Trains of keypoints for 3d object recognition

Abstract : This paper presents a 3D object recognition method that exploits the spatio-temporal coherence of image sequences to capture the object most relevant features. We start from an image sequence that describes the object's visual appearance from different view points. We extract local features (SIFT) and track them over the sequence. The tracked interest points form trains of features that are used to build a vocabulary for the object. Training images are represented with respect to that vocabulary and an SVM classier is trained to recognize the object. We present very promising results on a dataset of 11 objects. Tests are performed under varying illumination, scale, and scene clutter.
Type de document :
Communication dans un congrès
International Conference on Pattern Recognition, 2006, Honk Kong, Hong Kong SAR China. 2006
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00306707
Contributeur : Elise Arnaud <>
Soumis le : vendredi 3 avril 2009 - 14:24:49
Dernière modification le : lundi 19 mars 2012 - 10:07:21
Document(s) archivé(s) le : samedi 26 novembre 2016 - 00:34:07

Fichiers

icpr06.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00306707, version 1

Citation

Elise Arnaud, Elisabetta Delponte, Francesca Odone, Alessandro Verri. Trains of keypoints for 3d object recognition. International Conference on Pattern Recognition, 2006, Honk Kong, Hong Kong SAR China. 2006. 〈inria-00306707〉

Partager

Métriques

Consultations de la notice

288

Téléchargements de fichiers

1261