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AN EFFICIENT RAO-BLACKWELLIZED PARTICLE FILTER FOR OBJECT TRACKING

Elise Arnaud, Etienne Mémin

IRISA, Université de Rennes 1,
Campus Beaulieu, Rennes, France

ABSTRACT

In this paper we present a technique for the tracking of textured
almost planar object. The target is modeled as a noisy planar
cloud of points. The tracking is led with an appropriate non lin-
ear stochastic filter. The particular system that we devised is con-
ditionally Gaussian and can be efficiently implemented through
variance reduction principle known as Rao-Blackwellisation. Our
model allows also to melt a correlation measurements with dy-
namic model estimated from the images. Such a cooperation within
a stochastic filtering framework allows the tracker to be robust to
occlusions and target’s unpredictable changes of speed and direc-
tion. We demonstrate the efficiency of the tracker on different types
of real world sequences.
1. INTRODUCTION

Recently, the use of sequential Monte Carlo methods (also
knows as particle filters) has led to the development of very
efficient visual tracking techniques [8, 3, 1, 2]. The popu-
larity of particle filters can be explained by their simplic-
ity, their robustness to difficult situations — such as occlu-
sions, noise, large displacements, etc. — their easiness of
implementation. These techniques relies on a discrete hid-
den Markov chain modeling defined by a dynamic equa-
tion characterizing the evolution law of the unknown state
(the target), and a measurement equation which links some
available observations of the target to the state. These tech-
niques provide an approximation of the distribution of the
target state given the sequence of past and current measure-
ments and allows as a consequence a probabilistic competi-
tion between known a priori information on the target and
different measurements processes.

However, this kind of techniques may be unsuccessful
for the tracking of objects of great dimension since sam-
pling in high dimensional spaces is generally inefficient. In
some cases, this problem can be overcame if the system
has a “tractable substructure”, which can be analytically
marginalized out, conditionally on some part of the state.
Such a methodology, leading to Rao-Blackwellized parti-
cle filters ( RBPFs), enables reducing significantly the size
of the state space over which we need to sample [3]. Rao-
Blackwellized particle filters have been successfully applied
for bearings only tracking and navigation, digital communi-
cation and recently in computer vision [4].

In this paper, we investigate the use of a RBPF for object
tracking. To that aim, we propose to describe the object of
interest through a set of feature points. The state to be es-
timated consists in the concatenation of all the points loca-
tion. The modeling we suggest is composed of : (&) local
measurement equations for each point based on a matching
process and (b) a dynamic law that describes the spatial
coherence of the point cloud, using motion information and
geometric constraint. The resulting tracker is robust to ac-
quisition noise, and allows partial or complete occlusions as
well as deformations of the target. .

2. RAO-BLACKWELLIZED PARTICLE FILTER

2.1. Particle filtering principle
For sake of clarity, the general principle of filtering prob-
lems is briefly introduced. We consider here a discrete hid-
den Markov state process Xo., = {Xo, X1, ..., X, } Of transi-
tion equation p(x|xg—1, Io.x) Which represents the evolv-
ing law of the state (the dynamic equation). The condition-
ing on the image variable sequence, denoted here as Iy.z,
indicates a possible dependency of the state and the im-
age [6]. The set of measurements zi1.,, = {Z1,%1,...,%n},
of marginal distribution p(z|xx, Io.;) are supposed condi-
tionally independent given the state sequence. At each dis-
crete instant k, the filtering problem consists in having an
accurate approximation of the posterior probability density
p(X0:£]21:%, Lo:x ). In the case of linear Gaussian models, the
Kalman filter [7] gives the optimal solution'. If this system
appears to be nonlinear and/or non Gaussian, this distribu-
tion can not be analytically computed. In such a case, an
efficient approximation consists in resorting to particle fil-
ters.

These techniques propose to implement recursively an
approximation of the sought density (see [8, 3] for an ex-

tended review). This approximation consists in a finite weighted

sum of Dirac centered on hypothesized trajectories — called
particles — of the initial system x¢:

pxorlzre Toa) = 3 ws(xon —x{)).
i=1:N

'Let us note that when the dynamic equation depends on the image
data, the use of the kalman filter can be justified to recover a Gaussian ap-
proximation of the pdf through a peculiar estimator we named conditional
minimum variance estimator [6]



Ateach time instant (or iteration), the set of particles {Xé?c, i =

1,..., N} is drawn from an approximation of the true dis-
tribution p(Xo.x|z1.%, Io.x ), called the importance function
and denoted 7(X¢.x|21.x, Io.x). The closer the approxima-
tion from the true distribution, the more efficient the filter.
The particle weights w,(;) account for the deviation w.r.t. the
unknown true distribution. The weights are updated accord-
ing to importance sampling principle:

wi = P(%ok 10 Tok)
W(Xél:)g\zl;k,lo:k)

Choosing an importance function that recursively fac-

torizes such as: 7(Xo.x|21:x, Lo:x) = 7(X0:k—1]Z1:6—1, To:k—1) X

7 (Xk|X0:6—1, Z1:k, Lo.1) allows recursive evaluations in time
of the particle weights as the new measurement z becomes
available. Such an expression implies naturally a causal as-
sumption of the importance function w.r.t. observations and
image data. The recursive weights read then:

@ Plex Tox) e x1 1, To)
Wy = Wy ‘

ﬂ-(xl(ci) |XE)Z;3C71> Z]:k, IO:k)

Unfortunately, such a recursive assumption of the impor-
tance function induces an increase over time of the weight
variance. In practice, this makes the number of significant
particles decreases dramatically over time. To limit such a
degeneracy, two methods have been proposed.

A first solution consists in using an optimal importance
function which minimizes the variance of the weights con-
ditioned upon Xg.;—1, Z1.x and Iy.; in our case. It is then
possible to prove that p(xk|Xk—1, 2k, Lo.k) is this optimal
distribution. With this distribution, the recursive formula-
tion of wy becomes: w\’) = w'” | p(zg|x\” | To,). The
optimal importance function is usually not accessible. In vi-
sion applications, this function is often set to the prediction
density, i.e. 7(Xg|X0:k—-1,21:%,Lo:x) = P(Xk|Xk—1,Lo:x).
Such a choice has the drawback to exclude the measure-
ments from the particle diffusion step. For conditional Gaus-
sian systems such as the one we are dealing with, the impor-
tance function is analytically known [6, 9]. This constitutes
one of the main advantages of the system we are consid-
ering. The optimal importance function provides a simple
and natural mechanism to include the measurements into
the sampling process. Such an option is for instance very
beneficial in case of occlusions [6].

A second solution to tackle the problem of weight vari-
ance increase relies on the use of re-sampling methods. Such
methods remove trajectories with weak normalized weights,
and add copies of the trajectories associated to strong weights,
as soon as the number of significant particles is too small.
Obviously, these two solutions may be coupled for a better
efficiency.

2.2. Rao-Blackwellized particle filter
As a general principle, particle filters can be applied what-
ever the size of the state space. However, it is crucial to
take advantage of the system’s properties in order to reduce
the dimension of the sampling space. When some state vec-
tor components can be estimated conditionally to the others
with an optimal filter (such as the Kalman filter), it is possi-
ble to apply the Rao-Blackwellization principle of variance
reduction.

Let us assume that x;, can be decomposed into two groups
of components ry and yg, such as:

P(Xk|Xk—1,To:x) = P(Tr, Yi|Th—1,Yr—1, Lo:k)
= p(rr|ti—1,To:k) P(YEITk—1:85 Yi—1,To:k)-

Let us also assume that the posterior density p(yo.x|To.x, Z1:%, Lo:k)

can be optimally estimated. As the objective distribution
reads :

p(XO:k|Z1:k7 IO:k) = p(y():k|r0:k; Z]:k, IO:I@) p(I'O:k|Z1:k, IO:k)7

the only remaining difficulty is the estimation of p(r.x|Z1.x, Lo.x)-

Compared with the objective density this density lives in a
space of reduced dimension and is assumed to be approx-
imated through particle filtering. Given a particle swarm
{rgﬁc, w,(;) }i—1.n approximating p(ro.x|21.%, Io.x ), we have
the following expressions:
~ () (4)
P(Yo:k|Z1:k, Toik) Z wy” P(Yo:k|Ty s Z1:ks Lock ),
i=1:N

p(yr|z1k, Tok) Z w,(:) p(Yk|rél;LaZ1:kaIO:k)~
i=1:N

The resulting algorithm, named the Rao-Blackwellized par-
ticle filter (RBPF), consists finally in three main steps. First,
an importance sampling stage is performed to generate the
swarm {r(i’) w(i)}- F h particle r'") -
0:k> Wy Fi=1:~ - For each particle r; , an approx
imation of p(yo.x |rg;3€, Z1.k, Lo.;) is estimated with an opti-
mal filter. In order to avoid particle degeneracy a final re-
sampling step is generally required.
2.3. Conditionally Gaussian systems
Let us now consider the particular case of a conditionally
Gaussian system:
ry = fr(rp—1) + wj
Vi =Hp yp—1+ W},

1
z; = G r + vy, M
7] = K yr + vy,
The state to be estimated is x; = [rx,yx]!, the measure-
ments are denoted z;, = [z},z})]" and f; is a nonlinear

function which possibly depends on the image sequence.
Matrices Hy, G, and K} may also be specified from the
image data. w}, wy, v}, v} are assumed to be independent
zero-mean Gaussian noises of covariances (7, QZ Ry, and
RZ. It is important to notice that the matrices Hy and K
are available only when the estimation of r¢.;_ is known.



Such a system has very interesting properties. First of
all, the distribution p(yx|ro.x, Z1.%, lo.x) is Gaussian and is
entirely described by its two first moments. The RBPF is
in that case equivalent to a Kalman filter bank. Moreover,
as for the estimation of p(ro.x|z1.x, Lo.x), this system en-
ables using the optimal importance function for the sam-
pling of particles r((f;c Indeed, it can be shown that the two
required densities p(ry|rg—_1, z}, Lo.x) and p(z}|re—1, Io.x)
are Gaussian of mean p, = Xy (Q), 1 (ri—1)+GL Ry}, -1
and of covariance ¥, = (Q} ~" + G4 R}, ~'Gy,) ™! for the
first pdf and of mean uy, = Gy, fr(rg—1) and of covariance

(R}, + GrQ% Hy ') for the second.

3. MODEL FOR POINT SET TRACKING

Back to our application, the aim of this section is to describe
the model we propose to track a cloud of features points. In
the considered tracking problem, the state xj, represents the
concatenation of all the points location at time &, in image
I}, observable through the measurement zy.

3.1. A dynamic equation in two steps

In order to benefit from the information available on the ob-
ject motion and on its geometric structure, the point set is
separated in two subsets r, (called the reference points) and
vy (called the attached points) . Each of these subsets will
capture one of these two pieces of information. The dy-
namic equation describing the evolution of x5 = [ry, yk]t
is then built in two stages.

e The first stage concerns the displacement of the refer-
ence points rg. In order to be reactive to any unpredictable
change of speed and direction, the dynamic we consider is
based on an instantaneous motion vector wy(ry) estimated
on line from Ij.;. A robust parametric motion estimation
technique [10] is used to estimate reliably a 2D parametric
model representing the dominant apparent velocity field on
a given support R. Assuming an affine motion, we have
wi(ry) = P(ry)0y, where P(ry) is a matrix whose entries
depend on the locations of ry, and 6}, is the motion param-
eter vector of dimension 6. The use of such a method on
an appropriate local support around rj_; provides an esti-
mate of the motion vector for each motion point. As R is a
domain depending on ry_1, the estimated parameter vector
6} depends in a nonlinear way on ry_1. The resulting state
equation is:

ry =Trrp_1+ P(I‘kfl) 0, + WZ 2)
The noise variable w7, accounts for errors related to the local
motion model. Itis assumed to follow a zero mean Gaussian
distribution of fixed covariance Q7.

e The second stage concerns the evolution of the attached
points yj. At this level, an estimation of ri_; and ry is
available. This enables us to calculate a matrix that links,
in a geometric point of view, the two point subsets. Several

r

)

constraints may be employed such as homographic or affine
constraint. The only limitation related to the use of a RBPF
is that the resulting dynamic equation of the attached points
must be linear :

Vi = Hp(tp—1:6) Ye—1 + Wy 3)
Matrix Hy, depends on ry_1.5. It is estimated once an esti-
mate of the reference points location is known. The noise
variable w} accounts for errors related to the homography
matrix estimation. It is assumed to follow a zero mean
Gaussian distribution of fixed covariance Q7.

3.2. Measurement equation

The proposed dynamic equation introduces a spatial and ge-
ometric coherence of the the cloud points. In a complemen-
tary way, to improve the tracker robustness to occlusion, a
local measurement model is considered for each feature of
the cloud. At time k, we assume that each feature point
is observable through a matching process. We then define
the observation vector zy, as the vector gathering all the cor-
relation peaks of each point composing xj. This vector is
determined through a correlation technique between the cur-
rent image and a target representation. This representation
which constitutes a reference image of the object is com-
posed by a collection of local image patches centered on
the initial point locations in the first image of the sequence.
Several correlation criteria may be used to quantify the sim-
ilarity between two points. The consistency assumption of
a luminance pattern has simply led us to consider the sum-
of-squared-differences (SSD) criterion. The resulting mea-
surement equation we consider reads:

(2. 2] = [ yal’ + Vi VYT 4
The noise variables v7, VZ are assumed to be distributed
according to zero mean Gaussian distributions with covari-
ances R}, and RY. These matrices are block-diagonal ma-
trices. For each point, the associated block accounts for an
accuracy measurement of the matching procedure. More
details concerning this estimation are given in [6]. The used
accuracy criterion consists roughly in representing the SSD
surface as two possible pdfs corresponding either to an oc-
clusion situation or to a standard situation where a noisy
measurement is available. Statistical tests and on-line pa-
rameter estimations enable us to set the distribution of inter-
est. Such an on-line estimations of the noise covariance ma-
trices improve greatly the tracker robustness to occlusions.

3.3. Final algorithm

Our points cloud tracking problem is finally modeled by a
system composed of equations (2), (3), (4). This system is
clearly conditionally Gaussian of the form (1). It is solved
by an efficient Rao-Blackwellized particle filter whose par-
ticles are sampling using the optimal importance function.
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4. EXPERIMENTAL RESULTS

In this section, we present some experimental results on two
real-world sequences to demonstrate the efficiency of the
proposed object tracker. On these results, the red crosses
show the reference points and the green crosses account for
the attached points.

The first sequence shows a skate evolving on sand. The
skate is characterized by its large deformations. As shown
on fig. 1, the fish trajectory is well reconstructed, despite the
absence of high photometric contrasts. For this sequence,
an affine model has been use as geometric constraint. The
second result (fig. 2) presents the tracking of a book on a
cluttered desk. As we focus on this sequence on a planar
object tracking, we used an homography model for the geo-
metric constraint. As can be observed on this sequence, the
target undergoes a complex trajectories and is in the same
time occluded twice. in spite of these difficulties our tracker
has been able to recover successfully the trajectory of the
points cloud.

#59
Fig. 2. Office sequence : use of an homographic constraint
for planar object tracking

a4

#12
Fig. 1. Fish sequence : use of an affine constraint for deformable object tracking

# 14 # 18

5. CONCLUSION

In this paper we have proposed a technique for the track-
ing of textured objects. The technique relies on an efficient
particle filter. The tracker is robust to occlusion and to com-
plex unpredictable trajectories. The method is devoted to
the tracking of objects that can be described through a col-
lection of points. A part of these points must also exhibits a
linear relation with respect to the others.
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