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COOPERATIVE DISPARITY AND OBJECT BOUNDARY ESTIMATION

Ramya Narasimha 1, Elise Arnaud 1,2, Florence Forbes 1, Radu Horaud 1

1 INRIA Rhône-Alpes 2 Université Joseph Fourier
655, avenue de l’Europe 38330 Montbonnot, France

ABSTRACT
In this paper we carry out cooperatively both disparity and
object boundary estimation by setting the two tasks in a uni-
fied Markovian framework. We introduce a new joint prob-
abilistic model that allows to estimate disparities through a
Markov random field model. Boundary estimation then coop-
erates with disparity estimation to gradually and jointly im-
prove accuracy. The feedback from boundary estimation to
disparity estimation is made through the use of an auxiliary
field referred to as a displacement field. This field suggests
the corrections that need to be applied at disparity discontinu-
ities in order that they align with object boundaries. The joint
model reduces to a Markov random field model when con-
sidering disparities while it reduces to a Markov chain when
focusing on the displacement field. The performance of our
approach is illustrated on real stereo images sets, demonstrat-
ing the power of this cooperative framework.

Index Terms— Stereo Disparity Estimation, Markov
Random Field, Markov Chain

1. INTRODUCTION

Most disparity estimation algorithms result in disparity dis-
continuities occurring at improper locations. By improper we
mean locations which are not at the actual depth discontinu-
ities. Recent approaches such as [1], [2] overcome this prob-
lem by treating it seperately using colour image segmenta-
tion. In this paper we propose a method that simultaneously
estimates disparity and corrects the disparity at discontinu-
ities in mathematically sound framework. Our approach re-
lies on two assumptions: (i) that the discontinuities in depth
are usually at object boundaries (ii) that the disparity disconti-
nuities obtained from naive disparity estimation are usually at
the vicinity of actual depth discontinuities. Thus, if we locate
the object boundaries which are in the vicinity of the dispar-
ity discontinuities — using the gradient map1 of the image as
evidence —we can correct the disparity values so that they fit
closer to the object boundaries. We thus suggest a new joint
model to estimate both disparity and object boundaries coop-
eratively i.e., the presence of disparity discontinuities aids the
detection of object boundaries and vice versa. This is done

1All gradients are computed from the left intensity image.

by introducing a displacement field, which suggests the cor-
rections that need to be applied at disparity discontinuities
in order to align them with object boundaries. The dispar-
ities are modeled as a Markov Random Field (MRF) while
the displacement field reduces to a Markov chain during esti-
mation. The resulting procedure involves alternating between
estimation of disparity and displacement fields in an iterative
framework.

The idea of combining multiple fields in order to estimate
one or more variables has been previously used in several con-
texts, including motion analysis [6], background/foreground
separation [7], depth estimation [8], [4] and boundary detec-
tion [9]. More recent work by Chung et al. [10] suggests a
technique for estimating boundaries in conjunction with seg-
mentation using a dual-MRF framework. As in [10], we do
not use a line process for boundary representation (as in case
of [6], [9]). This means that the field representing the bound-
ary does not exist between the pixels (as in line processes) but
on the pixel locations themselves. In contrast to [10], we do
not focus on the boundary locations themselves but provide
the directions toward which discontinuities must be displaced
based on observed image gradient values. Hoiem et al [11]
also address the problem of recovering depth boundaries com-
bining traditional edge and region cues with depth and surface
information, but using only a single image. Recently the same
problem was addressed by Mattoccia et al [12] for stereo im-
age pairs using Scanline Optimization. Our approach has the
further advantage of making a clear distinction between the
probabilistic model and the subsequent optimization.

2. JOINT DISPARITY-DISPLACEMENT MODEL

We consider a finite set S of N pixels on a regular two-
dimensional grid. The observed data are made of a left and
a right images IL and IR, where I represents the pair. We
denote by D = {Dx,x ∈ S} the unknown disparity values
at each pixel. The Dx’s are considered as random variables
that take their values in a finite discrete set L. D is referred
to as the disparity field or disparity map and takes its val-
ues in D = LN . In addition, we consider a displacement
field denoted by A = {Ax,x ∈ S} where each Ax is made
of two random variables denoted by Mx and Ex. For each
pixel location x, Ex can be interpreted as the normal vector
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to the disparity discontinuity contour and Mx ∈ {−1, 0, 1}
indicates the direction of displacement along this normal.

Our goal is then to estimate realizations of D and A from
the observed stereo image pair. Ideally we are interested in
finding the MAP (Maximum A Posteriori) estimates of D and
A using the posterior probability p(d,a|I). Note that we use
d and a = (m, e) to denote specific realizations of the ran-
dom fields D and A = (M,E). This global optimization
problem has in general no straightforward solution. Thus, we
consider instead an iterative approach consisting in maximiz-
ing the posterior probability alternatively in the first and sec-
ond variable. Starting from current estimates d(q) and a(q)

at iteration q, it can be shown using Bayes’ theorem that the
alternation procedure can be written as :
(i) d(q+1) = arg max

d
p(d|a(q), I)

(ii) a(q+1) = arg max
a

p(a|d(q+1), I)

Hence, we now focus on the definitions of the conditional
distributions p(d|a, I) and p(a|d, I).

2.1. Displacement conditional disparity model
We first specify the disparity distribution conditionally to the
displacement field and the observed data. We define d as a
MRF with the following energy function, where βd is an in-
teraction parameter to be fixed:

p(d|a, I) ∝ e

(
−

P
x∈S

Ud(dx,I)−βd

P
x∈S

P
y∈Nx

Vd(dx,dy,a)
)
. (1)

The data term Ud in (1) assigns a cost for each disparity
value chosen at location x based on the intensity difference
between the left and the right images. However to account for
outliers, it is formulated as a robust function:

Ud(dx, I) = min (λ1 |IL(x)− IR(y)|, T1) (2)

for every x = (i, j), y = (i, j +dx) , where λ1 and T1 are the
robust function’s parameters and IL(x) (resp. IR(x)) denotes
the pixel value at location x in the left (resp. right) image.

The interaction term Vd in (1) defines how the disparity
at a location is influenced by its neighbors. In usual MRF-
based disparity models the neighborhood Nx is defined as
the set of the 4 (or 8) nearest pixels of x, all influencing
the value at x. In the displacement conditional model, only
some of the neighbors in Nx actually interact with x, de-
pending on their displacement values defined by the displace-
ment field A. An intermediate Active neighborhood field
H(A) = {Hx(A),x ∈ S} is then built to encode this speci-
ficity. Let N 0

x denote the neighbors of x for which the dis-
placement field is 0.Then, define: ∀a,

Hx(a) =

{
N 0

x if mx = 0
{bx−mxexc} ∩ N 0

x if |mx| = 1
(3)

where ex is the unit vector at location x when E = e. Note
that bx − mxexc denotes the closest point in S, when x −
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Fig. 1. The figure
shows how the neigh-
borhood is activated
based on A = (M,E)

mxex does not correspond exactly to a site in S. In particular,
Hx(a) can be the empty set if |mx| = 1 and |mbx−mxexc| =
1. Figure1 illustrates the three cases that can possibly occur in
this active neighborhood construction. Case I: suggests that,
when there is no evidence that a displacement is required at
the location under consideration x, ie mx = 0, then the only
reliable neighbors are those which themselves do not require
displacement. For this case, the interaction potential is then
defined as a robust function, that enforces the smoothness of
the disparity field. Case II: indicates that when |mx| = 1 the
disparity at this location has to be changed in order to better
agree with object boundaries. In such a case, only a neighbor
whose location is x−mxex corresponding to the one which
is located at the opposite direction to the normal to the dis-
continuity located at x should interact. Case III: illustrates
the case when |mx| = 1 and the selected active neighbor has
itself been assigned a non zero displacement value, meaning
that its corresponding disparity value is likely to change and
should then not be used. In that case, the set Hx(a) is empty
and the interaction potential is set to 0.

Denoting by 1{Dx=Dy}(dx, dy) the function of dx and
dy that is 1 when dx = dy and 0 otherwise2, Vd is defined as
below, where λ2 and T2 are the robust function’s parameters

Vd(dx, dy,a) = (4)
min(λ2|dx − dy|, T2) if x ∈ Hy(a) & y ∈ Hx(a)
0 if x 6∈ Hy(a) & y 6∈ Hx(a)
T2

(
1− 1{Dx=Dy}(dx, dy)

)
otherwise.

2.2. Disparity conditional displacement model
Preliminary steps are involved in the modeling of the dis-
tribution of A conditionally to D and I. It requires the
definition of discontinuity chains representing the locations
at which a disparity discontinuity occurs considering a cur-
rent value d of the disparity map D. This extraction is
done by retaining the x as a discontinuity, if the difference
between the disparity at x and the disparity at any one of
the neighboring locations lies above the threshold value T2

(first case of (4)). This procedure gives a binary map of
disparity discontinuity locations which is then converted

2More generally for a variable z taking values in a set Z , we denote by
1Z1 (z) the indicator function which is 1 when z ∈ Z1 ⊂ Z and 0 other-
wise.
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into a set of discontinuity chains denoted by C(D). The set
C(D) is made of a number T (D) of connected components
C(D) = {C1(D), . . . Ct(D) . . . , CT (D)(D)} which can be
of different sizes. Each discontinuity chain Ct(D) is itself
made up of two sets; St(D) = { xt

1, . . . , xt
K} ⊂ S is

a set of K locations which are connected, namely for all
k = 2, . . . K − 1, xt

k is a neighbor of xt
k−1 and xt

k+1 while
the first and last locations have only one neighbor and the set
Wt = {wt

1, . . . , wt
K} represents the normals to the chain

associated to each location xt
k. The conditional distribution

p(a|d, I), defined using the discontinuity chains C(D), is re-
duced to

∏T (d)
t=1 p(mt|Ct(d), I) due t; (i) at the discontinuity

locations the displacement field normals Ex are the same as
the discontinuity chains normals wx and (ii) that non zero
displacements can occur only at discontinuity locations. The
probability distribution of each of the chains is expressed as
a second order Markov chain as follows:

p
(
mt| Ct(d), I

)
= P

(
mt

1,m
t
2

∣∣Ct(d), I
)

(5)
K∏

k=3

p
(
mt

k

∣∣mt
k−1m

t
k−2, Ct(d), I

)︸ ︷︷ ︸
A

where mt
k is the displacement at location xt

k so that mt =
{mt

1, . . . ,m
t
K}. From now on we drop the superscript t, as

each of the chain distributions will be defined in a similar
manner. We define A in (5) as follows, where βc is the inter-
action parameter:

A ∝ exp
(
−Uc(mk,C(d),∇IL)−βc Vc(mk,mk−1,mk−2,C(d))

)
(6)

The data term Uc in (6) associates a cost for moving the
point xk on either side of the normal wk. In order to deter-
mine this cost, we first choose points on both sides of the nor-
mal using a range of locations distant from −ε to ε. Then, we
determine the difference in the gradient magnitude between
the current position and the points chosen along the normal.
If this difference is negative, it means that moving the current
chain point to that position along the normal leads to a higher
gradient region. Hence, the direction of motion towards this
position is favored. (see Figure 2). This can be written as:

Uc

(
mk, C(d),∇IL

)
= 1− 2 1

{Mk=sk

(
∇IL,wk

)
}
(mk) (7)

Denoting yl = xk + l wk, |∇IL| the gradient magnitude in
the reference image IL and sgn as sign function we have

sk (∇IL,wk) = sgn
(
arg min

l∈[−ε,ε]

(
|∇IL(xk)| − |∇IL(yl)|

))
The interaction term Vc in (6) assigns a score based on

the angle between vectors defined by the positions (xk−2,xk−1)
and (xk−1,xk). The interaction term enforces smoothness
by favoring those m-values which make the angle between
these vectors as close to zero as possible. This second-order
Markov chain can be easily turned into a a first-order Markov
chain so that optimal displacement values can be found using
the standard Viterbi algorithm.

∆

I

xｋ

Normalwｋ

Data term

Fig. 2. The figure
shows the calculation
of Uc using gradient in-
formation

3. ALTERNATING MAXIMIZATION PROCEDURE

Using the defined joint probabilistic model, we then estimate
the MAP estimates of D and A given the observed image
set I., with the alternation procedure defined in the previous
section. The resulting iterative procedure is described be-
low. At iteration q = 0, the displacement field values are
assumed to be zero and the calculation of d(0) is performed
from p(d|a, I) using a Variational mean field approach [3].
Then the two following steps are carried out alternatively, in
a multi-scale framework [5]. The alternation is carried out
until a large percentage of the displacement values are equal
to zero.

1. Update Displacement field a(q) into a(q+1) = (m(q+1), e(q+1)):

(i) Extract disparity discontinuities from current disparity map d(q)

(ii) Convert the binary map into a set of discontinuity chains C(d(q))

(iii) At discontinuity locations, ie. for x ∈ S(d(q)), set e
(q+1)
x to

the normal wx in C(d(q)). For the remaining locations, m
(q+1)
x is

set to zero so that e(q+1)
x can be set arbitrarily

(iv) Estimate new m-values for each discontinuity chain Ct(d(q)) in
C(d(q)) using the Viterbi algorithm for the model defined in (5)

2. Update Disparity field d(q) into d(q+1):

(i) Determine the active neighborhood system using a(q+1)

(ii) Obtain d(q+1) using Variational mean field for the MRF (1).

4. RESULTS AND DISCUSSION
We report an experimental evaluation of our algorithm using
four stereo image pairs in Figure 3. The row (a) shows
the left images of the stereo image pairs used in the exper-
iment. Row (b) shows the disparity maps obtained using
Variational Mean Field without using the proposed approach.
Row (c) shows the disparity discontinuities obtained from
row (b). This corresponds to the initialization of our alter-
nation procedure.The results of our algorithm are illustrated
in rows (d) and (e), where the boundary and disparity esti-
mation results are respectively presented.

The results clearly indicate the advantage of including
boundary estimation where the standard boundary detector
usually fails to segregate the objects. Row (c) shows that
the discontinuities of the disparity maps in (b) are displaced
from physical object boundaries. However, using our ap-
proach, we obtain both object boundaries and improved dis-
parity maps as in (d-e).These results show the value of the
joint model, and the effectiveness of the cooperative algo-
rithm, even with basic image information such as gradient

in
ria

-0
03

06
58

2,
 v

er
si

on
 1

 - 
28

 J
ul

 2
00

8



map (1) venus (2) book (3) hat (4)

(a)

(b)

(c)

(d)

(e)

Fig. 3. (a) Original Images; (b) Disparity maps using Variational Mean-field only; (c) Disparity discontinuities corre-
sponding to (b); (d) Corrected disparity discontinuities using our approach; (e) Corresponding disparity maps.

maps. The main originality of our work has been to define
a fully Markovian model that makes explicit the relationships
between disparity and object boundaries, through the intro-
duction of a displacement field.

5. REFERENCES
[1] Andreas Klaus, Mario Sormann, and Konrad F. Karner,

“Segment-Based Stereo Matching Using Belief Propagation
and a Self-Adapting Dissimilarity Measure,” in ICPR, 2006.

[2] Q. Yang, L. Wang, R. Yang, H. Stewnius, and D. Nister,
“Stereo matching with color-weighted correlation, hierarchical
belief propagation and occlusion handling,” in CVPR, 2006.

[3] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola
and Lawrence K. Saul, “An Introduction to Variational Meth-
ods for Graphical Models” in Machine Learning, 37(2),1999.

[4] C. Strecha, R. Fransens, and L.J. Van Gool, “Combined depth
and outlier estimation in multi-view stereo,” in CVPR, 2006

[5] P.F. Felzenszwalb and D.P. Huttenlocher, “Efficient belief
propagation for early vision,” IJCV, 70(1), 2006.

[6] F. Heitz and P. Bouthemy, “Multimodal estimation of discon-
tinuous optical flow using Markov random fields,” PAMI, 15
(12), 1993.

[7] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and
C. Rother, “Probabilistic fusion of stereo with color and con-
trast for bilayer segmentation,” PAMI, 28 (9), 2006.

[8] J. Sun, N.N. Zheng, and H.Y. Shum, “Stereo matching using
belief propagation,” PAMI, 25 (7), 2003.

[9] D. Geman, S. Geman, C. Graffigne, and P. Dong, “Boundary
detection by constrained optimization,” PAMI, 12 (7), 1990.

[10] J. Wu and A.C.S. Chung, “A segmentation model using com-
pound Markov random fields based on a boundary model,” IP,
16 (1), 2007.

[11] Derek Hoiem, Andrew Stein, Alexei A. Efros, and Martial
Hebert, “Recovering occlusion boundaries from a single im-
age,” in ICCV, 2007.

[12] S. Mattoccia, F. Tombari, and L. Di Stefano, “Stereo vision en-
abling precise border localization within a scanline optimiza-
tion framework,” in ACCV, 2007.

in
ria

-0
03

06
58

2,
 v

er
si

on
 1

 - 
28

 J
ul

 2
00

8


