
HAL Id: inria-00308775
https://inria.hal.science/inria-00308775

Submitted on 1 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realistic Models and Efficient Algorithms for Fault
Tolerant Scheduling on Heterogeneous Platforms

Anne Benoit, Mourad Hakem, Yves Robert

To cite this version:
Anne Benoit, Mourad Hakem, Yves Robert. Realistic Models and Efficient Algorithms for Fault
Tolerant Scheduling on Heterogeneous Platforms. [Research Report] RR-6606, INRIA. 2008, pp.28.
�inria-00308775�

https://inria.hal.science/inria-00308775
https://hal.archives-ouvertes.fr

appor t

de recherche

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
66

06
--

F
R

+
E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Realistic Models and Efficient Algorithms for Fault
Tolerant Scheduling on Heterogeneous Platforms

Anne Benoit — Mourad Hakem — Yves Robert

N° 6606

February 2008

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Realistic Models and Efficient Algorithms for Fault

Tolerant Scheduling on Heterogeneous Platforms

Anne Benoit, Mourad Hakem, Yves Robert

Thème NUM — Systèmes numériques
Projet GRAAL

Rapport de recherche n° 6606 — February 2008 — 28 pages

Abstract: Most list scheduling heuristics rely on a simple platform model where
communication contention is not taken into account. In addition, it is generally
assumed that processors in the systems are completely safe. To schedule prece-
dence graphs in a more realistic framework, we introduce an efficient fault tolerant
scheduling algorithm that is both contention-aware and capable of supporting ε ar-
bitrary fail-silent (fail-stop) processor failures. We focus on a bi-criteria approach,
where we aim at minimizing the total execution time, or latency, given a fixed num-
ber of failures supported in the system. Our algorithm has a low time complexity,
and drastically reduces the number of additional communications induced by the
replication mechanism. Experimental results fully demonstrate the usefulness of the
proposed algorithm, which leads to efficient execution schemes while guaranteeing a
prescribed level of fault tolerance.

Key-words: Communication contention, fault tolerance, multi-criteria scheduling,
heterogeneous systems.

This text is also available as a research report of the Laboratoire de l’Informatique du Paral-

lélisme http://www.ens-lyon.fr/LIP.

des plates-formes de calcul plus réalistes et

ordonnancement tolérant aux pannes

Résumé :
La plupart des approches d’ordonnancement présentées dans la littérature se

placent dans des hypothèses de travail très simplificatrices car d’une part elles ne
prennent pas en compte les contentions des communications et d’autre part elles
supposent que le système est sûr de fonctionnement. Pour rendre l’ordonnancement
plus réaliste, nous mettons l’accent sur une approche bi-critère pour un modèle plus
réaliste (modèle 1-port) qui prend en compte les contentions des communications,
où nous visons à réduire le temps d’exécution de l’application (la latence), tout en
garantissant le degré de tolérance aux pannes fixé dans le système. L’algorithme
d’ordonnancement développé dans cet article est basé sur un mécanisme de compen-
sation (réplication active) pour masquer des pannes de type silence sur défaillance
(fail-stop/fail-silent). L’étude expérimentale montre l’efficacité de notre algorithme
et sa capacité de réduire considérablement le nombre de communications induites
par le mécanisme de réplication.

Mots-clés : Contentions des communications, tolérance aux pannes, ordonnance-
ment multi-critère, ressources hétérogènes.

Realistic Models and Fault Tolerance Scheduling 3

1 Introduction

The efficient scheduling of application tasks is critical in order to achieve high per-
formance in parallel and distributed systems. The objective of scheduling is to find
a mapping of the tasks onto the processors, and to order the execution of the tasks
so that: (i) task precedence constraints are satisfied; and (ii) a minimum schedule
length is provided.

Task graph scheduling is usually studied using the so-called macro-dataflow
model, which is widely used in the scheduling literature: see the survey papers [20,
23, 7, 8] and the references therein. This model was introduced for homogeneous
processors, and has been (straightforwardly) extended for heterogeneous computing
resources. In a word, there is a limited number of computing resources, or proces-
sors, to execute the tasks. Communication delays are taken into account as follows:
let task t be a predecessor of task t′ in the task graph; if both tasks are assigned
to the same processor, no communication overhead is paid, the execution of t′ can
start right at the end of the execution of t; on the contrary, if t and t′ are assigned to
two different processors P and P ′, a communication delay is paid. More precisely,
if P finishes the execution of t at time-step x, then P ′ cannot start the execution
of t′ before time-step x + comm(t, t′, P, P ′), where comm(t, t′, P, P ′) is the commu-
nication delay (which depends upon both tasks t and t′ and both processors P and
P ′). Because memory accesses are typically one order of magnitude cheaper than
inter-processor communications, it makes good sense to neglect them when t and t′

are assigned to the same processor.

However, the major flaw of the macro-dataflow model is that communication
resources are not limited. First, a processor can send (or receive) an arbitrary
number of messages in parallel, hence an unlimited number of communication ports
is assumed (this explains the name macro-dataflow for the model). Second, the
number of messages that can simultaneously circulate between processors is not
bounded, hence an unlimited number of communications can simultaneously take
place on a given link. In other words, the communication network is assumed to
be contention-free, which of course is not realistic as soon as the processor number
exceeds a few units.

We strongly believe that the macro-dataflow task graph scheduling model should
be modified to take communication resources into account. Recent papers [13, 15,
24, 25] made a similar statement and introduced variants of the model (see the
discussion of related work in Section 3). In this paper, we suggest to use the bi-
directional one-port architectural model, where each processor can communicate
(send and/or receive) with at most one other processor at a given time-step. In

RR n° 6606

4 A. Benoit, M. Hakem, Y. Robert

other words, a given processor can simultaneously send a message, receive another
message, and perform some (independent) computation.

There is yet another reason to revisit traditional list scheduling techniques. With
the advent of large-scale heterogeneous platforms such as clusters and grids, resource
failures (processors/links) are more likely to occur and have an adverse effect on the
applications. Consequently, there is an increasing need for developing techniques
to achieve fault tolerance, i.e., to tolerate an arbitrary number of failures during
execution. Scheduling for heterogeneous platforms and fault tolerance are difficult
problems in their own, and aiming at solving them together makes the problem
even harder. For instance, the latency of the application will increase if we want to
tolerate several failures, even if no actual failure happens during execution.

In this paper, we introduce a Contention-Aware Fault Tolerant (CAFT) schedul-
ing algorithm that aims at tolerating multiple processor failures without sacrificing
the latency. CAFT is based on an active replication scheme to mask failures, so
that there is no need for detecting and handling such failures. Major achievements
include a low complexity, and a drastic reduction of the number of additional commu-
nications induced by the replication mechanism. Experimental results demonstrate
that our algorithm outperforms other algorithms that were initially designed for the
macro-dataflow model, such as FTSA [4], a fault tolerant extension of HEFT [27],
and FTBAR [10].

The rest of the paper is organized as follows: Section 2 presents basic definitions
and assumptions. We overview related work in Section 3. Then we outline the
principle of FTSA [4] and FTBAR [10] as well as their adaptation to the one-port
model in Section 4. Section 5 describes the new CAFT algorithm. We experimentally
compare CAFT with FTSA and FTBAR in Section 6; the results assess the very
good behavior of our algorithm. Finally, we conclude in Section 7.

2 Framework

The execution model for a task graph is represented as a weighted Directed Acyclic
Graph (DAG) G = (V,E), where V is the set of nodes corresponding to the tasks,
and E is the set of edges corresponding to the precedence relations between the
tasks. In the following we use the term node or task indifferently; v = |V | is the
number of nodes, and e = |E| is the number of edges. In a DAG, a node without any
predecessor is called an entry node, while a node without any successor is an exit
node. For a task t in G, Γ−(t) is the set of immediate predecessors and Γ+(t) denotes

INRIA

Realistic Models and Fault Tolerance Scheduling 5

its immediate successors. We let V be the edge cost function: V(ti, tj) represents
the volume of data that task ti needs to send to task tj.

A target parallel heterogeneous system consists of a finite number of processors
P = {P1, P2, . . . , Pm} connected by a dedicated communication network. The pro-
cessors are fully connected, i.e, every processor can communicate with every other
processor in the system. The link between processors Pk and Ph is denoted by lPkPh

.
As stated above, in the traditional macro-dataflow model, there is no contention
for communications ressources, and an unlimited number of communications can be
executed concurrently. The bi-directional one-port model considered in this work
deals with communication contention as follows:� At a given time-step, any processor can send a message to, and receive a

message from, at most one other processor. Network interfaces are assumed
full-duplex in this bidirectional model.� Communication and (independent) computation may fully overlap. As in the
traditional model, a processor can execute at most one task at each time-step.� Communications that involve disjoint pairs of sending/receiving processors can
occur in parallel.

Several variants could be considered, such as uni-directional communications,
or no communication/computation overlap. But the bi-directional one-port model
seems closer to the actual capabilities of modern networks (see the discussion in
Section 3).

The computational heterogeneity of tasks is modeled by a function E : V ×P →
R+, which represents the execution time of each task on each processor in the system:
E(t, Pk) denotes the execution time of t on Pk, 1 ≤ k ≤ m. The heterogeneity in
terms of communications is expressed by W (ti, tj) = V(ti, tj).d(Pk, Ph), where task
ti is mapped on processor Pk, task tj is mapped on processor Ph, and d(Pk, Ph) is
the time required to send a unit length data from Pk to Ph. The communication has
no cost if two tasks in precedence are mapped on the same processor: d(Pk, Pk) = 0.

For a given graph G and processor set P, g(G,P) is the granularity, i.e., the
ratio of the sum of slowest computation times of each task, to the sum of slowest
communication times along each edge. If g(G,P) ≥ 1, the task graph is said to be
coarse grain, otherwise it is fine grain. For coarse grain DAGs, each task receives or
sends a small amount of communication compared to the computation of its adjacent
tasks. During the scheduling process, the graph consists of two parts, the already
examined (scheduled) tasks S and the unscheduled tasks U . Initially U = V .

RR n° 6606

6 A. Benoit, M. Hakem, Y. Robert

Our goal is to find a task mapping of the DAG G on the platform P obeying
the one-port model. The objective is to minimize the latency L(G), while tolerating
an arbitrary number ε of processor failures. Our approach is based on an active
replication scheme, capable of supporting ε arbitrary fail-silent (fail-stop) processor
failures, hence valid results will be provided even if ε processors fail.

3 Related work

Contention-aware task scheduling is considered only in a few papers from the lit-
erature [13, 15, 24, 25]. In particular, Sinnen and Sousa [24, 25] show through
simulations that taking contention into account is essential for the generation of
accurate schedules. They investigate both end-point and network contention. Here
end-point contention refers to the bounded multi-port model [14]: the volume of
messages that can be sent/received by a given processor is bounded by the limited
capacity of its network card. Network contention refers to the one-port model, which
has been advocated by [5, 6] because “current hardware and software do not easily
enable multiple messages to be transmitted simultaneously.” Even if non-blocking
multi-threaded communication libraries allow for initiating multiple send and receive
operations, all these operations “are eventually serialized by the single hardware port
to the network.” Experimental evidence of this fact has recently been reported by
Saif and Parashar [22], who report that asynchronous sends become serialized as
soon as message sizes exceed a few megabytes. Their results hold for two popular
implementations of the MPI message-passing standard, MPICH on Linux clusters
and IBM MPI on the SP2. The one-port model fully accounts for the heterogene-
ity of the platform, as each link has a different bandwidth. It generalizes a simpler
model studied by Banikazemi [3], Liu [17], and Khuller and Kim [16]. In this simpler
model, the communication time only depends on the sender, not on the receiver: in
other words, the communication speed from a processor to all its neighbors is the
same.

All previous scheduling heuristics were developed for minimizing latency on real-
istic parallel platform models, assuming that processors in the system are completely
safe. i.e, they do not deal with fault tolerance.

In multiprocessor systems, fault tolerance can be provided by scheduling multi-
ples copies (replicas) of tasks on different processors. A large number of techniques
for supporting fault-tolerant systems have been proposed [2, 9, 10, 11, 12, 18, 19,
21, 28]. There are two main approaches, as described below.

INRIA

Realistic Models and Fault Tolerance Scheduling 7

(i) Primary/Backup (passive replication): this is the traditional fault-tolerant ap-
proach where both time and space exclusions are used. The main idea of this tech-
nique is that the backup task is activated only if the fault occurs while executing the
primary task [19, 28]. To achieve high schedulability while providing fault-tolerance,
the heuristics presented in [2, 9, 18, 21] apply two techniques while scheduling the
primary and backup copies of the tasks:
- backup overloading: scheduling backups for multiple primary tasks during the same
time slot in order to make efficient utilization of available processor time, and
- de-allocation of resources reserved for backup tasks when the corresponding pri-
maries complete successfully.
Note that this technique can be applied only under the assumption that only one
processor may fail at a time.

All algorithms belonging to this class [2, 9, 18, 19, 21, 28] share two common
points: (i) only one processor can fail at any time, and a second processor cannot
fail before the system recovers from the first failure; and (ii) they are designed for
the macro-dataflow model.

(ii) Active replication (N-Modular redundancy): this technique is based on space re-
dundancy, i.e., multiple copies of each task are mapped on different processors, which
are run in parallel to tolerate a fixed number of failures. For instance, Hashimoto et
al. [11, 12] propose an algorithm that tolerates one processor failure on homogeneous
system. This algorithm exploits implicit redundancy (originally introduced by task
duplication in order to minimize the schedule length) and assumes that some pro-
cessors are reserved only for realizing fault tolerance, i.e., the reserved processors
are not used for the original scheduling. Girault et al. present FTBAR, a static
real-time and fault-tolerant scheduling algorithm where multiple processor failures
are considered [10]. Recently, we have proposed the FTSA algorithm [4], a fault tol-
erant extension of HEFT [27]. We showed that FTSA outperforms FTBAR in terms
of time complexity and solution quality. Here again, FTSA and FTBAR have been
designed for the macro-dataflow model. A brief description of FTSA and FTBAR,
as well as their adaptation to the one-port model, is given in Section 4.

To summarize, all previous fault-tolerant algorithms assume no restriction on
communication ressources, which makes them impractical for real life applications.
To the best of our knowledge, the work presented in this paper is the first to tackle
the combination of contention awareness and fault tolerance scheduling.

RR n° 6606

8 A. Benoit, M. Hakem, Y. Robert

4 Fault-tolerant heuristics

In this section, we briefly outline the the main features of FTBAR [10] and FTSA [4],
that both were originally designed for the macro-datflow model. Next we show how
to modify them for an execution under the one-port model.

4.1 FTBAR

FTBAR [10] (Fault Tolerance Based Active Replication) is based on an existing list
scheduling algorithm presented in [26]. Using the original notations of [10], at each
step n in the scheduling process, one free task is selected from the list based on
the cost function σ(n)(ti, pj), called schedule pressure. It is computed as follows:
σ(n)(ti, pj) = S(n)(ti, pj) + s(ti)−R(n−1). S(n)(ti, pj) is the earliest start-time (top-
down) of ti on pj, similarly, s(ti) is the latest start-time (bottom-up) of ti and R(n−1)

is the schedule length at step n− 1. The selected task-processor pair is obtained as
follows:
i) select for each free task ti, the Npf + 1 processor having the minimum schedule
pressure

∪l=Npf+1
l=1 σ

(n)
best(ti, pil)← minNpf+1

pj∈P σ(n)(ti, pj).

ii) select the best pair among the previous set, i.e., the one having the maximum

schedule pressure (the most urgent pair) σ
(n)
urgent(t)← maxti∈freelist ∪

l=Npf+1
l=1 σ

(n)
best(ti, pil).

The task t is then scheduled on the Npf + 1 processors computed at step 1.
Ties are broken randomly. A recursive Minimize-Start-Time procedure proposed by
Ahmad and Kwok [1] is used in attempting to reduce the start time of the selected
task t. The time complexity of the algorithm is O(PN3), where P is the number of
processors in the system and N the number of tasks in G.

4.2 FTSA

FTSA (Fault Tolerant Scheduling Algorithm) has been introduced in [4] as a fault-
tolerant extension of HEFT [27]. At each step of the mapping process, FTSA selects
a free task t (a task is free if it is unscheduled and if all of its predecessors are
scheduled) with the highest priority and simulates its mapping on all processors.
The first ε + 1 processors that allow the minimum finish time of t are kept. The
finish time of a task t on processor P depends on the time when at least one replica of
each predecessor of task t has sent its results to P (and, of course, processor P must
be ready). Once this set of processors is determined, the task t is scheduled on these

INRIA

Realistic Models and Fault Tolerance Scheduling 9

ε + 1 distinct processors (replicas). The latency of the schedule is the latest time
at which at least one replica of each task has been computed, thus it represents a
lower bound (this latency can be achieved if no processor permanently fails during
execution). The upper bound, always achieved even with ε failures, is computed
using as a finish time the completion time of the last replica of a task (instead of
the first one for the lower bound). A formal definition can be found in [4]. The time
complexity of the algorithm is O(em2 + v log ω), where ω is the width of the task
graph (the maximum number of tasks that are independent in G). Recall that v is
the number of tasks, and e the number of edges in G.

Note that with FTSA, each task of the task graph G is replicated ε + 1 times,
because duplicating each task ε + 1 times is an absolute requirement to resist to ε
failures. Therefore each communication between two tasks in precedence is replicated
at most (ε + 1)2 times. Since there are e edges in G, the total number of messages
in the fault tolerant schedule is at most e(ε + 1)2. In some cases, we may have an
intra-processor communication, when two tasks in precedence are mapped on the
same processor, so the latter quantity is in fact an upper bound. Still, the total
number of communications induced by the fault-tolerant mechanism is very large.
The same comment applies to FTBAR, where each replica of a task communicates
data to each replica of its successors.

4.3 Adaptation to the one-port model

In order to adapt both FTSA and FTBAR algorithms to the one-port model, we
have to take constraints related to communication resources into account. The idea
consists in serializing incoming and outgoing communications on the links.

A communication c on link l is characterized by its start time S(c, l) and its
finish time F(c, l). Also, we define R(l) as the ready time of a communication link l:

R(l) = max
ck on l

(

F(ck, l)
)

. In the following, we formalize all the one-port constraints:

i) Link constraint: For any two communications c, c′ scheduled on link l,

F(c, l) ≤ S(c′, l) ∨ F(c′, l) ≤ S(c, l) (1)

Inequality (1) states that any two communications c and c′ do not overlap on a link.

ii) Sending constraint: For any two communications cij , cij′ sent from a given
processor Pi to two processors Pj , Pj′ ,

F(cij , lij) ≤ S(cij′ , lij′) ∨ F(cij′ , lij′) ≤ S(cij , lij) (2)

RR n° 6606

10 A. Benoit, M. Hakem, Y. Robert

iii) Receiving constraint: For any two communications cji, cj′i sent from proces-
sors Pj and Pj′ to the same processor Pi,

S(cji, lji) ≥ F(cj′i, lj′i) ∨ S(cj′i, lj′i) ≥ F(cji, lji) (3)

Inequalities (2) and (3) ensure that any two incoming/outgoing communications c
and c′ must be serialized at their reception/emission site.

Let ti be a task scheduled on processor P . Let SF (P) be the sending free time
of P , i.e, the time on which the communication cij , 1 ≤ j ≤ |Γ+(ti)|, can start from
processor P . The earliest start time of the communication cij scheduled to the link
l and its finish time are defined by the following equations:

S(cij , l) = max

(

SF (P),F
(

ti, P
)

,R(l)

)

,

F(cij , l) = S(cij , l) + W (cij , l)
(4)

Thus, communication cij is constrained by both SF (P), R(l) and the finish time of
its source task ti on P . It can start as soon as the processing of the task is finished
only if we have F(ti, P) ≥ SF (P) and F(ti, P) ≥ R(l).

The start time of task ti on processor P is constrained by communications in-
coming from its predecessors that are assigned on other processors. Thus, S(ti, P)
satisfies the following conditions: it is later than the time when all messages from
ti’s predecessors arrive on processor P , and it is later than the ready time of proces-
sor P , defined as the maximum of finish time of all tasks already scheduled on P .
Let A(c, P) be the time when communication c arrives on processor P, and r(P) be
the ready time of P . The start time of ti on P is defined as follows:

S(ti, P) = max
(

max
tj∈Γ−(ti)

{

A(cji, P)
}

, r
(

P
)

)

(5)

where cji is the communication from tj to ti.
The arrival time A(cji, P) is computed for each predecessor as follows. Let lj be

the communication link that connects the processor on which tj is mapped to P . Let
RF (P) be the receiving free time of P , i.e, the time when P is ready to receive data.
We sort predecessors tj ∈ Γ−(ti) by non-decreasing order of their communication
finish time F(cji, lj), and renumber them from 1 to |Γ−(ti)|.

∀ 1 ≤ j ≤ |Γ−(t)|, A(cji, P)←W (cji, lj)+
max

(

RF (P),F(c(j−1)i, lj−1),F(cji, lj)−W (cji, lj)
)

with F(c0i, l0) = 0
(6)

INRIA

Realistic Models and Fault Tolerance Scheduling 11

Equation (6) shows that the arrival time A(c, P) is constrained by the receiving
free timeRF (P) of P . In addition, it complies with the inequality (3), i.e, concurrent
communications are serialized at the reception site.

5 CAFT scheduling algorithm

The one-port model enforces to serialize communications. But as pointed out above,
the duplication mechanism induces a large number of additional communications.
Therefore, we expect execution time to dramatically increase together with the num-
ber of supported failures. This calls for the design of a variant of FTSA where the
number of communications induced by the replication scheme is drastically reduced.
The main idea of the new CAFT (Contention-Aware Fault Tolerant) scheduling al-
gorithm is to have each replica of a task communicate to a unique replica of its
successors whenever possible, while preserving the fault tolerance capability (guar-
anteeing success if at most ε processors fail during execution). Communicating to
a single replica is only possible in special cases, typically for tasks having a unique
predecessor, or when every replica of the several predecessors are all mapped onto
distinct processors. When these constraints are not satisfied, we greedily add extra
communications to guarantee failure tolerance, as illustrated below through a small
example.

In the following, we denote by B(t) the set of ε + 1 replicas of a task t. Also,
we denote by t(k) those replicas, for 1 ≤ k ≤ ε + 1. Thus, B(t) = {t(1), ..., t(ε+1)}.
P (t(k)) is the processor on which this replica is scheduled.

Let ti be the current task to be scheduled by CAFT. Consider a predecessor tj
of ti, j ∈ Γ−(ti), that has been replicated on ε + 1 distinct processors. We aim
at orchestrating communications incoming from predecessors tj to ti so that each
replica in B(tj) communicates to only one replica in B(ti) when possible, rather than
communicating to all of them as in the FTSA and FTBAR algorithms.

If ti has only one predecessor t1, then a one-to-one communication scheme resists

to ε failures, as it was proved in [4]. We find the best mapping in which each t
(k)
1

sends data to exactly one of the t
(ki)
i . The problem becomes more complex when ti

has more than one predecessor, for instance t1, t2 and t3, and replicas of different

instances are mapped on a same processor. For instance, let us have ε = 1, t
(1)
1

and t
(1)
2 mapped on P1, t

(2)
1 and t

(1)
3 mapped on P2, t

(2)
2 and t

(2)
3 mapped on P3.

In all possible schedulings for ti, both t
(1)
i and t

(2)
i need to receive data from two

distinct processors. One processor between P1, P2 and P3 must thus communicate

RR n° 6606

12 A. Benoit, M. Hakem, Y. Robert

with both replicas. If this particular processor crashes, both replicas will miss data
to continue execution, and thus the application cannot tolerate this single failure.
In such cases in which a processor is processing several replicas of predecessors and
communicating with different replicas of ti, we need to add extra communications
to ensure failure tolerance.

Algorithm 5.1 is the main CAFT algorithm. Tasks are scheduled in an order
defined by the priority of the task: the priority of a free task t is determined by
tℓ(t) + bℓ(t), where tℓ(t) and bℓ(t) are respectively the top level and the bottom
level of task t. The top level tℓ(t) is the length of the longest path from an entry
(top) node to t (excluding the execution time of t) in the current partially clustered
DAG. The top level of an entry node is zero. Top levels are computed according to
a traversal of the graph in topological order. The bottom level bℓ(t) is the length
of the longest path starting at t to an exit node in the graph. The bottom level of
an exit node is equal to its execution time. Bottom levels are computed according
to a traversal of the graph in reverse topological order. Note that path lengths are
defined as the average sum of edge weights and node weights (see [27, 4]). H(ℓ) is
the head function which returns the first replica/task from a sorted list ℓ, where the
list is sorted according to replicas/tasks priorities (ties are broken randomly). The
difficult point consists in deciding where to place current task t in order to minimize
the amount of communications. Also, communications should be orchestrated to
avoid useless data transfer between replicas.

Let us define a singleton processor, as a processor with only one instance/replica

t
(k)
j , 1 ≤ j ≤ |Γ−(ti)|, 1 ≤ k ≤ ε + 1 and X ⊆

⋃j=|Γ−(ti)|
j=1

{

P
(

B(tj)
)}

be the set of

such singleton processors. Let B(tj) be the subset of replicas of each predecessor tj
scheduled in X and λj = |B(tj)|. Let T be a subset of replicas selected from the set
⋃j=|Γ−(ti)|

j=1

{

B(tj)
}

.

When there are enough singleton processors with replicas of predecessor tasks,
we use the one-to-one mapping procedure described in Algorithm 5.2. This name

stems from the fact that each replica in
⋃j=|Γ−(ti)|

j=1 B(tj) should communicate to
exactly one replica in B(ti). The number of times the one-to-one-mapping procedure
can be called for scheduling the ε + 1 replicas of the current task is determined
by θ ← min

j
(λj). In this procedure, we denote by P ⊆ P the subset of “locked”

processors which are already either involved in a communication with a replica of ti,
or processing it (i.e., the execution of a replica of B(ti) has been scheduled on such
a processor).

INRIA

Realistic Models and Fault Tolerance Scheduling 13

Algorithm 5.1 The CAFT Algorithm

1: P = {P1, P2, . . . Pm}; (*Set of processors*)
2: ε← maximum number of supported failures
3: P = ∅;
4: Compute bℓ(t) for each task t in G and set tℓ(t) = 0 for each entry task t;
5: S = ∅ ; U = V ; (*Mark all tasks as unscheduled*)
6: α = ∅ ; (*list of free tasks*)
7: Put entry tasks in α;
8: while U 6= ∅ do
9: t←H(α) ; (*Select task with highest priority *)

10: ∀ 1 ≤ j ≤ |Γ−(ti)|, compute λj;
11: θ ← min

j
(λj); i = 0;

12: while i < θ do
13: One-To-One-Mapping(t);
14: i = i + 1;
15: end while
16: while θ < ε + 1 do
17: Compute F(t, Pk) for 1 ≤ k ≤ m and Pk /∈ P using equation (6);
18: Keep the (task,processor) pair that allows the minimum finish time of t;
19: θ = θ + 1;
20: end while
21: Put t in S and update priority values of t’s successors;
22: Put t’s free successors in α;
23: U ← U\{t};
24: end while

The computation of the finish time of ti is simulated m times, once for every
processor. Hence the mapping of each incoming communications onto the links is
also simulated m times. To obtain an accurate view of the communications finish
time on their respective links and the contention, the incoming communications are
removed from the links before the procedure is repeated on the next processor.

In general, we cannot give an analytical expression of the actual number of
communications induced by the CAFT algorithm. Still, we can bound the number
of communications induced by CAFT for special graphs:

Proposition 5.1 The total number of messages generated by CAFT for Fork/Outforest
graphs is at most e(ε + 1).

RR n° 6606

14 A. Benoit, M. Hakem, Y. Robert

Algorithm 5.2 One-To-One-Mapping(ti)

1: k = 0;
2: while k ≤ m and Pk /∈ P do
3: ∀ 1 ≤ j ≤ |Γ−(ti)|, sort the set B(tj) by non decreasing order of their

communication finish time F(c, l) on the links;

4: T ←
⋃

1≤j ≤|Γ−(ti)|
H
(

B(tj)
)

;

5: Simulate the mapping of ti on processor Pk as well as the communications
induced by the replicas of the set T to the links;

6: k = k + 1;
7: end while
8: Select the (task, processor) pair that allows the earliest finish time of ti as

computed by equation (6);
9: Schedule ti onto the corresponding processor (let’s call it P ∗) and the incoming

communications to the corresponding links;
10: Update the set P

P← P

⋃

P ∗
⋃

{

j=|Γ−(ti)|
⋃

j=1

P

(

H
(

B(tj)
)

)}

(7)

11: Update each sorted list B(t);

∀ 1 ≤ j ≤ |Γ−(ti)|, B(tj)← B(tj) \ H
(

B(tj)
)

Proof: An outforest graph is a directed graph in which the indegree of every task
t in G is at most one |Γ−(t)| = 1. To resist to ε failures, each task t ∈ G should
be replicated ε + 1 times. Therefore, at each step of the mapping process we have
∩P
(

B(t∗ ≺ t)
)

= ∅ and |X | = θ = ε + 1. Thus, the one-to-one mapping procedure is

performed θ = ε+1 times. This ensures that each replica t
(k)
∗ , 1 ≤ k ≤ ε+1 sends its

data results to one and only one replica of each successor task. Therefore, each task
t ∈ G will receive its input data |Γ−(t)| = 1 times. However, in some cases, we may
have an intra-processor communication, when two replicas of two tasks in precedence
are mapped onto the same processor. Thus, summing up for all the v tasks in G, the
total number of messages is at most

∑v
i=1 |Γ

−(t)|(ε + 1) = (v− 1)(ε + 1) = e(ε + 1).
�

For general graphs, the number of communications will also be bounded by
e(ε + 1) if at each step replicas are assigned to different processors (same proof as

INRIA

Realistic Models and Fault Tolerance Scheduling 15

above). This condition is not guaranteed to hold, and we will have to greedily add
some additional communications to guarantee the robustness of CAFT. However,
practical experiments (see Section 6) show that CAFT always drastically reduces
the total number of messages as compared to FTBAR or FTSA, thereby achieving
much better performance.

Proposition 5.2 The schedule generated by the CAFT algorithm is valid and resists
to ε failures.

When a current task t to be mapped has more than one predecessor and θ = 0,
the one-to-one mapping procedure is not executed and therefore CAFT algorithm
performs more than e(ε+1) communications. In this case we can resist to ε failures
as it was proved in [4]. Therefore, we just need to check if the mapping of the θ
replicas performed by the one-to-one mapping procedure resists to θ − 1 failures.

Proof: The proof is composed of two parts:

i) Deadlock/Mutual exclusion: First we prove that we never fall into a deadlock
trap as described by the example below. Consider a simple task graph composed
of two tasks in precedence t1 ≺ t2. Assume that ε = 1, B(t1) = {t

(1)
1 , t

(2)
1 } whith

P
(

B(t1)
)

= {P1, P2} and B(t2) = {t
(1)
2 , t

(2)
2 } whith P

(

B(t2)
)

= {P1, P3}. If we retain

the communications P1(t
(1)
1) → P3(t

(2)
2) and P2(t

(2)
1) → P1(t

(1)
2), then the algorithm

is blocked by the failure of P1. But if we enforce that the only edge from P1 goes to
itself, then we resist to 1 failure.

Mutual exclusion is guaranteed by equation (7)(Algorithm 5.2, line 10). Indeed,
by simulating the mapping of t2 on P1, P2 and P3, we have two possible scenarios:
1) - The first replica t

(1)
2 is mapped either on P1 or on P2, and in either cases the

one assigned to the replica will be locked by equation (7). Suppose for instance that
P1 was chosen/locked, thus, to resist to 1 failure, the second replica t

(2)
2 should be

mapped on P2∨P3. If P2 is selected, in this case we have two internal communications.
If P3 is selected, we have one internal communication P1(t

(1)
1)→ P1(t

(1)
2) and an inter-

processor communication P2(t
(2)
1)→ P3(t

(2)
2).

2) - The first replica t
(1)
2 is mapped on P3, then both P3 and P1 ∨ P2 are locked by

equation (7). Suppose that P1 is locked, then second replica t
(2)
2 should be mapped

on P2. So we have an internal communication between P2(t
(2)
1) → P2(t

(1)
2) and an

inter-processor communication P1(t
(1)
1)→ P3(t

(2)
2).

In both scenarios, we resist to 1 failure.

RR n° 6606

16 A. Benoit, M. Hakem, Y. Robert

All processors in P remain locked during the mapping process of the ε+1 replicas
of a task. They are unlocked only before the next step, i.e, before the CAFT
algorithm is repeated for the next critical free task.

ii) Space exclusion: The one-to-one mapping procedure is based on an active
replication scheme with space exclusion. Thus, each task is replicated θ times onto
θ distinct processors. We have at most θ− 1 processor failures at the same time. So
at least one copy of each task is executed on a fault free processor. �

Theorem 5.1 The time complexity of CAFT is:

O
(

em(ε + 1)2 log(ε + 1) + v log ω
)

Proof: The proof is composed of two parts:

i) One-To-One Mapping Procedure (Algorithm 5.2): The main computational
cost of this procedure is spent in the while loop (Lines 2 to 7). Line 5 costs
O(|Γ−(ti)|m), since all the instances/replicas in T of the immediate predecessors
tj of task ti need to be examined on each processor Pk, k = 1 . . . m. Line 3 costs
O
(

|Γ−(ti)|(ε+1) log(ε+1)
)

for sorting the lists B(tj), 1 ≤ j ≤ |Γ−(ti)|. Line 7 costs
O
(

|Γ−(ti)| log(ε + 1)
)

for finding the head of the lists B(tj), 1 ≤ j ≤ |Γ−(ti)|. Thus,
the cost of this procedure for the whole m loops is O

(

|Γ−(ti)|(ε + 1)m log(ε + 1)
)

.

ii) CAFT (Algorithm 5.1): Computing bℓ(t) (line 4) takes O(e + v). Insertion
or deletion from α costs O(log |α|) where |α| ≤ ω, the width of the task graph,
i.e., the maximum number of tasks that are independent in G. Since each task in
a DAG is inserted into α once and only once and is removed once and only once
during the entire execution of CAFT, the time complexity for α management is in
O(v log ω). The main computational cost of CAFT is spent in the while loop (Lines
8 to 24). This loop is executed v times. Line 9 costs O(log ω) for finding the head
of α. Line 10 costs |Γ−(ti)|m to determine λj. The two loops (12 to 15) and (16
to 20) are excuted ε + 1 times. Line 17 costs O(|Γ−(ti)|(ε + 1)m), since all the
instances/replicas of the immediate predecessors tj of task ti need to be examined
on each processor Pk, k = 1 . . . m. Line 21 costs O(|Γ+(t)|) to update the priority
values of the immediate successors of t, and similarly, the cost for the v loops of this
line is O(e). Thus, the total cost of CAFT for the v tasks in G is

v
∑

i=1

O(|Γ−(ti)|m(ε + 1)2 log(ε + 1) + e + v log ω)

= O
(

em(ε + 1)2 log(ε + 1) + v log ω
)

INRIA

Realistic Models and Fault Tolerance Scheduling 17

Because ε < m, we derive the upper bound:

O
(

em3 log m + v log ω
)

�

6 Experimental results

We assess the practical significance and usefulness of the CAFT algorithm through
simulation studies. We compare the performance of CAFT with the two most rele-
vant fault tolerant scheduling algorithms, namely FTSA and FTBAR. We use ran-
domly generated graphs, whose parameters are consistent with those used in the
literature [10, 21]. We characterize these random graphs with three parameters: (i)
the number of tasks, chosen uniformly from the range [80, 120]; (ii) the number of
incoming/outgoing edges per task, which is set in [1, 3]; and (iii) the granularity of
the task graph g(G). The granularity indicates the ratio of the average computation
time of the tasks to that of communication time. We consider two types of graphs,
with a granularity (A) in [0.2, 2.0] and increments of 0.2, and (B) in [1, 10] and incre-
ments of 1. Two types of platforms are considered, first with 10 processors and ε = 1
or ε = 3, and then with 20 processors and ε = 5. To account for communication
heterogeneity in the system, the unit message delay of the links and the message
volume between two tasks are chosen uniformly from the ranges [0.5, 1] and [50, 150]
respectively. Each point in the figures represents the mean of executions on 60 ran-
dom graphs. The metrics which characterize the performance of the algorithms are
the latency and the overhead due to the active replication scheme. The fault free
schedule is defined as the schedule generated by each algorithm without replication,
assuming that the system is completely safe. For each algorithm, we compare the
fault free version (without replication) and the fault tolerant algorithm. Note that
the fault-free version of CAFT reduces to an implementation of HEFT, the reference
heuristic in the literature [27]. Also recall that the upper bounds of the schedules are
computed as explained in Section 4.2 or [4]. Each algorithm is evaluated in terms
of achieved latency and fault tolerance overhead, given by the following formula:
Overhead =

CAFT0|FTSA0|FTBAR0|CAFTc|FTSAc|FTBARc − CAFT∗

CAFT∗

where the superscripts ∗, c and 0 respectively denote the latency achieved by the
fault free schedule, the latency achieved by the schedule when processors effectively
fail (crash) and the latency achieved with 0 crash.

Note that for each algorithm, if a replica of task t and a replica tz∗ of its prede-
cessor t∗ are mapped on the same processor P, then there is no need for other copies

RR n° 6606

18 A. Benoit, M. Hakem, Y. Robert

of t∗ to send data to processor P. Indeed, if P is operational, then the copy of t
on P will receive the data from tz∗ (intra-processor communication). Otherwise, P
is down and does not need to receive anything.

Figures 1(a), 2(a) and 3(a) clearly show that CAFT outperforms both FTSA and
FTBAR. These results indicate that network contention has a significant impact on
the latency achieved by FTSA and FTBAR. This is because allocating many copies
of each task will severely increase the total number of communications required by
the algorithm: we move from e communications (one per edge) in a mapping with no
replication, to e(ε+1)2 in FTSA and FTBAR, a quadratic increase. In contrast, the
CAFT algorithm is not really sensitive to the contention since it uses the one-to-one
mapping procedure to reduce this overhead down to, in the most favorable cases, a
linear number e(ε+1) of communications. In addition, we find that CAFT achieves
a really good latency (with 0 crash), which is quite close to the fault free version.
As expected, its upper bound is close to the latency with 0 crash since we keep only
the best communication edges in the schedule.

We have also compared the behavior of each algorithm when processors crash
down by computing the real execution time for a given schedule rather than just
bounds (upper bound and latency with 0 crash). Processors that fail during the
schedule process are chosen uniformly from the range [1, 10]. The first observation
from Figures 1(b) and 2(b) is that even when crash occurs, CAFTc behaves always
better than FTSAc and FTBARc. This is because CAFT accounts for communica-
tion overhead during the mapping process by removing some of the communications.
The second interesting observation is that the latency achieved by both FTSA and
FTBAR compared to the schedule length generated with 0 crash sometimes in-
creases (see 1(b)) and other times decreases (2(b)). To explain this phenomenon,
consider the example of a simple task graph composed of three tasks in precedence
(t1 ≺ t3) ∧ (t2 ≺ t3) and P = {Pm, 1 ≤ m ≤ 6}. Assume that ε = 1, B(t1) = {t

(1)
1 , t

(2)
1 },

B(t2) = {t
(1)
2 , t

(2)
2 } and B(t3) = {t

(1)
3 , t

(2)
3 } with P

(

B(t1)
)

= {P1, P2}, P
(

B(t2)
)

= {P3, P4}

and P
(

B(t3)
)

= {P5, P6} respectively. Assume that the latency achieved with 0 crash

is determined by the replica of t
(1)
3 .

For the sake of simplicity, assume that the sorted list of the instances/replicas of both
B(t1) and B(t2) (sorting is done by non decreasing order of their communication finish time

F(c, l) on the links) are in this order {t
(1)
1 , t

(2)
1 , t

(1)
2 , t

(2)
2 }. t

(1)
3 will receive its input data 4

times. But as soon as it receives its input data from t
(1)
2 , the task is executed and ignores the

later incoming data from t
(2)
2 . So, without failures and since communications are serialized

at the reception, 3 communications are taken into account so that t
(1)
3 can run earlier. But,

in the presence of 1 failure, two scenarios are possible:

i) if P2 fails, the finish time of the replica t
(1)
3 will be sooner than its estimated finish time;

ii) if P2 and P3 fail, the start time of the replica is delayed until the arrival of its input data

INRIA

Realistic Models and Fault Tolerance Scheduling 19

from t
(2)
2 . This leads to an increase of its finish time and consequently to an increase of the

latency achieved with crash.
Applying this reasoning to all tasks of G, the impact of processors crash are spread

throughout the execution of the application, which may lead either to a reduction or to an
increase of the schedule length.

This behavior is identical when we consider larger platforms, as illustrated in Figure 3.
We also evaluated the impact of the granularity on performance of each algorithm.

Thus, Figures 4, 5 and 6 reveal that when the g(G) value is small, the latency of CAFT
is significantly better than that of FTSA and FTBAR. This is explained by the fact that
for small g(G) values, i.e. high communication costs, contention plays quite a significant
role. However, the impact of contention becomes less important as the granularity g(G)
increases, since larger g(G) values result in smaller communication times. Consequently, the
fault tolerance overhead of FTSA diminishes gradually and becomes closer to that of CAFT
as the g(G) value goes up. However, the fault tolerance overhead of FTBAR increases with
the increasing values of the granularity. The reason of the poorer performance of FTBAR
can be explained by the inconvenience of the schedule pressure function adopted for the
processor selection. Processors are selected in such a way that the schedule pressure value
is minimized. Doing so, tasks are not really mapped on those processors which would allow
them to finish earlier.

Finally, we readily observe from all figures that we deal with two conflicting objectives.
Indeed, the fault tolerance overhead increases together with the number of supported failures.
We also see that latency increases together with granularity, as expected. In addition, it
is interesting to note that when the number of failures increases, there is not really much
difference in the increase of the latency achieved by CAFT, compared to the schedule length
generated with 0 crash. This is explained by the fact that the increase in the schedule length
is already absorbed by the replication done previously, in order to resist to eventual failures.

To summarize, the simulation results show that CAFT is considerably superior to the
other two algorithms in all the cases tested (0.2 ≤ g(G) ≤ 10, m = {10, 20}). They also
indicate that network contention has a significant impact on the latency achieved by FTSA
and FTBAR. Thus, this experimental study validates the usefulness of our algorithm CAFT,
and confirms that when dealing with realistic model platforms, contention should absolutely
be considered in order to obtain improved schedules. To the best of our knowledge, the
proposed algorithm is the first to address both problems of network contention and fault-
tolerance scheduling.

7 Conclusion

In this paper we have presented CAFT, an efficient fault-tolerant scheduling algorithm for
heterogeneous systems based on an active replication scheme. CAFT is able to dramatically
reduce the communication overhead induced by task replication, which turns out a key
factor in improving performance when dealing with realistic, communication contention
aware, platform models.

RR n° 6606

20 A. Benoit, M. Hakem, Y. Robert

 5

 10

 15

 20

 25

 30

 35

 40

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

No
rm

ali
ze

d
La

te
nc

y

Granularity

FTSA With 0 Crash
FTSA-UpperBound

FTBAR With 0 Crash
FTBAR-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT
FaultFree-FTBAR (a)

 5

 10

 15

 20

 25

 30

 35

 40

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

No
rm

ali
ze

d
La

te
nc

y

Granularity

FTSA With 0 Crash
FTSA With 1 Crash

FTBAR With 0 Crash

FTBAR With 1 Crash
CAFT With 0 Crash
CAFT With 1 Crash (b)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Av
er

ag
e

Ov
er

He
ad

 (%
)

Granularity

FTSA With 0 Crash
FTSA With 1 Crash

FTBAR With 0 Crash

FTBAR With 1 Crash
CAFT With 0 Crash
CAFT With 1 Crash (c)

Figure 1: Average normalized latency and overhead comparison between CAFT,
FTSA and FTBAR (Bound and Crash cases, ε = 1)

INRIA

Realistic Models and Fault Tolerance Scheduling 21

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

No
rm

ali
ze

d
La

te
nc

y

Granularity

FTSA With 0 Crash
FTSA-UpperBound

FTBAR With 0 Crash
FTBAR-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT
FaultFree-FTBAR (a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

No
rm

ali
ze

d
La

te
nc

y

Granularity

FTSA With 0 Crash
FTSA With 2 Crash

FTBAR With 0 Crash

FTBAR With 2 Crash
CAFT With 0 Crash
CAFT With 2 Crash (b)

 200

 300

 400

 500

 600

 700

 800

 900

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Av
er

ag
e

Ov
er

He
ad

 (%
)

Granularity

FTSA With 0 Crash
FTSA With 2 Crash

FTBAR With 0 Crash

FTBAR With 2 Crash
CAFT With 0 Crash
CAFT With 2 Crash (c)

Figure 2: Average normalized latency and overhead comparison between CAFT,
FTSA and FTBAR (Bound and Crash cases, ε = 3)
RR n° 6606

22 A. Benoit, M. Hakem, Y. Robert

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

No
rm

ali
ze

d
La

te
nc

y

Granularity

FTSA With 0 Crash
FTSA-UpperBound

FTBAR With 0 Crash
FTBAR-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT
FaultFree-FTBAR (a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

No
rm

ali
ze

d
La

te
nc

y

Granularity

FTSA With 0 Crash
FTSA With 3 Crash

FTBAR With 0 Crash

FTBAR With 3 Crash
CAFT With 0 Crash
CAFT With 3 Crash (b)

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Av
er

ag
e

Ov
er

He
ad

 (%
)

Granularity

FTSA With 0 Crash
FTSA With 3 Crash

FTBAR With 0 Crash

FTBAR With 3 Crash
CAFT With 0 Crash
CAFT With 3 Crash (c)

Figure 3: Average normalized latency and overhead comparison between CAFT,
FTSA and FTBAR (Bound and Crash cases, ε = 5,m = 20)

INRIA

Realistic Models and Fault Tolerance Scheduling 23

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

No
rm

ali
ze

d
La

te
nc

y

Granularity

FTSA With 0 Crash
FTSA-UpperBound

FTBAR With 0 Crash
FTBAR-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT
FaultFree-FTBAR (a)

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

No
rm

ali
ze

d
La

te
nc

y

Granularity

FTSA With 0 Crash
FTSA With 1 Crash

FTBAR With 0 Crash

FTBAR With 1 Crash
CAFT With 0 Crash
CAFT With 1 Crash (b)

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

Ov
er

He
ad

 (%
)

Granularity

FTSA With 0 Crash
FTSA With 1 Crash

FTBAR With 0 Crash

FTBAR With 1 Crash
CAFT With 0 Crash
CAFT With 1 Crash (c)

Figure 4: Average normalized latency and overhead comparison between CAFT,
FTSA and FTBAR (Bound and Crash cases, ε = 1)
RR n° 6606

24 A. Benoit, M. Hakem, Y. Robert

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 3 4 5 6 7 8 9 10

No
rm

ali
ze

d
La

te
nc

y

Granularity

FTSA With 0 Crash
FTSA-UpperBound

FTBAR With 0 Crash
FTBAR-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT
FaultFree-FTBAR (a)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 3 4 5 6 7 8 9 10

No
rm

ali
ze

d
La

te
nc

y

Granularity

FTSA With 0 Crash
FTSA With 2 Crash

FTBAR With 0 Crash

FTBAR With 2 Crash
CAFT With 0 Crash
CAFT With 2 Crash (b)

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

Ov
er

He
ad

 (%
)

Granularity

FTSA With 0 Crash
FTSA With 2 Crash

FTBAR With 0 Crash

FTBAR With 2 Crash
CAFT With 0 Crash
CAFT With 2 Crash (c)

Figure 5: Average normalized latency and overhead comparison between CAFT,
FTSA and FTBAR (Bound and Crash cases, ε = 3)

INRIA

Realistic Models and Fault Tolerance Scheduling 25

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10

No
rm

ali
ze

d
La

te
nc

y

Granularity

FTSA With 0 Crash
FTSA-UpperBound

FTBAR With 0 Crash
FTBAR-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT
FaultFree-FTBAR (a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

No
rm

ali
ze

d
La

te
nc

y

Granularity

FTSA With 0 Crash
FTSA With 3 Crash

FTBAR With 0 Crash

FTBAR With 3 Crash
CAFT With 0 Crash
CAFT With 3 Crash (b)

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

Ov
er

He
ad

 (%
)

Granularity

FTSA With 0 Crash
FTSA With 3 Crash

FTBAR With 0 Crash

FTBAR With 3 Crash
CAFT With 0 Crash
CAFT With 3 Crash (c)

Figure 6: Average normalized latency and overhead comparison between CAFT,
FTSA and FTBAR (Bound and Crash cases, ε = 5,m = 20)
RR n° 6606

26 A. Benoit, M. Hakem, Y. Robert

To assess the performance of CAFT, simulation studies were conducted to compare it
with (the one-port adaptation of) FTBAR and FTSA, which seem to be its main direct
competitors from the literature. We have shown that CAFT is very efficient both in terms
of computational complexity and quality of the resulting schedule.

An easy extension of CAFT would be to adapt it to sparse interconnection graphs (while
we had a clique in this paper). On such platforms, each processor is provided with a routing
table which indicates the route to be used to communicate with another processor. To
achieve contention awareness, at most one message can circulate on a given link at a given
time-step, so we need to schedule long-distance communications carefully.

Further work will be devoted to implementing more complex heuristics that depart from
the main principle of list scheduling heuristics. Instead of considering a single task (the one
with highest priority) and assigning all its replicas to the currently best available resources,
why not consider say, 10 ready tasks, and assign all their replicas in the same decision making
procedure? The idea would be to design an extension of the one-to-one mapping procedure
to a set of independent tasks, in order to better load balance processor and link usage.

References

[1] Ishfaq Ahmad and Yu-Kwong Kwok. On exploiting task duplication in parallel program
scheduling. IEEE Transactions on Parallel and Distributed Systems, 1998.

[2] R. Al-Omari, Arun K. Somani, and G. Manimaran. Efficient overloading techniques for
primary-backup scheduling in real-time systems. Journal of Parallel and Distributed
Computing, 64(5):629–648, 2004.

[3] M. Banikazemi, V. Moorthy, and D. K. Panda. Efficient collective communication
on heterogeneous networks of workstations. In Proceedings of the 27th International
Conference on Parallel Processing (ICPP’98). IEEE Computer Society Press, 1998.

[4] Anne Benoit, Mourad Hakem, and Yves Robert. Fault Tolerant Scheduling of Prece-
dence Task Graphs on Heterogeneous Platforms. Research Report 2008-03, LIP, ENS
Lyon, France, January 2008. Available at graal.ens-lyon.fr/~abenoit/.

[5] P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Efficient collective communication
in distributed heterogeneous systems. In ICDCS’99 19th International Conference on
Distributed Computing Systems, pages 15–24. IEEE Computer Society Press, 1999.

[6] P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Efficient collective communication
in distributed heterogeneous systems. Journal of Parallel and Distributed Computing,
63:251–263, 2003.

[7] P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra, and Z. Liu, editors. Scheduling Theory
and its Applications. John Wiley and Sons, 1995.

[8] H. El-Rewini, H. H. Ali, and T. G. Lewis. Task scheduling in multiprocessing systems.
Computer, 28(12):27–37, 1995.

INRIA

graal.ens-lyon.fr/~abenoit/

Realistic Models and Fault Tolerance Scheduling 27

[9] Sunondo Ghosh, Rami Melhem, and Daniel Mosse. Fault-tolerance through scheduling
of aperiodic tasks in hard real-time multiprocessor systems. IEEE Transactions on
Parallel and Distributed Systems, 8(3):272–284, 1997.

[10] A. Girault, H. Kalla, M. Sighireanu, and Y. Sorel. An algorithm for automatically
obtaining distributed and fault-tolerant static schedules. In International Conference
on Dependable Systems and Networks, DSN’03, 2003.

[11] K. Hashimito, T. Tsuchiya, and T. Kikuno. A new approach to realizing fault-tolerant
multiprocessor scheduling by exploiting implicit redundancy. In Proc. of the 27th In-
ternational Symposium on Fault-Tolerant Computing (FTCS ’97), page 174, 1997.

[12] K. Hashimito, T. Tsuchiya, and T. Kikuno. Effective scheduling of duplicated tasks
for fault-tolerance in multiprocessor systems. IEICE Transactions on Information and
Systems, E85-D(3):525–534, 2002.

[13] L. Hollermann, T. S. Hsu, D. R. Lopez, and K. Vertanen. Scheduling problems in a
practical allocation model. J. Combinatorial Optimization, 1(2):129–149, 1997.

[14] B. Hong and V.K. Prasanna. Distributed adaptive task allocation in heterogeneous
computing environments to maximize throughput. In International Parallel and Dis-
tributed Processing Symposium IPDPS’2004. IEEE Computer Society Press, 2004.

[15] T. S. Hsu, J. C. Lee, D. R. Lopez, and W. A. Royce. Task allocation on a network of
processors. IEEE Trans. Computers, 49(12):1339–1353, 2000.

[16] S. Khuller and Y.A. Kim. On broadcasting in heterogenous networks. In Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1011–1020.
Society for Industrial and Applied Mathematics, 2004.

[17] P. Liu. Broadcast scheduling optimization for heterogeneous cluster systems. Journal
of Algorithms, 42(1):135–152, 2002.

[18] G. Manimaran and C. Siva Ram Murthy. A fault-tolerant dynamic scheduling algorithm
for multiprocessor real-time systems and its analysis. IEEE Transactions on Parallel
and Distributed Systems, 9(11):1137–1152, 1998.

[19] Martin Naedele. Fault-tolerant real-time scheduling under execution time constraints.
In Proc. of the Sixth International Conference on Real-Time Computing Systems and
Applications, page 392, 1999.

[20] M. G. Norman and P. Thanisch. Models of machines and computation for mapping in
multicomputers. ACM Computing Surveys, 25(3):103–117, 1993.

[21] Xiao Qin and Hong Jiang. A novel fault-tolerant scheduling algorithm for precedence
constrained tasks in real-time heterogeneous systems. Parallel Computing, 32(5):331–
346, 2006.

RR n° 6606

28 A. Benoit, M. Hakem, Y. Robert

[22] T. Saif and M. Parashar. Understanding the behavior and performance of non-blocking
communications in MPI. In Proceedings of Euro-Par 2004: Parallel Processing, LNCS
3149, pages 173–182. Springer, 2004.

[23] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and load balancing in parallel
and distributed systems. IEEE Computer Science Press, 1995.

[24] O. Sinnen and L. Sousa. Experimental evaluation of task scheduling accuracy: Impli-
cations for the scheduling model. IEICE Transactions on Information and Systems,
E86-D(9):1620–1627, 2003.

[25] O. Sinnen and L. Sousa. Communication contention in task scheduling. IEEE Trans-
actions on Parallel and Distributed Systems, 16(6):503–515, 2005.

[26] Yves Sorel. Massively parallel computing systems with real-time constraints: the ”algo-
rithm architecture adequation”. In Proc. of Massively Parallel Comput. Syst., MPCS,
1994.

[27] H. Topcuoglu, S. Hariri, and M. Y. Wu. Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans. Parallel Distributed Systems,
13(3):260–274, 2002.

[28] Y.Oh and S.H.Son. Scheduling real-time tasks for dependability. Journal of Operational
Research Society, 48(6):629–639, 1997.

INRIA

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau- Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	1 Introduction
	2 Framework
	3 Related work
	4 Fault-tolerant heuristics
	4.1 FTBAR
	4.2 FTSA
	4.3 Adaptation to the one-port model

	5 CAFT scheduling algorithm
	6 Experimental results
	7 Conclusion

