Tracking articulated bodies using generalized expectation maximization

Andrea Fossati 1 Elise Arnaud 2 Radu Horaud 2 Pascal Fua 1
2 PERCEPTION - Interpretation and Modelling of Images and Videos
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : A Generalized Expectation Maximization (GEM) algorithm is used to retrieve the pose of a person from a monocular video sequence shot with a moving camera. After embedding the set of possible poses in a low dimensional space using Principal Component Analysis, the configuration that gives the best match to the input image is held as estimate for the current frame. This match is computed iterating GEM to assign edge pixels to the correct body part and to find the body pose that maximizes the likelihood of the assignments.
Type de document :
Communication dans un congrès
NORDIA - CVPRW 2008 - IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Jun 2008, Anchorage, United States. IEEE, pp.1-6, 2008, 〈10.1109/CVPRW.2008.4563073〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00306612
Contributeur : Elise Arnaud <>
Soumis le : vendredi 3 avril 2009 - 14:23:25
Dernière modification le : mercredi 11 avril 2018 - 01:58:43
Document(s) archivé(s) le : vendredi 25 novembre 2016 - 23:21:24

Fichiers

nordia08-final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Andrea Fossati, Elise Arnaud, Radu Horaud, Pascal Fua. Tracking articulated bodies using generalized expectation maximization. NORDIA - CVPRW 2008 - IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Jun 2008, Anchorage, United States. IEEE, pp.1-6, 2008, 〈10.1109/CVPRW.2008.4563073〉. 〈inria-00306612〉

Partager

Métriques

Consultations de la notice

428

Téléchargements de fichiers

157