GhostDB: Querying Visible and Hidden Data Without Leaks

Nicolas Anciaux 1, 2 Mehdi Benzine 1, 2 Luc Bouganim 1, 2 Philippe Pucheral 1, 2 Dennis Shasha 1
1 SMIS - Secured and Mobile Information Systems
PRISM - Parallélisme, Réseaux, Systèmes, Modélisation, UVSQ - Université de Versailles Saint-Quentin-en-Yvelines, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR8144
Abstract : Imagine that you have been entrusted with private data, such as corporate product information, sensitive government information, or symptom and treatment information about hospital patients. You may want to issue queries whose result will combine private and public data, but private data must not be revealed. GhostDB is an architecture and system to achieve this. You carry private data in a smart USB key (a large Flash persistent store combined with a tamper and snoop-resistant CPU and small RAM). When the key is plugged in, you can issue queries that link private and public data and be sure that the only information revealed to a potential spy is which queries you pose. Queries linking public and private data entail novel distributed processing techniques on extremely unequal devices (standard computer and smart USB key). This paper presents the basic framework to make this all work intuitively and efficiently.
Type de document :
Communication dans un congrès
ACM SIGMOD. 26th International ACM Conference on Management of Data (ACM SIGMOD), Jan 2007, Beijing, China. 2007
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00309525
Contributeur : Elisabeth Baque <>
Soumis le : mercredi 6 août 2008 - 15:16:31
Dernière modification le : vendredi 25 mai 2018 - 12:02:04
Document(s) archivé(s) le : jeudi 3 juin 2010 - 17:58:55

Fichier

ABBPS07a.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00309525, version 1

Collections

Citation

Nicolas Anciaux, Mehdi Benzine, Luc Bouganim, Philippe Pucheral, Dennis Shasha. GhostDB: Querying Visible and Hidden Data Without Leaks. ACM SIGMOD. 26th International ACM Conference on Management of Data (ACM SIGMOD), Jan 2007, Beijing, China. 2007. 〈inria-00309525〉

Partager

Métriques

Consultations de la notice

225

Téléchargements de fichiers

288