A robust stochastic filter for point tracking in image sequences

Elise Arnaud 1 Etienne Memin 1 Bruno Cernuschi-Frias 1, 2
1 VISTA - Vision spatio-temporelle et active
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : The approach we investigate for point tracking combines within a stochastic filtering framework a dynamic model relying on the optical flow constraint and measurements provided by a matching technique. Focusing on points belonging to regions described by a global dominant motion, the proposed tracking system is linear. Since we focus on the case where the system depends on the images, the tracker is built from a Conditional Linear Filter, derived through the use of a conditional linear minimum variance estimator. This conditional tracker authorizes to significantly improve results in some general situation. In particular, such an approach allows us to deal in a simple way with the tracking of points following trajectories with abrupt changes and occlusions.
Type de document :
Communication dans un congrès
IEEE Asian conference on computer vision, 2004, ile de Jeju, South Korea. 2004
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00306728
Contributeur : Elise Arnaud <>
Soumis le : mardi 21 avril 2009 - 13:41:00
Dernière modification le : mercredi 1 août 2018 - 15:02:03
Document(s) archivé(s) le : samedi 26 novembre 2016 - 00:34:23

Fichiers

Accv04Arnaud.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00306728, version 1

Collections

Citation

Elise Arnaud, Etienne Memin, Bruno Cernuschi-Frias. A robust stochastic filter for point tracking in image sequences. IEEE Asian conference on computer vision, 2004, ile de Jeju, South Korea. 2004. 〈inria-00306728〉

Partager

Métriques

Consultations de la notice

560

Téléchargements de fichiers

89