wave at point (x,0, z), where

=4 / and ¢y =
2 2 2
Vmax VPS Vmax

The function qo : [to; +o0] — IR" is the reciprocal function of to : IRT w: [tg, +00],
where to(q) is the arrival time at point (x,0,z) of the fictitious Ps volume wave, prop-
agating at a velocity VT (q) in the top layer and at velocity Vp(q) in the bottom layer.

The function q1 : [t1; to] — IRT is defined by

QI (t) - x2 <t + : VPT 2 max \ V1121ax> max ‘

The function v : {(t,q) € IRT x IR |t > to(q)} — C is implicitly defined as the only
root of the function

) 1/2 . 12
Vi, (0) v+ (g)

whose real part is positive.
The function v : By U Ey — C is implicitly defined as the only root of the function

1 1/2 1 1/2
f(v,q,t)=—2< +v2> +h< +v2> +ivx —t
V5.2 () V+3(q)

such that Im [Oyv(t, q)] < 0, with

Elz{(t,q)EIRerﬂ%ﬂthl <t <ty and0<q<q0(t)}

and
By ={(t,q) € R" x IR" [tg <t <tp, and qo(t) < q < qi(t)}.

o U T,z 18 e aispiLacement o e transmaitte wave ana satisjies.
(@, 2,1) is the displ t of the t itted S d satisfi

1 [a®

- . _ dv
walez) == [ Re fivlt s (00 Te(olt.0) 5 0. 0)| dn
- 1 [a® 9 9 dv
i oty = 5 [ Re [0+ AT ) 0| da
’ s 0 t
. 1
Zf thl <t <ty and |%’I’I’L [W(to,o)” < v )

RR n°® 6595
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q0(?)
ug ,(2,2,t) = — %/O Re _iv(t,q)ﬁs(v(uq))?&(v(t,q))%(t,q)] dq,
a1 (1) r v
o [ Re it s () T ) )| da

qo(t) r
want) = [1 RGP+ AT0) )| da

a1(t) r v
+ %/q Re _(v2(t,q)+q2)7§(v(t,q))ccll—t(t,q)} dq,

\ T o(t)
1
if to <t <tp, and |Im[y(ty,0)]] < T
B 1 () ) B dvy
wia(ez) === [ Re s G 0) TG ) G 00| da
_ 1 [o® 9 9 dry
wont) = [ Re| G200 + AT ) 00| da

if thy, <t and [Sm[y(to,0)]| < and

1
or if to <t and |Sm[y(tp,0)] >

max Vmax
up (r,2,t) = 0 else. tg denotes here the arrival time of the S volume wave at point

(x,0,2) (we recall in appendiz the computation of ty),

/ 1 |z
2
V1121ax VanaX + Vmax ( 9)

denotes the arrival time of the S head-wave at point (x,0,z) and

h2+22—hz(§—i—|—2—;)—|—x2
thy = R (30)

C1 Cc2

denotes the time after which there is no longer head wave at point (x,0, z), where

\/ vn%ax and 2 = \/ vn%ax

The function qo : [to; +oo] — IR is the reciprocal function of to : IRT w: [tg, +00],
where to(q) is the arrival time at point (x,0,z) of the fictitious S volume wave, propa-
gating at a velocity V*(q) in the top layer and at velocity Vg (q) in the bottom layer (we
recall in appendiz the computation of to(q)).

The function q : [t1; to] — IRT is defined by

q(t) = <t+z1/ V2 1/ -3 ) :

INRIA
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The function v : {(t,q) € IRT x IR |t > to(q)} — C is implicitly defined as the only
root of the function

. 1/2
f(’y,q,t):—z <V2(q) _{_,)/2> +h<
S

1/2
3 —|—72>/ +iyxr —1
Vi(q)

whose real part is positive.
The function v : By U Ey — C is implicitly defined as the only root of the function

1 1/2 . 1/2
f(v,q,t):—z< +v2> +h< +v2> + vz —t
V2 (q) V+3(q)

such that Im [0yv(t, q)] < 0, with

Ey={(t,q) € R" x IR" [t, <t <to and 0 < q < qo(t)}

and
By ={(t,q) € R" x IR" [tg <t <tp, and qo(t) < q < qi(t)}.

3 Proof of the theorem

To prove the theorem, we use the Cagniard-de Hoop method (see [, @, 6l 5 [I4]), which
consists of three steps:

1. We apply a Laplace transform in time,

“+o00
iy, 2 5) = / w(w,y, =t e d,
0

and a Fourier transform in the x and y variables,
+oo +oo .
ik kyzs) = [ [ s d ) dody
—0o0 — 0o

to ([7) in order to obtain an ordinary differential system whose solution G (ks ky, z,s)
can be explicitly computed (§ BI);

2. we apply an inverse Fourier transform in the x and y variables to G (we recall that we
only need the solution at y = 0:

- 1 too  ptoo .
G(z,0,2,5) = H/ / G(ky,ky,2,s) e ke gl dky.

And, using tools of complex analysis, we turn the inverse Fourier transform in the x
variable into the Laplace transform of some function H(z, ky, z,t) (§ B2):

1 +o00 +oo
G(x,0,2,8) = m/ ; H(x, ky, z,t) e " dt dky; (31)

RR n® 6595
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3. the last step of the method consists in inverting the order of integration in (BII) to obtain

N 1 +oo +q(t)
g(x,O,z,s):4—7T2/0 / o H(z, ky, z,t) dk, | e " dt.
—q

Then, using the injectivity of the Laplace transform, we identify G(z,0, z,t) to
1 +q(t)

H (t) H(m,ky,z,t) d]{?y
—q

(see § B).

3.1 The solution in the Laplace-Fourier plane

Let us first apply a Laplace transform in time and a Fourier transform in the x and y variables
to () to obtain

( 82 2 2\ A+ 62ﬁ+ 5(Z _h)
<V+2+k:”+ky>p T 922 Ty v=0
52 . OP; , 32
(ngw;)@ 5 =0 ie{Pf Ps, S} y<0, (32)
B( Pf7(i) (i) ) 0 Yy = 05

where B is the Laplace-Fourier transform of the operator B.

From the two first equations of ([BZ), we deduce that the solution (p*, (@;)ie{ Pf,Ps,S}) 18
such that

St

p 1nc +pref’
A 1 —s|z—h|kT —x,k—” _ szt Fx ]Ly
p+ = e ( s )’pref R(kx,ky,s) ( s’ s >’

inc sVH+2kt (Z—x, %) (33)

ko

o = Ti(kz,ky,s)e‘s(z“f(%)), i€ {Pf,Ps,5},

where the coefficients R and T; are computed by using the last equation of (B2):

Bt ¢ ®pp P D) = =B, 0,0,0),

Pref: inc’

or, from( B3):

B [R(k$7 ky7 S)7Tpf(kl‘7 ky7 S)7Tps(k$7 kya S)aTS(k$7 kya 8)] = _B 6—707 070

INRIA
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After some calculations that we don’t detail here, we obtain that R(k.,ky,s), Tp¢(ks, ky,s),

Tps(ke,ky,s), and Ts(ky, ky,s)) are solution to

_ - i ke k )
Rlks, by 9 W (5 %)
2T L.k 7sh/i+(k— ky p+
A<ﬁ @> A I 1
508 )| 2Ty (ke by, s) 25kt (2, B2 ) V42 .
i $3Ts(ky, ky, ) 1

From the definition of the reflection and transmission coeflicients we deduce that

_ ke Ky} o]
R(ky, Ky, 5) R( < 5)

2 ks k‘_y)
s°Tp¢(ky, ky, s) 1 Tpy ( s s ()
SQTPS(k:Baky?S) 5 TPS <k‘?x’k?y>
53T5(k‘x,kzy,s) T (k_x k_y>

- L s’ s |
Finally, we obtain:
A+ ot ~t+
P = DPipe T Pref
dl L gA)LY e (s
inc VA2t (k?_ac lc_y) ref T g s’ s
s s
- 1 k. k _ ko Fy\ _pt (ke Fu
q>;=—37i<_x _y>e (o () ot (2)) e oy, Py,
S s’ s
. _ ke Ry _ bz ky
b5 = 475 (B 1) s (1) (3229
S s’ s
and N N N
P N
Un = Ui T U
+ kz ky
k r <?=?>
ct s R gy St _ At
Yinee — p+82pinc’ Yinc, = sign(h —z) pts Pine
+ (k_z k_y)
0t . = krﬁ+ A+ 3’sﬁ+
ref.x pts2tref”  Trefz pts ref’
. A . - . _(k _
Ug, = =ik Pr1®Pps — 1k P1o®p, — iskyryg f) Py
o _ (ks k A _ k - _
L usz = S’V”'Pf (fa f) PII(I)Pf + SKPS <?1‘, §y> P12q)PS + (ki + k;)q)s

In the following we only detail the computation of i, p,

tation of the other terms is very similar.

RR n°® 6595
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3.2 The Laplace transform of the solution

We apply an inverse Fourier transform in the x and y variable to 4 _ and we set k; = ¢.s

and k, = gys to obtain (we recall that we consider y = 0)

+oo  ptoo s _ .
(1’ 0 Z, 3 / / lql‘P12 (q$7qy) s(fznps(Qquy)‘i’hl’vJﬁ((Izvqy))‘i’l(sz) dqx de

PIQ /Jroo /Jroo _
=——= = dg; d
47T2 . . (qg:a Qy) Q:v an

E(qa Qy) =1qe Tps(qu, qy)eis(72%};5(qm’qy)Jrh'WL (42,ay))+i42) .

sx,Ps

usx,Ps

with

Let us now focus on the integral over ¢, for a fixed g,

+00 +o00 _ n )
/ E(QJI7 Qy) dQJ: - / iqgcTPs(QJza Qy)eis(izHPs(q%‘Iy)Jrhli (ga,qy))+i qz:v) dqx (38)

—00 —00

This integral is very similar to the one we have obtained in 2D [§], therefore, using the same
method, we have:

1
o if |y(qy.t0)| > ——
‘ ( Yy 0)‘ Vmax(qy)
+OO’_‘ -‘rOO 8 ,t B
/ :(Qm,Qy)deZZ/{{( )?Re( Y(qy, t)Trs(qy, v (%J))%)e t
oo o0y
. ~ 1
o if |7(ant0(Qy))| < m
max\Qy
+oo 50(%) 8’1) ,t
[ e = 2] e (1000000071 a0 0) 0 ) i
o h(Qy

oo Ov(qy, t)\ _s
2 [ e (100 0Tl 00 22 )
t

to (ay)

where Viax 18 greatest fictitious velocity defined by:

1
Vmax = Vmax - Vmax T <, 92 o)
@ |/ 1+ Vinaxq?

to is the fictitious arrival time of the Ps volume wave we have defined in the theorem, fh(qy)
the fictitious arrival time of the Ps head wave defined by

fh = fh(q):h ; 5 1 — 12 . 1 + ‘.%" )
V(q) Vmax( ) Vps (q) Vmax( ) Vimax(q)

- 1
Let us recall [7] that the condition |y(gy,t0(gy))| < Von(a)) is equivalent to
max\dy
”Y(O,to)’ < A and ’(Jy‘ < Gmax;
max

INRIA
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with

r2 1
_ .
Vmax

Gmax =

h z

T 1 T 1
V"’2 Vmax?2 v 2 Vmax?
Ps

Moreover, t, is bijective from [0; ¢max] t0 [to; t4(gmax)] and we denote its inverse by g

W)=y 32 (t“\/ v \/ vm> -

Let us also recall that for ¢, = gmax, the arrival times of the fictitious head and volume waves
are the same: ;,(¢max) = t0(qmax)- As an illustration, we represent the functions ¢y (the red
dotted line) and #;, (the blue solid line) in Fig. Bl

O(QInax) - Eh (%nax) - th,g

1
|
|
|
|
1
|
|
|
tO .............. :
I
|
|
|
|
|
|
I
|
|

Jmax Ay

Figure 3: Functions to (red, dotted line) and #;, (blue, solid line)

We then deduce that

o if [7(0.t0)] > 3

— Feo 87(%;’75) e
/IR E(qe qy) dgzday —2/IR/£ 3‘%6( Yy, t)Tps(qy. Y (qy,t))T> e *" dtdqy;

o(ay)

o if [7(0,t0) < o

_ +@max tO ay) ov Qy, t S
/ :(Qxa Qy) d%ﬁde = / / < Qy7 )TPS(Qy7 (an t)) ( Y )> e dtde
R* i ot

gmax (ay)

0 ,t s
+ / / < Qy7 )TPs(an 'Y(an t)) 77(;;/ )> e st dtdg,
RR n° 6595 fo(ay)
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3.3 Inversion of the integrals

The key point of the method is the inversion of the integral with respect to g, with the integral
with respect to t. For the volume wave we have (see Figs. @l and ), after having remark that

the integrand is even with respect to g,:

e (g t)\ .
/ / ( Qy> )TPS(Q?J7 (Q@,ﬂ)%) e tdtdqy
tO(Qy

-2 N / M s O 2 000D T2 ) e

and for the head wave (see Figs. B and [0):
/+qmax tO (Qy
qmaX

tn(qy)

( va )TPs(qZﬂ (Qy7t)) ot

L}(qy’ t)> e st dtdg
y

to qh(t an ,
/t / %e< v(gy, ) Tps(gqy, v(gy,t)) (gé’ )>63tdedt
h1

thy qh(t ov(qy,t
+ 2/ / < va )TPs(qZh (%}70)%) eist dq@ldt'
qo(t)

lo

>

dy
Figure 4: Integration first over g, then over
t for the volume wave

Z?fz(qy)

| .

Gmax ,Qy
Figure 6: Integration first over g, then over
t for the head wave

Al

tO q0 (t)

>

dy
Figure 5: Integration first over ¢ then over g,
for the volume wave

AL )
t()((hnax) — th((bnax) - thg

T
th,
>
dy

Figure 7: Integration first over ¢ then over g,
for the head wave
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We thus have:
+oo
ﬁgx Ps(x707z73) = / ugx Ps(x70727t)e_8t dt
b O 5

and we conclude by using the injectivity of the Laplace transform.

4 Numerical illustration

To illustrate our results, we have computed the green function and the analytical solution to
the following problem: we consider an acoustic layer with a density p™ = 1020 kg/m? and a
celerity V™ = 1500 m/s on top of a poroelastic layer whose characteristic coefficients are:

e the solid density p; = 2500 kg/m?;
e the fluid density py = 1020 kg/m3;

the porosity ¢~ = 0.4;

the tortuosity a= = 2;

the solid bulk modulus K; = 16.0554 GPa;

the fluid bulk modulus Kjf = 2.295 GPa,;

e the frame bulk modulus K,” = 10 GPa;
e the frame shear modulus u~ = 9.63342 GPa;

so that the celerity of the waves in the poroelastic medium are:

o for the fast P wave, Vp, = 3677 m/s

e for the slow P wave, Vj, = 1060 m/s

e for the ) wave, Vg = 2378 m/s.

The source is located in the acoustic layer, at 500 m from the interface. It is a point source
in space and a fifth derivative of a Gaussian of dominant frequency fo = 15 Hz:
T
flt) =225

LU L AR R s GO

We compute the solution at two receivers, the first one is in the acoustic layer, at 533 m from
the interface; the first one is in the poroelastic layer, at 533 m from the interface; both are
located on a vertical line at 400 m from the source (see Fig. B). To compute the integrals
over ¢ and the convolution with the source function, we used a classical mid-point quadrature
formula.

2

We represent the z component of the green function associated to the displacement from
t =0tot=1.2s on Fig @ and the displacement in Fig. [ The left picture represents
the solution at receiver 1 while the right picture represents the solution at receiver 2. As all
the types of waves are computed independently, it is easy to distinguish all of them, as it is
indicated in the figures. solution.
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Receiver 1
Source 1
400
Ot - 533 m
500 m
Q- 533 m
[ ]
Receiver 2

Figure 8: Configuration of the experiment

-17 -18

ar Reflected

Incident

0 0.2 0.4 0.6 0.8 1 12 0 0.2 0.4 0.6 0.8 1 12
t t

Figure 9: The z component of the green function associated to the displacement at receiver
1 (left picture) and 2 (right picture).

x10° x 10~

o ﬁeﬂe&ed ] q | Pf |
A ] al \ Ps

4 \AA | 0.:: \
5> 0 V 7 = ci V ’\I\,
AN ] i —35

o} Incident

0 0.2 0.4 0.6 0.8 1 12 0 0.2 0.4 0.6 0.8 1 12
t t

Figure 10: The z component of the displacement at receiver 1 (left picture) and 2 (right
picture).
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5 Conclusion

In this paper we have provided the complete solution (reflected and transmitted wave) of the
propagation of wave in a stratified 3D medium composed of an acoustic and a poroelastic
layer. In a forthcoming paper we will extend the method to the propagation of waves in
bilayered poroelastic medium in three dimensions.

A Definition of the fictitious and real arrival times of the vol-
ume waves.

We detalil in this section the computation of the fictitious and real arrival times of the trans-
mitted Ps wave at point (x,0, z). For a given ¢, € IR, we first determine fastest path of the
wave from the source to the point (z,0, z), travelling at a velocity V' (g,) in the upper layer
and at a velocity Vp_(g,) in the bottom layer: we search a point {y on the interface between
the two media which minimizes the function

JETRE ST
O=5) T vne)

(see Fig. [[J). This leads us to find &y such that

§o—x

0 - =0
VHa)VEG+ 12 Vi)V (@ = &)? + 22

From a numerical point of view, the solution of this equation is done by computing the roots
of the following fourth degree polynomial

1 1 .\ 1 1
(TR FA AT
(ay) Vo, (qy) Vps (ay) (4y)

2 . .2 2 L 2 2 272
<x+;_2 _x—;_h >X2+ —xg X+ th )
VHiay)  Vp, (qy) Vps (ay) Vps (ay)

&o is thus the only real root of this polynomial located between 0 and = which is also solution
of (BF). Once & is computed, we can define

/2 2 _ 2 2 _
to(ay) = ng (J(;y? + (xvf(og )+ = and to = io(0)
Ps\1Y

t'(€0) = (39)

Let us remark that

Property A.l. Since the fictitious velocities are smaller than the real one, the fictitious
arrival times are greater than the real one. Moreover, since the fictitious velocities are even
functions decreasing on IR", ty is an even function, increasing on IR™.

Corollaire A.1. The function ty is bijective from IR" to IR™.
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Source )
(0,0, h) Medium 1

V*(qy)
(£0,0)

VI_’S ((Jy)
Medium 2

(x,0,2)

Figure 11: Path of the transmitted ¢ wave
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