Optimal importance sampling for tracking in image sequences: application to point tracking - Archive ouverte HAL Access content directly
Conference Papers Year : 2004

Optimal importance sampling for tracking in image sequences: application to point tracking

(1) , (1)
1
Élise Arnaud
Etienne Mémin
  • Function : Author
  • PersonId : 952791

Abstract

In this paper, we propose a particle filtering technique for tracking applications in image sequences. The system we propose combines a measurement equation and a dynamic equation which both depend on the image sequence. Taking into account several possible observations, the peculiar measure model we consider is a linear combination of Gaussian laws. Such a model allows us to infer an analytic expression of the optimal importance function used in the diffusion process of the particle filter. We demonstrate the significance of this model for a point tracking application. The resulting point tracker enables coping with trajectories undergoing abrupt changes, occlusion situations, large geometric deformations and noisy sequences. Its performances are shown on real world sequences.
Vignette du fichier
eccv04.jpg (40.13 Ko) Télécharger le fichier Fichier principal
Vignette du fichier
Eccv04Arnaud.pdf (392.01 Ko) Télécharger le fichier
Format : Figure, Image
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00306725 , version 1 (03-04-2009)

Identifiers

  • HAL Id : inria-00306725 , version 1

Cite

Élise Arnaud, Etienne Mémin. Optimal importance sampling for tracking in image sequences: application to point tracking. IEEE European conference on computer vision, 2004, Prague, Czech Republic. ⟨inria-00306725⟩
147 View
109 Download

Share

Gmail Facebook Twitter LinkedIn More