. American-electroencephalographic-society, Guidelines for standard electrode position nomenclature, J Clin Neurophysiol, vol.8, issue.2, pp.200-202, 1991.

A. Bashashati, R. Ward, and G. Birch, Towards Development of a 3-State Self-Paced Brain-Computer Interface, Computational Intelligence and Neuroscience, vol.57, 2007.
DOI : 10.1109/TNSRE.2002.806839

F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, A review of classification algorithms for EEG-based brain???computer interfaces, Journal of Neural Engineering, vol.4, issue.2, pp.1-13, 2007.
DOI : 10.1088/1741-2560/4/2/R01

URL : https://hal.archives-ouvertes.fr/inria-00134950

F. Lotte, A. Lécuyer, F. Lamarche, and B. Arnaldi, Studying the use of fuzzy inference systems for motor imagery classification, IEEE Trans. on Neural Sys. and Rehab, vol.15, issue.2, pp.322-324, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00134958

S. Mason, J. Kronegg, J. Huggins, M. Fatourechi, and A. Schloegl, Evaluating the performance of selfpaced bci technology, 2006.

J. Millán and J. Mouriño, Asynchronous BCI and local neural classifiers: An overview of the Adaptive Brain Interface project, IEEE Trans. on Neural Sys. and Rehab, 2003.

H. Mouchère and E. Anquetil, Generalization capacity of handwritten outlier symbols rejection with neural network, Proc. of IWFHR'06, pp.187-192, 2006.

H. Mouchère and E. Anquetil, A Unified Strategy to Deal with Different Natures of Reject, 18th International Conference on Pattern Recognition (ICPR'06), pp.792-795, 2006.
DOI : 10.1109/ICPR.2006.193

G. Pfurtscheller and C. Neuper, Motor imagery and direct brain-computer communication, Proceedings of the IEEE, pp.1123-1134, 2001.
DOI : 10.1109/5.939829

R. Scherer, F. Lee, A. Schlögl, R. Leeb, H. Bischof et al., Toward Self-Paced Brain–Computer Communication: Navigation Through Virtual Worlds, IEEE Transactions on Biomedical Engineering, vol.55, issue.2, pp.675-682, 2008.
DOI : 10.1109/TBME.2007.903709

G. Townsend, B. Graimann, G. Pfurtscheller, J. Wolpaw, N. Birbaumer et al., Continuous EEG Classification During Motor Imagery???Simulation of an Asynchronous BCI, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.12, issue.2, pp.258-265767, 2002.
DOI : 10.1109/TNSRE.2004.827220

D. Zhang, Y. Wang, X. Gao, B. Hong, and S. Gao, An algorithm for idle-state detection in motor-imagerybased brain-computer interface, Comput. Intell. Neurosci, 2007.