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Bénéfices de I’Ingénierie Dirigée par les Modeles
pour la Synthese de Haut Niveau

Résumé : Ce rapport présente comment I’Ingénierie Dirigée par les Modeles
(IDM) permet de résoudre les difficultés majeures que rencontrent les outils
dédiés a la synthese de haut niveau. Les paradigmes de 'IDM nous servent de
base & la définition d’un flot de conception dédié aux applications de traitement
de signal intensif. Ce flot de conception génére automatiquement du code VHDL
a partir de modélisations en UML. Il permet & la fois a ses utilisateurs et a ses
concepteurs de tirer profit de I'utilisation de 'IDM. Son efficacité est évaluée au
travers d’une application dédiée au traitement vidéo.

Mots-clés : Syntheése de haut niveau, exploration, accélérateurs matériels,
ingénierie dirigée par les modeles, profil standard MARTE.
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1 Introduction

High Level Synthesis (HLS) aims to simplify the hardware design of accelerators
by describing applications at high abstraction levels and by generating the corre-
sponding low level implementation. The specification of the applications becomes
easier at high abstraction level. A HLS tool user is not concerned with the
implementation details. The automatic generation of low level implementation
drastically reduces the fabrication cost and the time to market compared to the
hand-tuned implementations in Hardware Description Languages (HDL). For
these reasons, the HLS tools encounter a large success by the hardware designers
community. This trend is followed by the regular integration of new capabilities
and functionality in the tools. Therefore, successful HLS has to face the rapidly
evolving technologies and has to be maintainable in order to capitalize efforts
provided by the tool designers.

1.1 Design Challenges

From the tool user point of view, the abstraction level of the specification is
sometimes not high enough to be really independent of low level implementation
considerations: each particular implementation of a same application requires
a particular specification. Such specifications are generally done in C or C-like
syntax (e.g. Handel-C) [21,22,41]. Unfortunately, such textual low level descrip-
tions do not provide the opportunity to immediately extract specific information
such as data dependencies, data parallelism and hierarchy. Furthermore, textual
descriptions have no ability to highlight the different concepts, as opposed to
graphical descriptions.

Intensive Signal Processing (ISP) applications handle large amount of data
manipulated by sets of regular tasks. Such applications are characterized by
hierarchical and data parallel tasks, which manipulate multidimensional data
arrays according to complex data dependencies. ISP applications are efficiently
executed by customized hardware accelerators. A hardware accelerator is an
electronic design, dedicated to the execution of a specific application. It allows a
maximal parallelization of the computation needed to execute this application. It
provides an optimal execution support for regular and repetitive tasks. However,
the complexity of the hardware accelerators makes them difficult to manipulate
at low abstraction levels (in HDL language for instance). The description of
complex ISP applications is error prone and becomes tedious when using tools that
constrain the number of dimensions. Alternatively, a graphical representation
associated to a factorized expression of the potential data parallelism and a
powerful expression of data dependencies can solve the difficulties encountered
by the HLS tool users. Moreover, a standard representation that respects the
user habits will considerably enhance the exchanges between the different field
experts acting in the description of an application.

ISP applications are becoming more and more sophisticated and resource
demanding. Meeting the performance requirements relies on the semiconductor
technology, which enables to integrate even more hardware resources on a single
chip. This contributes to increase the possible implementation solutions (i.e
the design space) and then makes difficult the design of an effective hardware
accelerator. As a consequence, the productivity of flow users strongly gets
penalized. It thus becomes necessary to deal with an efficient design space
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4 Le Beuzx, Marquet & Dekeyser

exploration; i.e. how the analysis obtained from the implementation level
are exploited for an efficient redesign by modifying the high abstraction level
representation of the application. So, an important challenge here is to provide
efficient design space exploration strategies that adequately address all these
issues concerning complex and resources demanding ISP applications.

The gap between the high abstraction levels and the low abstraction levels
is often assumed using one or several Internal Representations (IR) [21, 22, 30].
The set of concepts defined for an IR is generally difficult to handle due to
the lack of formal definition of these concepts and of the relations between
these concepts. Therefore, IR extensions and maintainability (necessary to
ensure the tool development evolutions) rely on new specifications of the IR
itself. Alternatively, with a formal definition, we just need to add new concepts
and new relations. A graphical representation of the IR provides an additional
documentation that considerably highlights the concepts and relations. This
ensures a high extensibility and maintainability of the IR, and consequently of
the tool itself.

The clear identification of concepts and relations in an IR allows a compilation
process based on concept to concept translations to take care of the relations
between these concepts. The consequences of the introduction of new concepts
or relations in the source or the target IR are then localized in the compilation
(i.e. translation) process.

At the level of the global design flow, a clear separation of the compilation and
exploration phases implies a clear identification of the concepts, which helps to
capitalize the efforts of the tool designer. Such a development of a tool requires a
strong methodology suitable for the designers habits and a steady and advanced
technology to ensure the reuse, extension and maintainability of the designer
developments. Concerning ISP, the exploration process is based on heuristics
that aim to apply usual loop transformations inside IR in order to find the
most effective hardware design according to resource and time constraints. The
SPARK tool [22] separates loop transformations and optimization heuristics,
allowing independent modifications and extensions: this demonstrates the interest
in the decomposition of relevant difficulties into smaller difficulties ones.

1.2 Owur HLS Flow

This paper presents a HLS flow dedicated to massively parallel ISP applications,
the flow is entirely build within the Model Driven Engineering [43] (MDE)
methodology. Thanks to MDE, we successfully answer the major difficulties,
for both users and designers of the HLS flow. Applications are graphically
specified at a high abstraction level with Unified Modeling Language (UML).
Such graphical representation facilitates exchanges and communications with
various field experts, and makes the specification easy to reuse, extend and
maintain. Factorized expressions of parallelism, multidimensional data arrays
and powerful constructs of data dependencies are managed thanks to the use of
the MARTE standard profile. MARTE thus provides a modeling environment
well suited to massively parallel ISP applications, even to the more complex and
critical ones (e.g. sonar chain, obstacle detection algorithm). From such a high
level representation of a given ISP application, our flow automatically generates
hardware accelerators able to execute the modeled application. The design space
exploration is considerably facilitated since users only deal the modification of
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high abstraction models, the corresponding implementations being automatically
regenerated. Furthermore, an estimation process characterises the execution
performance and the area cost of the generated hardware accelerator. It is thus
no more necessary to use external tools to evaluate the effectiveness of generated
designs, such facility accelerates the design space exploration.

The usage of MDE also reduces the designer difficulties to develop and
maintain HLS tools. Each abstraction level (i.e. IR) is graphically expressed
in UML by designers (UML is therefore used by both users and designers),
highlighting the concepts and the relations between concepts. The refinements
from high abstraction levels down to low abstraction levels are taken over by
transformation steps, each step being composed of simple rules, which compile
a well defined subset of concepts. For instance, a set of rules compiles data
dependencies while another one manages data parallelism: a complex compilation
process is divided into small and easily handled tasks. Each rule can be modified
independently from other rules and new rules can be added to extend the
compilation process. An exploration process modifies a high abstraction level
specification according to the generated low abstraction level implementations.
The overall exploration process thus benefits from the implementation details
provided by successive refinements.

This paper is organized as follows: Section 2 introduces the Model Driven
Engineering methodology and presents preliminary results about its relevance
to high level synthesis of ISP applications. According to these considerations,
we developed a HLS flow dedicated to massively parallel ISP applications. We
present this flow in Section 3. Section 4 deals with strategies that allow one the
rapidly explore the design space in our flow. Section 5 provides a brief overview
of our flow and presents the corresponding tool-set. The successful utilization of
our flow for a multimedia application is illustrated in Section 6. Some related
works are presented in Section 7, highlighting the originality of our work. The
last section concludes this work.

2 Model Driven Engineering

Complex systems can be easily understood thanks to abstract and simplified
representations: models. Graphical representations of models considerably
facilitate the comprehension of a given model. The UML language is often used
for such graphical representations since its normalization in 1997. A model
highlights the intention of a system without describing the implementation
details. Several methodologies aimed to manipulate model in past decades,
like Chen [8] in seventies. MDE [43] inherits from these methodologies. It is
definitely oriented towards the modeling of software engineering systems. The
resulting models must be comprehensive and interpretable by computer. MDE
also covers the code generation, which puts a model in concrete form. In this
way, MDE stands apart from the others methodologies based on models. This
section details the major aspects of MDE that are model, metamodel and model
transformations. Generals mechanisms are introduced and their relevant usage
for ISP applications are highlighted and discussed.
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6 Le Beuzx, Marquet & Dekeyser

2.1 Model

A model is an abstraction of the reality which is composed of concepts and
relations. The concepts represent an abstraction of things in the reality and
relations represent the links between the things. A model can be graphically
observed from different points of view (views in MDE), which highlight specific
aspects of the reality.

The ISP applications rely on clearly identified elements (things) such as
data parallel tasks, data dependencies and multidimensional data arrays. The
abstraction of each element corresponds to a concept in a model, the dependen-
cies between these elements are represented by relations. Models can represent
abstract descriptions of the ISP applications and facilitate their specifications
and modifications because each concept and relation is clearly identified. More-
over, views can help to represent and document models of ISP applications
by highlighting the relevant concepts and relations according to a particular
purpose.

2.2 Metamodel

A metamodel gathers the set of concepts and relations between the concepts
used to describe a model, i.e. the reality according to a particular purpose
(a given abstraction level for instance). A model is then said to conform to a
metamodel. Generally speaking, a metamodel defines the syntax of its models,
like a grammar defines its language.

A metamodel thus can gather the set of concepts and relations necessary to
represent the ISP applications at a given abstraction level. Such metamodel is
assimilated to an IR, from which the HLS tools relies on to internally represent
ISP applications.

2.3 Model Transformations

In MDE, a model transformation [11] is a compilation process which transforms
a source model into a target model, as illustrated Figure 1. The source and
the target models are respectively conformed to the source and the target
metamodels. A model transformation relies on a set of rules. Each rule clearly
identifies concepts in the source and the target metamodels. Such decomposition
facilitates the extension and the maintainability of a compilation process: new
rules extend the compilation process and each rule can be modified independently
from the others.

The rules are specified with languages. The language may be imperative:
it describes how a rule is executed; it can be declarative, it describes what is
created by the rules. Declarative languages are often used in MDE because the
rules objectives can be specified independently from the execution. A graphical
representation is a good approach for representing the rules expressed in a
declarative language [19,32].

Such graphical representation of a basic rule is illustrated Figure 2. This rep-
resentation is conformed to TrML, the Transformation Modeling Language [16],
which aims to facilitate documentations and exchanges of the rules. The rule
represented in this figure transforms components at a high abstraction level
(c:Component) into components at a lower abstraction level (tc:Component. The
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Figure 1: A model transformation.

following describes the semantic of the representation and details the represented
rule.

c: Component

-hame 5tring = name_c

+5ource

Component 2 Cormponent

+Component2Companent( c, 1)

+Destination
tc: Component

-hame 5tring = name_c

+clack, \w‘eset

clock:Input Port reset:iInput Port

—-name String ="Clock" -hame 5tring = "Reset"

~Ftype +tyV

logic:DataType

-hame String = "std_logic"

Figure 2: Graphical representation of a transformation rule.

A transformation rule is divided into three parts: the rule input pattern, the
stgnature and the rule output pattern.

e The rule compares the input pattern to the source model in order to detect
a concept or a set of concepts which trigger an execution. Such condition is
illustrated on the top part of the graphical representation of a rule. In the
example, the rule input pattern is trivial and contains the single concept
c:Component which corresponds to the concept of applicative components in
the source model. Each concerned component is characterized by a name.
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8 Le Beuzx, Marquet & Dekeyser

e The signature of a rule is represented in the center of the graphical represen-
tation, it corresponds to the Component2Component concept in Figure 2. The
signature allows the identification of the rule input and output patterns
thanks to the source and destination links. During the transformation execu-
tion, the signature identifies the sets of concepts matching the rule input
pattern, stores the information relative to these concepts and potentially
calls other transformation rules (so called sub-rules).

e The rule output pattern corresponds to a set of concepts in the target
model that are created during a rule execution. The rule output pattern
is illustrated on the bottom part of the graphical representations. In the
example, it includes four concepts. The main one is the tc:Component concept
(the main concept is the one attached to the rule). The attributes of these
concepts often depend on the elements that are stored by the signature
of a rule. For instance, the name of the tc:Component concept corresponds
to the name of the c:Component concept. clock:InputPort and reset:InputPort
are attached to the main concept, they both have the same data type
(Iogic:DataType concept).

For this purpose, there exist different kinds of rules which can be sequen-
tially called, mutually called or automatically executed (there is no condition).
Moreover, while certain rules are directly called from the transformation engine
(the top rules), some others can only be called from others rules. These features
allow to realize complex transformations.

As previously mentioned, a model transformation is composed of a set of
rules. On the right-hand side of the Figure 3, the rule Component2Component is a
part of the model transformation S2D. The rule input pattern and the rule output
pattern respectively correspond to a part of the source and the target metamodels.
In this example, we consider a source metamodel which is dedicated to the high
abstraction level description of applications. At this level, the applications
are composed of tasks (concept Component in the source metamodel). We then
consider that the target metamodel is dedicated to the low implementation level
description of hardware designs which are able to execute applications. In this
metamodel, the component concept represents a hardware component which is
able to execute a task. Each hardware component has a clock port and a reset
input. The rule Component2Component is in charge of the transformation of the
tasks in a source model (on the top left-hand side of Figure 3) into hardware
components in the target model (on the bottom left-hand side). The source
model is composed of three tasks named A, B and C. The Component2Component
rule transforms these components into hardware components with input ports in
the target model.

The result of a model to model transformation is a model. As models are not
directly executable by computers, it is necessary to generate codes. In MDE,
the code generation is considered as a model to text transformation, which is
composed of a set of templates (instead of a set of rules for usual model to model
transformations). In MDE based design flow, the last transformation is often a
model to text transformation.

Model transformations are suitable in HLS in order to perform refinements
going from the high abstraction level specifications to the code generations. For
this purpose, model transformations add implementation details all along the
compilation process. Several model transformations can be defined from the same
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10 Le Beuzx, Marquet & Dekeyser

abstraction level, but towards different lower levels, offering opportunities to
generate several implementations of a given specification. The decomposition into
rules separates the compilation of the different concepts. Therefore, particular
and specific attention can be provided in accordance to the concepts or set
of concepts handled by a given rule. For instance, data parallelism and task
parallelism can be compiled in two different manners.

2.3.1 Transformation Engine

Several tools allow to model and execute transformation rules: Kermeta [33,46],
ATL [23], ModelMorf [13], etc. QVT [38] (Query, View, Transformations) is the
only one standardized at the Object Management Group! (OMG). QVT allows
the graphical representation and the textual description of the rules. However,
this standard is not commonly used since the tools which support this standard
only manage the imperative part of the rules?, the part which does not rely
on the notion of rule. An alternative solution to QVT is EMF [15] (Eclipse
Modeling Framework), a commonly used Java library which allow to create and
modify models. The rules used in our HLS flow are implemented with EMF3.

2.4 Unified Modeling Language

UML (Unified Modeling Language) has been standardized by the OMG and is
commonly used as a metamodel in MDE community. UML is understood by the
overall software engineering community and is taught in all computer sciences
university. However, UML is not directly exploitable by MDE to precisely model
a software engineering system because of its lack of semantics. For a specific
context, UML is used with a profile, an extension composed of stereotypes to
specialize UML classes and of tagged values to add attributes to these classes.
Several standard profiles aid to model designs in specific fields. The MARTE [39]
profile which stands for Modeling and Analysis of Real-Time and Embedded
systems. Among other things, MARTE provides mechanisms to efficiently
represent massively parallel ISP applications. Its standardization process by
the OMG is under finalization. In the context of high level synthesis, UML is
suitable to graphically model applications and to specify the metamodels.

3 Methodology for a HLS Flow

According to the preliminary conclusions sketched in the previous section, we
developed a fully automatized HLS flow which is entirely based on MDE. The
flow is dedicated to massively parallel ISP applications and, thus, has to assume
some specific requirements: hierarchy, factorized expression of regular tasks in
data parallelism, multidimensional arrays and complex data dependencies.
This flow offers relevant advantages to users and designers of the flow thanks
to the MDE methodology. Models, metamodels and model transformations are

Thttp://www.omg.org/

2http://smartqut.elibel.tm.fr/

3The very recent QVTO tool partially supports the QVT standard. We are currently
rewriting our rules with QVTO tool in order to test its effectiveness and to check that
the supported part of the standard is large enough for our requirement. However, this
implementation of the rule does not have any effect on the work presented in this paper.

INRIA


http://www.omg.org/
http://smartqvt.elibel.tm.fr/

Model Driven Engineering Benefits for High Level Synthesis 11

omnipresent: models are manipulated by the users, they respects the metamodels
defined by the designers of the flow and are transformed by model transformations,
also defined by the designers. Figure 4 illustrates the HLS flow, left-hand side
represents the flow from a user point of view while the right-hand side represents
the flow as considered by a designer.

5 UMLmodel —°*°M0Med0  MARTE profile
_ t
— — s executedby  yyy isp
v v
3 ISP model s conformed 10 o5 petamodel (IR)
3
§ ' db ;
g - lsexeauledby gpopTL
2 ! | ;
RTL model [is conformed 10 oy Metamodel (IR)
_ t
- _ isexecuted by pr ovHDL
) | ¢
B VHDL code — S°0Momedio  yuni Syntax
Key
—_—

model

execution of a .
transformation

model transformation

Figure 4: Our HLS flow for ISP applications.

A UML model corresponds to the modeling of an ISP application, this is
the only specification provided by the user: everything else is automatized. The
applications are entirely defined at a high abstraction level, independently from
any implementation detail. A UML model is transformed into an ISP application
model thanks to the UML2ISP transformation. The ISP metamodel corresponds
to an IR in the HLS flow, it is also dedicated to the high level description of ISP
applications. The ISP2RTL model transformation refines ISP application models
into RTL models. A RTL model corresponds to a low abstraction level of an
hardware accelerator able to execute the corresponding ISP application. A RTL
model provides a precise estimation of the resources required for the resulting
design implementation. An exploration process (not illustrated in the figure but
detailed later on) is performed according to these estimations. The RTL2VHDL
model transformation ensures the generation of the VHDL code corresponding
to the hardware accelerator described in a RTL model. Usual Electronic Design
Automation (EDA) tools are used to synthesize the resulting VHDL code onto
FPGA or either ASIC. The subsequent parts of this section details this flow.
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12 Le Beuzx, Marquet & Dekeyser

3.1 Specification at a High Abstraction Level
3.1.1 UML Model

<=ApplicationComponent= E]
MatrixMultiplication
_<:<:_Apaica_tiorEDEpc;1erE>:>_g]_'
<<Elementary Component=>:
MA [5.30 [}-1_1 | sp: ScalarProduct [{2,3}] |
-\_\_\_\-\_"—\—\_ .
<<Tilers> L] Line {5} |
ffitting = "{1,00", | Scalar |——_____
origin = "{0, 0}, | [ <erierss 1 IMC 2,30
paving = "0, 010,11 |
__D Column [{51] {fIFtI.ng = L .
________———ﬂ‘ origin = "{0,0}",
ME [{2,51 [ |+ P paving = "{1,04{0,15}
{fitting = "{0,14",
arigin = "{0,01",
paving = "{1,01{0,00}

Figure 5: UML model of the matrix multiplication academic example.

Application modeling relies on the part of the MARTE profile dedicated to
the factorized expression of the parallelism, which is useful to specify the ISP
applications. Such applications are data flow oriented. Data are manipulated in
the form of multidimensional arrays. The absence of restriction on the number
of dimensions in data arrays allows to represent data as often manipulated in
ISP applications. For instance, video processing applications handle two spacial
and one temporal dimension. Sonar chain is another kind of application, which
handles spacial, temporal and frequency dimensions. MARTE allows to models
such applications.

The MARTE profile provides powerful mechanisms to specify the data depen-
dencies. For task parallelism, data dependencies represent data array transactions
from one task to another task thanks to simple connectors. Each task is repre-
sented as a UML component, as illustrated by Figure 5. This figure represents
the modeling of a matrix multiplication academic example which multiply matrix
MA and MB in order to produce a matrix MC. MatrixMultiplication is a hierarchical
task. The data consumed and produced by this task are respectively represented
by the input ports (MA and MB) and the output port MC. In this example, the
ports correspond to the matrix and the dimension of each port correspond to the
dimension of the corresponding matrix: 5x3 for MA, 2x5 for MB and 2x3 for MC.
In the MARTE profile, a repetition space on a task expresses data parallelism.
On Figure 5, the multiplicity {2,3} of the component instance sp (i.e. sp is an
instance of the ScalarProduct task) represents such a data parallel task.

In this example, ScalarProduct is an elementary task (the elementary tasks
are stereotyped ElementaryComponent). An elementary task does not include any
hierarchical task (i.e. it corresponds to a leaf of an application model). The
behavior of an elementary task is provided according to additional information
included in the deployment, as described later on. In the matrix multiplication
example, the task sp consumes two input patterns (Line and Column) and produces
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Figure 6: The data dependencies expressed by the tilers of the MatrixMultiplication
task.

an output pattern (Scalar) which corresponds to the result of a scalar product of
a line and a column.

Each iteration in the repetition space consumes and produces patterns. The
pattern construction relies on the data dependencies expressed thanks to the tiler
connectors. A tiler allows to model data dependencies that links a M-dimension
data array to a N-dimension pattern. These data dependencies are not limited
to compact and parallel to axis patterns. In usual HLS tools, data dependencies
are expressed within indexes. Indexes are tedious to manipulate and error prone
when directly provided by users: their complexity dramatically increases with
the number of dimensions and the shape of the pattern. Tilers do not cause
this inconvenience. Three tilers are represented on the figure, they are identified
thanks to the Tiler stereotype. Origin, Paving and Fitting are attributes of a tiler,
they express data dependencies. Boulet [6] provides a formal description of
tilers, details their construction and illustrates them according to some relevant
examples. He also formally demonstrates that a computation described with
such data dependencies is deterministic.

Figure 6 represents the data dependencies expressed with the tilers used in
the matrix multiplication example (Figure 5). The left-hand side of Figure 6
represents the tiler that link MA with Line, the center corresponds to the second
input tiler and the right-hand side illustrates the output tiler. This figure
represents the data consumed and produced in the data arrays (i.e. MA, MB and
MC). For instance, while considering the first iteration on the repetition space
r = (), the first line and the first column of the data array MA and MB are
read*. This line and this column are used by the first iteration of the task sp in
order to produce the first data (i.e. the data on position (0,0)) in the output
data array MC). Regarding to the iteration r = (), the first line of MA is read
again while the second column of MB is used®. The data on position (1,0) in
the MC is computed by iterating around the overall repetition space, the overall
output data array MC is produced.

This example demonstrates the effectiveness of the MARTE profile for repre-
senting data parallel applications because the high abstraction level modeling
is completely independent from its low level execution. In order to transform
such high abstraction level models into low implementation level models, very
detailed deployment information are provided. In particular, each elementary
component is linked to an existing code. For this purpose, a deployment profile
has been in introduced in [2]. The aim of this methodology is to facilitate
Intellectual Property (IP) reuse. Indeed, Piel et.al [2] introduce the concepts
of Abstractimplementation and Implementation in their UML profile, they respectively
expresses a functionality and a given implementation. Each Implementation is

4The line and the column are constructed thanks to the fitting field.
5The shift of the line and the column are constructed thanks to the paving.
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14 Le Beuzx, Marquet & Dekeyser

linked to a file containing the code of the targeted IP. Using the ImplementedBy
dependency, designers select the adequate IP for each elementary task.

Figure 7 illustrates the deployment of the ScalarProduct elementary task onto
the ScalarProduct_VHDL IP (this is realized with the ImplementedBy dependency).
The IP code itself is furnished by the CodeFile artifact. The ports of the elementary
task are also deployed, ensuring the right deployment of the task ports onto
the IP ports. ScalarProduct_C is another IP written in C language which can be
used for an execution onto a processor-based architectures for instance [2]. Its
functionality is equivalent of the VHDL one, this explains the gather of both IP
in the AbstractScalarProduct abstract component.

<<ApplicationComponent>> =]
<<ElementaryComponent>>
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=
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timpl g1 dB;
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In2 utpul ({iilePath = */C/ScalarProduct.c®  }

Figure 7: Deployment of the ScalarProduct elementary task onto the ScalarProd-
uct_VHDL IP.

In this methodology, great care was taken to allow usage of IP libraries
(models which contain a set of existing IPs) and to keep the application model
independent from the implementation target. Using this methodology, we are
able to provide additional information that will ensure the execution of the
(automatically generated) low level implementation, thanks to existing IPs.

3.1.2 ISP Model and UML2ISP

The first IR is the ISP metamodel. Generally speaking, it corresponds to the
interesting subset of MARTE dedicated to the description of ISP applications.
UML2ISP ensures the generation of an ISP model from a UML model. The
gap between the MARTE profile and the ISP metamodel is little enough to
rely on relatively simple transformation rules. These rules identify the UML
concepts and MARTE stereotypes used in a UML model in order to generate
the corresponding concepts in an ISP model.

Figure 8 represents the ISP model corresponding to the internal representation
of the matrix multiplication UML model. This ISP model is automatically
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Figure 8: ISP model generated from the UML model of the matrix multiplication
application.

generated by the UML2ISP model transformation. Such representation does not
provide all details of the model but focuses on the hierarchy and the available
data parallelism. The mm ellipse (the task MatrixMultiplication) corresponds to
the top hierarchical task. mm instantiates the task sp according to the {2,3}
repetition space.

Such high level models are independent from any technological implementa-
tion. ISP2RTL ensures the generation of low level implementations from such
high level models.

3.2 Implementation at a Low Level

3.2.1 RTL Model

The RTL metamodel is an IR, which gathers the set of concepts used to describe
hardware accelerators. Such hardware accelerators can execute the targeted ISP
applications according to a specific execution model®. This execution model is
data flow oriented and handle, among others, hierarchy, multidimensional data
dependencies, data parallelism and task parallelism. The following provides a
brief overview of the RTL metamodel, additional and more detailed information
are provided in [27].

Components In hardware design, a component represents a hierarchy level
which is often linked to a specific functionality. An instance of component allows
to use such functionality in another component, which can itself be instantiated,
etc. This component based approach and this instantiation mechanism are
identify in the RTL metamodel in order to model hierarchical and well structured
hardware accelerators. The communications between components and component
instances are assumed thanks to interfaces, which are composed of ports. A port
can be input or output: it can receive or send data. The overall mechanism is
described in the RTL metamodel [27], a subset of this mechanism is introduced
in the following.

The right-hand side of Figure 9 illustrates a set of concepts in the RTL
metamodel used to model the components in RTL models. The concept Component
contains one InputPort clock (relation clock), one InputPort reset and several ports.
The concept Port is specialized into InputPort or OutputPort. Moreover, the dim
relation allows to specify the Shape of a port and the type relation allows to

6The word model is different with the term model used in MDE. In order to avoid any
mistake, the sample ezecution model is used when dealing with the way an application is
executed.
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reference a DataType. This part of the RTL metamodel is used to described the
components in RTL models.

The left-hand side of Figure 9 illustrates a component in a RTL model,
which is issued from the previously illustrated UML model (ISP2RTL ensures
this model transformation, it is described later on). The MatrixMultiplication
component owns the input ports clock, reset, MA and MB, and the output port
MC. This representation is very closed to the one manipulated in UML model
because the both level use component based approach. This figure represents the
hardware description of the MatrixMultiplication component included in an hardware
accelerator.

MatrixMultiplication

<<metaclass>> .
Port +type | = DataTy °d
clock 0.1 il
Rl
reset +ports
feset | <<metaclass>> 2 gim | <<metaclass>>
me 23] +ouner ™
MA 53]
=

T 1

MB [2,5] sreset | <<metaclass>> <<metaclass>>
B 23] |
1 InputPort OutputPort

clock

Figure 9: Excerpt of the RTL metamodel (on the right-hand side) and a compo-
nent in a RTL model (on the left-hand side).

Data Dependencies A set of concepts in the RTL metamodel is dedicated to
the description of hardware data paths. A data path corresponds to the hardware
implementation of a data dependency in a given hardware accelerator. In task
parallelism, data array dependencies allow to shift data arrays between tasks.
Such simple data dependencies are implemented in hardware with connectors or
buffers for instance. In data parallelism, data dependencies potentially express
complex relations between a data array and data in patterns, or between data
in patterns and a data array. For this purpose, we introduce the concepts of
InputTiler and OutputTiler in the RTL metamodel. These concepts are elementary
components that enable to implement the data dependencies expressed in high
level models.

In the RTL metamodel, the data dependencies (specified with tilers in high
abstraction levels models) are described by the concepts of connector, shift
register, latch, etc. Combining the use of these concepts, it is feasible to design
customized data paths for multidimensional data array dependencies. Both
spacial and temporal data dependencies are managed with these concepts.

The right-hand side of Figure 10 illustrates a subset of the RTL metamodel
which allow to model data paths hardware implementation. The left-hand side
of this figure illustrates a RTL model composed of three data paths, which
are represented by the irregular shapes TA, TB and TC. More precisely, TA,and
TB are input tilers because they respectively read the data arrays MA and MB.
Symmetrically, TC is an output tiler because it produces the data array MC. The
data paths are instantiated in the MatrixMultiplication component, which is modeled
with the corresponding RTL metamodel subset (previously detailed). In RTL
models, the data paths instantiation in component is feasible thanks to some
composition and reference relations in the RTL metamodel.

INRIA



Model Driven Engineering Benefits for High Level Synthesis 17

<<metaclass>> <<metaclass>>
Connector

DelayedindexConnector
eementary +delay :int

7

<<metaclass>> | yilerOwner +indexConnector <<metaclass>>
Tiler . IndexConnector

MatrixMultiplication

clock 0.1 0.1
— +targetipdex
reset L

. [mers .

MA[53] +value :int [
—
MB [2,5]
—
<<metaclass>> <<metaclass>>
InputTiler OutputTiler

Figure 10: The right-hand side of this figure represent a subset of the RTL meta-
model dedicated to the data path modeling. The left-hand side represents three
customs data paths which are instantiated in the MatrixMultiplication component.

Execution of the Data Parallelism The aim of such hardware designs is
to accelerate highly time and resource consuming applications by efficiently
executing (i.e. in parallel) the data parallel tasks. Indeed, the execution of
the data parallelism is a key point for the design of hardware accelerators,
and therefore for the construction of the RTL metamodel. A major difficulty
encountered for the development of the RTL metamodel subset dedicated to
the data parallelism execution comes from its high level specification. Indeed,
no implementation details are furnished in high level models, the execution of
such high level model depends on the HLS flow. For instance, the multiplication
matrix academic example described above can be executed in different manners
(this is possible because there is no data dependencies between iterations in the
repetition space of the task in this example):

e case 1: a single computing unit executes the overall iterations in the
repetition space of the ScalarProduct task. The resulting execution, so called
sequential execution, reduces the consumed resources (i.e. FPGA resources
for instance) but is not efficient considering the execution time since the
data parallelism is sequentially executed;

e case 2: as much computing units as iterations in the repetition space
perform the ScalarProduct tasks. The resulting execution, so called parallel
execution, is the most powerful but, compared to the sequential execution,
consumes much more resources;

e case 3: alternative executions are feasible, they can be resumed as a miz
parallel/sequential execution. Such combination provides flexibility and is
suitable for finding good compromise between performance and resources
usage.

The following discuss on our strategy for executing the data parallelism and
the implementation issues. The sequential and the parallel execution correspond
to the extremes implementation of a data parallel task: one consumes few
resources but is not effective while the other one is very effective but consumes
a large amount of resources. The choice between a solution or another thus
depends on a single criteria: the execution performance or the area cost. In high
level synthesis, the selected solution generally satisfy a set of criteria, like the

RR n° 6615



18 Le Beuzx, Marquet & Dekeyser

real time constraints and-or the area cost [25]. The mixed parallel/sequential
execution thus seems to be an interesting alternative for finding a satisfactory
implementation (i.e. which satisfy several constraints). Its major drawback is
the necessity for providing many implementation choices during the creation of
an RTL model (the choices specify how is executed the iterations in a repetition
space). Such implementation choices concern the ISP2RTL transformation model
and has a negative impact of the RTL metamodel itself. Indeed, this latter shall
supports a generic execution of the data parallelism tasks, which is much more
complicated than the single sequential and parallel executions.

In order to provide several executions of a given data parallel task, we use
the loop transformations defined in [7]. In their works, loop transformations
are developed for the interesting subset of the MARTE standard dedicated
to the modeling of intensive signal processing applications. Technically, the
loop transformations are realized onto ISP models. The functionality of these
loop transformations are similar to those existing in literature, with the great
advantage they can be directly used in our HLS flow. The aim of these loop
transformations is to modify, create or delete hierarchy of the applications’. For
instance, regarding to the matrix multiplication example, these loop transforma-
tions can create a hierarchical task “between” MatrixMultiplication and ScalarProduct
and move a part of the repetition space around the instance of ScalarProduct
onto the newly created task. As result, the application model contains two
data parallel tasks (against a single one for the initial solution), each one can
be executed independently from the other (i.e. both parallel, both sequential,
parallel and sequential, sequential and parallel). According to another loop
transformation, three data parallel tasks can be executed independently from
each other: the number of potential combinations increases. The functionality
provided by these loop transformations perfectly answer our flexibility objectives
without any drawback on the RTL metamodel. Indeed, the fact that the RTL
metamodel does not support any mixed sequential /parallel executions for a given
component is fully compensated by the loop transformations.

The RTL metamodel subset dedicated to the modeling of the data parallelism
execution is partially illustrated on the right-hand side of Figure 11. It gathers
the set of concepts used to represent Repetitive components, which are components
able to execute in parallel the data parallelism. The repeated task is instantiated
as much as there are iterations in the repetition space. For instance, the repetition
space around the ScalarProduct task is {2,3} in the corresponding UML model.
For a parallel execution, the task is instantiated 2 x 3 times, as illustrated in the
top left-hand side of Figure 11. The six filled boxes represent the six instances
of the scalar product task. Depending on their iteration number, each instance
computes a given line-column scalar product of the matrix multiplication. For
this purpose, each instance is connected to the right data provided and furnished
by/to the customized data paths.

The SequentialRepetitive concept of the RTL metamodel represents the compo-
nents which sequentially execute a data parallel task. As opposed to a Repetitive
component, a SequentialRepetitive component instantiates only once the repeated
task, as illustrated on the bottom left-hand side of Figure 11. The overall
computation is assumed thanks to a controller (represented with a lozenge),

7 Additional details about these loop transformations and their usage in our HLS flow is
provided later on.
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Figure 11: Subset of the RTL metamodel dedicated to the specification of the
data parallelism execution (right). Two RTL models executing in parallel and
sequential the data parallelism available in the matrix multiplication application

(left).

multiplexers and demultiplexers (latches are also used in order to store data,
they are not drawn on the figure in order to keep it readable). The controller
iterates onto the repetition space and, by controlling the multiplexers, sends
the right data (i.e. the right line and the right column for this example) to the
single computing unit. Symmetrically, the demultiplexers send the right data to
the output tiler.

Hardware-Software Partitioning The RTL metamodel also assumes a soft-
ware execution. Such execution is used in heterogeneous contexts including both
processors and hardware accelerators. In this specific context, the hardware
accelerators are slaves of the processors. The processors can decide to use an
hardware accelerator by sending data, launching execution and retrieving pro-
cessed data. Therefore, a data parallel task can be executed by an hardware
accelerator which is controlled by a processor (the iterations on the repetition
space is assumed by the processor). This execution is generally used when the
grain of an application task level corresponds to a grain that embedded system
designers use to handle with processors-based architectures (i.e. coarse grain).
Fine grain computation are assumed by hardware accelerators, while coarse grain
ones are managed by processors. The software execution is under development in
the RTL metamodel but additional information on processor based architecture
execution are provided in [18].

FPGA Implementation The execution time of an hardware accelerator is
deduced from the repetition space of a data parallel tasks. However, the area
cost (i.e the amount of hardware resources required for an implementation) is
more difficult to evaluate since it depends on many factors. Indeed, the amount
of resources consumed for a parallel execution depends on the repeated task, the
generated data paths and the data type. Concerning the sequential execution,
it becomes necessary to take into account the controller, the multiplexers, the
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demultiplexers and the latches. Knowing such characteristic before an imple-
mentation accelerates the design space exploration and allows to automate it.
For this purpose, we introduce some concepts in the RTL metamodel that help
us for characterizing the hardware accelerators.
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Figure 12: Graphical representation of the rule (right) which transforms the
tilers into customized data paths (left).

In order to estimate the FPGA resources used for the FPGA implementations
of hardware accelerators, the RTL metamodel is enriched by a set of concepts.
These concepts helps for characterizing hardware elements described in RTL
models, such as the controllers, the multiplexers or the used IP. Each concept in
the RTL metamodel is thus associated to a basic mathematical expression which,
depending on criteria, provides the quantity of basic FPGA resources used for
FPGA synthesis [28]. For instance, an interesting criteria is the bit-length of the
data handle by a multiplexer or the repetition space iterated by a controller. The
basic resources used for the characterization are the basic resources contained in
FPGA. The basic resources of the Stratix FPGA family are ALUT (Adaptative
Look Up Table), DSP multiplier and memory bank. Furthermore, the exact
details of FPGA are not taken into account since our objective is to guide FPGA
synthesis tools (e.g. Quartus, ISE), but not to replace them [29].

Our estimation process is fully automated, it acts like a query on RTL
model. This query thus provides an overview to the HLS tool of the FPGA
implementation results. Such estimation results is used by the exploration
process described later on.
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3.2.2 ISP2RTL Transformation

The transformation from an ISP model towards an RTL model is performed by
the ISP2RTL transformation, which adds implementations details to the high
abstraction model to generate the low level implementation model. ISP2RTL
is decomposed into rules. For instance, a set of rules transforms the tasks
(ISP model) into hardware components (RTL model), the basic rule sketched
Figure 2 assumes the creation of the clock and reset input ports of the hardware
components. The rule input pattern is composed of a single concept and the
rule output pattern contains four concepts. This rule is quite simple because the
concepts manipulated in the ISP and those manipulated in the RTL metamodels
are very closed each others.

While some rules are very simple (such as the so called one-to-one rules), some
others are much more complied. This occurs when there are large differences
between the source and the target metamodels. For instance, the data depen-
dencies expressed in ISP models are factorized (thanks to the tilers) whereas
customized data paths are manipulated in order to achieve high throughput in
RTL models. Therefore, the creation of a customized data paths starting from
a pure data dependencies expression relies on a quite complex set of rules. In
this set of rules, the Tiler2InputTilerlnstance rule transforms tilers into instances of a
customized data path (the generation of these data paths is assumed by others
rules). This rule is illustrated on the right-hand side of Figure 12. The top
right-hand side represents the rule input pattern, it identifies the source and the
target of the tilers connectors and also identifies the shape of the source port, the
repetition space of the repeated task, etc. In a given ISP model, the execution
of the rule is triggered each time a part of the model perfectly matches the rule
input pattern. For instance, the ISP model illustrated on the top left-hand side
of Figure 12 owns two inputs tilers that match the rule input pattern 8. The
corresponding subsets of the model are identified with the dashed shapes. Two
executions of the Tiler2InputTilerlnstance rule are thus performed. When triggered,
this rule creates, a set of concepts in the RTL model according to the rule output
pattern illustrated on the bottom right-hand side. This rule output pattern
corresponds to the instantiation of a data path component. Such data path has
one input port and one output port that are similarly managed in the rule, this
explains the vertical symmetry in the rule output pattern.

On the bottom left-hand side of the RTL model, the shapes TA and TB are the
results of the transformation rule execution. They respectively correspond to the
instantiation of the data paths that produce the line elements and the column
elements in the matrix multiplication example. As previously mentioned, the
data path themselves are created by another rule, this rule requires additional
information such as the origin, the paving and the fitting attributes. This rule is
called from the Tiler2InputTilerinstance rule, which is itself called from others rules,
etc. This decomposition into rules facilitates the comprehension, the maintain-
ability and the extension of the transformations. In the same manner, each rule
clearly identifies its rule input and output patterns, this drastically facilitates
the extensions, modifications and maintainability of each rule. Combining these
advantages ensures the high level to low level transformation process to be
entirely handled by the tools designers.

8In fact, the figure represents the UML model, which is very close to the ISP one.
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3.2.3 RTL2VHDL Transformation

The RTL metamodel is independent from any HDL syntax, but is low level
enough to allow their code generation. In MDE, a code generation is a model
to text transformation. Such a transformation defines the relations between a
concept or a set of concepts with HDL syntax. The VHDL code generation from
the RTL metamodel is performed within templates that navigate into a RTL
model in order to find concepts they are associated with. The templates print
a VHDL syntax in files associated with elements of a RTL model. The top of
Figure 13 represents the template associated to the Component concept in the
RTL metamodel. The bottom of the figure represents excerpts of the generate
code for the MatrixMultiplication component, previously modeled. Special attention
was given for the development of the RTL2VHDL transformation in order to
make it suitable for ISP applications. Indeed, multidimensional data arrays are
supported and data parallelism is still factorized.

ENTITY <%=element.getName()%> IS
PORT (
<%=ts.generate (element.getClock())%>;
<Ji=ts.generate(element.getReset ()) %>
<%for (Port p : (List<Port>) element.getPorts())
{h>;
<%=ts.generate (p)%></
Yn>) s
END <%=element.getName()%>;

ENTITY MatrixMultiplication IS
PORT (

clock : IN Std_ Logic;

reset : IN Std_ Logic;

MA : IN Type_5_3_Integer;

MB : IN Type_ 2_5_ Integer;

MC : OUT Type_2 3 Integer);
END MatrixMultiplication;

Figure 13: Excerpts of the RTL2VHDL transformation (top) and of a generated
VHDL code (bottom).

The generated code can be directly synthesized (for instance on FPGA)
according to usual synthesis tools. Figure 14 illustrates the synthesis result
for the matrix multiplication example. The two left-hand side box create the
patterns (i.e. the lines and the columns) starting from the arrays (i.e. the
matrix). Symmetrically, the right-hand side box creates the matrix according to
the data computed by the scalar product tasks. In the center of the figure, the
six boxes correspond to these tasks. Since the line and the column are generated
in the same time, the tasks are executed in parallel.

4 Design Space Exploration

A major goal of our HLS flow is to rapidly design an hardware accelerator that
meets its requirements, in particular those related to performances and area
costs. This goal is achieved by considering some basic notions that allow us to
modify high level models and to estimate low levels models. Based on these
basic notions, we defined a strategy that allows a rapid exploration of the design
space.
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[
=

Figure 14: View of the synthesized hardware accelerator.

4.1 Basic Notions

The design space exploration relies on modifications of the high level specification
according to characteristics available at the implementation level. The modi-
fication of high level models are performed through the loop transformations
detailed below.

4.1.1 The Available Loop Transformations

Our HLS flow uses the loop transformation functions, or refactoring functions,
proposed in [7]. Since they are fully compliant with MARTE, these functions
are directly applied on ISP models in order to produce another ISP model.
Successive loop transformations can therefore be applied on a given ISP model,
the result is always conformed to the ISP metamodel.

The loop transformations can modify, create or delete the hierarchy according
to the data parallelism. Moving the data parallelism into the tasks allows to
structure an application according to specifics requirements: while a hierar-
chical decomposition is suitable for complexes applications, abyssal hierarchy
becomes useless for trivial ones. Figure 15 illustrates the impacts of the loop
transformations when applied on the ISP model generated from the UML model
of the matrix multiplication (left-hand side on the figure). The following loop
transformations allow one to modify as desired such ISP model:

e The Tiling loop transformation creates, for the matrix multiplication, the
hierarchical task mm as illustrated on the top and the bottom of the figure.
Depending on the parameters provided this function, mm assumes a part
of the repetition space of the initial sp repetition space: {2}, {3} or {2,3}.

e Change Paving moves the data parallelism through the hierarchy without
modification of the hierarchy.
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e (Collapse deletes the hierarchy. As result, the available data parallelism is
concentrated on a single hierarchical level, as illustrated in Figure 15.

o Fusion extracts the potential data parallelism available in two successive
tasks in a graph of tasks. This allows to factorize the data parallelism
expression and to reduce the size of the data arrays transferred between
tasks. This refactoring function is not illustrated here.

@ Change
Paving

Tiling
Collapse
Tiling o

Com D N\ ™
@@

Collapse

Jiling @
Change
Collapse @ Paving

Figure 15: Impacts of refactoring functions on the matrix multiplication applica-
tion.

4.1.2 The Data Parallelism Execution Partitioning

In a given ISP model, depending on the execution of the available data parallelism,
different hardware accelerators may be generated. The data parallel tasks can
be executed in three different ways: in software with processor, in sequential or
in parallel inside accelerator. Each hierarchical task is thus associated with a
given execution, with the following constraints: the top level tasks are executed
in software, the lower ones are sequentially executed inside the accelerator, and
the lowest ones are executed in parallel inside the accelerator.

Figure 16 represents some of the possible executions of data parallelism
available in the matrix multiplication application. The left-most configuration
represents a software execution on processor. This configuration does not benefit
of the potential improvement offered by hardware accelerators, as opposed to the
right-most configuration. Indeed, in this latter configuration, the overall data
parallelism is executed in parallel inside the hardware accelerator. According
to the configurations illustrated in the center of the figure, the data parallelism
execution is partially accelerated thanks to the hardware accelerator. Compared
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to the most-left and the most-right configurations, these intermediate configura-
tions are expected to be respectively more effective and less effective. However,
they are also supposed to respectively consume more hardware resources and
less resources. Furthermore, other configurations not illustrated in this figure
exist. They provide other alternatives to the implementation of this application

Software execution
Hardware-sequential execution

Hardware-parallel execution

YL

Figure 16: Possible executions of the data parallelism available in the matrix
multiplication.

Since the loop transformations described above suitably modify the hierarchy
in ISP models, they can be well combined to the data parallelism execution. The
set of possible combinations defines the design space. This design space and covers
solutions that vary from those which optimize the execution performances to those
which minimize the area costs (i.e. the amount of consumed hardware resources)
of the accelerator. In order to explore this design space, we introduce the
PARALLELIZE and the SEQUENTIALIZE functions. They abstract the combination
of the loop transformations and the data parallelism executions in order to focus
on their impacts on the performance and area costs of the hardware accelerators:

e In order to increase the execution performances provided by a hardware
accelerator, the PARALLELIZE function increases the number of iterations in
the repetition spaces that are executed in parallel. For this purpose, Change
Paving or tiling are applied onto tasks sequentially executed, moving this
sequential execution into a parallel one.

e As opposed to the PARALLELIZE function, the SEQUENTIALIZE function
increases the amount of iterations that are executed in sequential. For this
purpose, COLLAPSE and TILING are successively applied on a ISP model.
As consequence, the performances of the hardware accelerator are reduced
bu it is less expensive in terms of hardware resources.

4.1.3 Performances Evaluation

In order accelerate the design space exploration, it is useful to quickly evaluate
the effectiveness the hardware accelerators. Instance of interesting properties
are the amount of consumed hardware resources (i.e. the area cost) and the
execution time (in clock cycles). Our HLS flow estimates the performances of
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hardware accelerators. The estimation process is performed on RTL models,
which provide additional implementation details compared to ISP models since
the RTL level is very close to the final implementation.

Table 1 summarizes the possible configurations and the characteristics of the
generated hardware accelerators. The configurations have been produced thanks
to the PARALLELIZE and the SEQUENTIALIZE functions described above. They
are classified according to the selected hardware software partitioning, which
determine the execution time of the software part, as described later.

In the first four configurations (those from the HW-SW 1 partitioning), the
overall data parallelism is executed in hardware. In the first configuration, it
is fully executed in parallel. According to the estimation, the corresponding
hardware accelerator consumes 13548 hardware resources (an ALUT corresponds
to an atomic configurable resource in FPGAs), while 13583 are necessary for the
“real” implementation. To obtain this last result, the VHDL code corresponding
to the hardware accelerator was generated with our HLS flow, and then was
synthesized onto FPGA with a commercial synthesis tool. Our evaluation
process approximately 0.26% under-estimates the required hardware resources
for this configuration. This estimation is instantly provided while several minutes
are necessary for a synthesis with commercial tools. The estimation process
thus drastically increases the number of testable configurations in a given time.
Moreover, since the estimation results are available in the HLS flow, they can be
suitably used for automating the exploration.

In the first configuration, 1 cycle is necessary since the overall data parallelism
is executed in parallel. In the second one, this data parallelism is partially
executed in sequential, increasing the execution time to 2 cycles. 6 cycles are
necessary for the fourth configuration, which thus corresponds the less powerful
hardware accelerator for the corresponding hardware software partitioning. This
table shows that the amount of used hardware resources diminishes with the
execution performance. Therefore, the most powerful accelerator is also the most
area consuming one in this example.

The software part manages the usage of the hardware accelerator for executing
the matrix multiplication. It depends on the processor, the bus bandwidth, the
memory latencies, etc. Currently, they can not be estimated in our HLS flow,
but this is part of future work [18]. The software execution time is extracted
from observations of manual implementations. Depending on the processor and
the others hardware resources, they varies from 10 to 100 cycles for the four first
configurations. This execution time increases the data parallelism to execute in
software.

The execution performances and the estimated amount of hardware resources
required for each configuration are summarized in Figure 17. In theses figures,
each curve corresponds to a given hardware-software partitioning, and each
point in a curve corresponds to a given sequential-parallel partitioning in the
hardware execution. Each point thus corresponds to a given configuration.
Figure 17(a) summarizes the hardware execution time of the generated hardware
accelerators. The software execution time is taken into account in Figure 17(b)
and Figure 17(c).

The most-right curve in Figure 17(a) corresponds to the configurations in
which the overall data parallelism is executed in the hardware accelerator. The
execution performances vary from 1 to 6 cycles and the area cost respectively
vary from 14000 to 2900 hardware resources. In the others curves, the execution
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Table 1: Characteristics of hardware accelerators generated for the matrix multiplication.

Hardware-software partitioning

HW-SW 1

HW-SW 2

HW-SW 3

HW-SW 4

-

Configuration
Hardware resources (ALUT) estimation || 13548 7446 5188 2930 6774 2594 4516 2482 2258
analysis 13583 7154 4898 2544 6768 2526 4512 2489 2258
Relative error of the estimation (%) -0.26 4.09 5.92 15.17 0.09 2.69 0.09 -0.29 0
Execution time (cycles) hardware ! 2 3 6 2 6 3 6 6
software 10 ~ 100 20 ~ 200 30 ~ 300 60 ~ 600
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Figure 17: Characteristics of the hardware accelerators executing the matrix
multiplication application.

of the data parallelism is partially managed in software, reducing the area cost
of the hardware accelerator. The overall execution time (i.e. including the
hardware and the software part) is represented in Figure 17(b) and Figure 17(c),
which respectively consider an efficient and a non-efficient software execution.
These figures illustrate the impact of the software execution on the effectiveness
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and the area cost of the hardware accelerator. They also highlight the diversity
of solutions offered for the matrix multiplication application. While it was
possible to explore the overall design space for such quite simple application,
it is necessary to automate this exploration for “real-life” applications. The
following deals with the automatic exploration process of the design space and
its integration into our HLS flow.

4.2 Design Space Exploration Strategies

Depending on the application to be executed, the set of possible configurations
provided by our HLS flow may be large. Manually testing each configuration
of this design space is thus a time consuming task. This task becomes non-
efficient when most of the explored solutions do not satisfy criteria, such as the
execution performance and the area cost. In order to accelerate the design space
exploration, we define the global and the local strategies. The global strategy
allows one to widely explore the design space modifying the hardware software
partitioning (i.e to move from a curve to another curve in Figure 17). The local
strategy searches for a satisfying solution according to a given hardware software
partitioning (i.e a solution in a given curve).

4.2.1 Global Strategy

The aim of the global strategy is to modify the hardware software partitioning in
order to widely explore the design space. Since the interaction between hardware
accelerators and processors is still work in progress in our HLS flow, the hardware
software partitioning is assumed by the HLS flow users [18]. However, this
exploration is facilitated by the estimation process performed on the generated
RTL models.

The exploration with the global strategy starts with a specific configuration
in which the overall data parallelism is executed in software. For this purpose, an
initialization process applies the Collapse and the Fusion loop transformations
onto the initial ISP model. Fusion extracts the data parallelism available in the
tasks graphs, Collapse deletes the hierarchy and gathers the data parallelism
into a single data parallel task. Finally, the initialization process specifies a
software execution of this task. The resulting ISP model corresponds to the last
configuration in Table 17. This configuration is supposed to be the less efficient
one since the hardware accelerator only computes elementary tasks, without
managing the data parallelism.

According to an execution performance criteria, the user modifies the hard-
ware software partitioning, moving from a curve to another. The data parallelism
is then moved from a software to a hardware execution in parallel, increasing the
execution performance. The reachable solutions correspond to the most right
points in the curves. Once a configuration satisfying the execution performance
is detected, the local strategy is applied. Indeed, this configuration is supposed
to correspond to be the most area consuming solution on a curve since the overall
data parallelism managed by the hardware accelerator is executed in parallel.
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Figure 18: Applying the local strategy to explore the design space.

4.2.2 Local Strategy

The local strategy explores the subset of the design space defined by a given
hardware software partitioning. Its aims is to find the less expensive configura-
tion in a curve which still satisfies the execution performance. For this purpose,
a heuristic detailed in [27] is executed according to the execution performance
and the area cost criteria. The heuristic analyses the estimation results of the
generated RTL model and eventually modifies the ISP model using the PARAL-
LELIZE and the SEQUENTIALIZE functions. The ISP2RTL model transformation
is launched again, and so on. The RTL2VHDL transformation is launched once a
satisfying solution is find. The local design space exploration strategy is sketched
in Figure 18. In this example, 3 iterations are necessary to find a satisfying
solution. Since other satisfying configuration potentially exist, the selected
solution is not necessary the optimal one. Moreover, the convergence time of
this heuristic depends on the application itself: a large amount of iterations can
be necessary to find an acceptable solution. For this purpose, we plan to use
greedy algorithms [25] which allow one to accelerate the convergence time.
These strategies aim at efficiently explore the design space by successively
taking into account the execution performance (in the global strategy) and the
area cost (in the local strategy). While the global strategy is applied by the user,
the local one is applied according to an existing heuristic. In future work, we
plan to enhance the effectiveness and the complementarity of the global and the
local strategies, taking into account additional information on the execution of
the software part (providing by the extension of HLS flow to the processors based
architecture). Additional metrics linked to the design of embedded systems based
on hardware accelerator and processors will thus be taken into account [18].
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Figure 19: Using our HLS flow for the matrix multiplication application.

5 HLS Flow Overview

Our HLS flow provides to users an homogeneous environment for ISP applica-
tions. Applications are graphically modeled in UML, this drastically enhances
the specification expressiveness by offering the opportunity to clearly identify
the manipulated concepts (simple and complex data dependencies, potential
parallelism, etc.): a UML model therefore matches the reality of the modeled
application. The MARTE profile provides mechanism to factorize representation
of data parallelism and complex data dependencies, it is therefore well suited
for the modeling of real life massively parallel ISP applications. Moreover, the
models relevancy is strongly enhanced by a specification which is independent of
any implementation technology: an application designer just focuses on the spec-
ifications on the intention of the modeled application, not on its implementation.
The refinement of such high level specification towards the RTL level is ensured
by a model to model transformation. This demonstrates the abilities of the MDE
based refinements between different abstraction levels. The exploration process
extracts knowledge from RTL models in order to modify application models at
high level, allowing a fast and a partially automatized exploration of the design
space. The last key point for user is the VHDL code generation, it ensures the
productivity of models specified at a high abstraction level.

The HLS flow is provided as an Eclipse plugin [12]. The screen-shot of
Figure 19 corresponds to an usage of the HLS flow. The upper panel corresponds
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to the UML model. The lower panel is the generated VHDL code. The other
panels correspond to the intermediate models.

The design flow itself benefits from MDE for two categories of extension: fine
grain and coarse grain. A fine grain extension aims to integrate new concepts in
metamodels in order to extend them. The RTL metamodel is currently extended
in order to manage the introduction of control flow into data flow applications.
This is successfully realized with the creation of new concepts in metamodel
and new rules in model transformations. A coarse grain extension consists of a
modification of the design flow itself for new purposes. For instance, one can
decide to create a model transformation in order to generate Verilog [45] code
from the RTL metamodel or to create a RTL model from another metamodel (a
metamodel used in another tool for instance). These flexibilities demonstrates
the OMG point of view that advocates the development of tools using MDE:
efforts done to develop a tool can be capitalized.

This flow is integrated in a co-design environment for high performance
embedded system which is entirely build with MDE [18]. In this environment,
the clear separation between the high level models and the technological models
makes it easy to switch to different implementation technologies for a same
application model: RTL and VHDL for synthesis, Transaction Level Modeling
(TLM) and SystemC for simulation, procedural languages for multiprocessor
execution and synchronous language for verification [12,18].

6 Case Study

In order to evaluate the effectiveness of our HLS flow, we generate hardware
accelerators for a video processing application. We consider the H.263 video
codec standard [9]. It is suitable for low bit rate wireless video systems. In
particular, it is useful for recent applications in cellular videophones, wireless
surveillance systems, or mobile patrols. The encoder part of this application
performs the most intensive computations. In this study, we focus on the DCT
(Discrete Cosinus Transform) part of the encoder application. Indeed, this task
needs up to 92% of the total computing power [4] of the encoder. The DCT task
transforms the frame pixels into spatial frequency coefficients. The following
tasks, not studied here, approximate the resulting coefficients by a small set of
possible values in order to compress the data.

The application thus takes as input a stream of QCIF frames (176x144
pixels in the YCbCr format). Data are handled by macroblocks. A macroblock
corresponds to a 16x16 pixel area of a video frame. It is represented in the
YCbCr format, which contains a luminance component (Y), a blue chrominance
component (Cb), and a red chrominance component (Cr). Luminance blocks
describe the intensity, or brightness, of pixels, whereas chrominance blocks define
the color of pixels. A macroblock contains six 8x8 blocks: four blocks for
the luminance, one for the blue chrominance and one for the red chrominance.
The DCT task is applied onto each macroblock of the original frames. Such
bi-dimensional DCT task (so called DCT-2D) is often implemented by a mono-
dimensional DCT task (DCT-1D) successively applied on the rows and the
columns of macroblocks.
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6.1 UML Modeling of the H.263 Encoder

The following deals with the UML modeling of the DCT part of the H.263
encoder application. We follow a bottom-up approach to present this UML
model. We start with the selection of the elementary tasks, hierarchical tasks
are afterward presented.

6.1.1 IP Selection and Deployment

We define the eight-point DCT-1D transformation as an elementary task. The
chosen IP is the one developed in [4], it is based on an algorithm which minimizes
the number of operations to perform. According to the direction (horizontal or
vertical), the coefficients of the DCT are different. Two different IPs are thus
distinguished, as illustrated in Figure 20: dctL manages the lines and dctC manages
the columns. These IPs are contained in the same code file, as illustrated on
the bottom part of the figure. The top of this figure represents the deployment
of the DCTLine and DCTColumn elementary tasks (including the ports) onto these
IPs.

<<ElementaryComponent>> = <<ElementaryComponent>> =
<<ApplicationComponent>> <<ApplicationComponent>>
DCTLine DCTColumn
s [{8]
efen[] L] st elen[ ] Crie
_ - T NS - | ~
<<ponlv1plementedBy>> ¢ > <<por <<portimplementedBy>> ]
\ <<impleméntedBy>> | \ <<implementebiBy>> |
T "
tation>> = "
\ AbstractDCTL / \ <<AbstraclSo‘f:\;v::realzg'lDIzv;‘e:n\au0n>> =1 )
\ ! \ !
\ <<Softwarelmplementation>> ] ! \ o |

dotl / <<Softwarelmplementation>> |

detC !

{functionName = "dctL" , ! y " "
\ language = VHDL } / \ {functionName = "detC" |
language = VHDL }

<<manifest>> <<manifest>>
i ~

<<CodeFile>> &)
H263-1Ps
{filePath = "./IP/IPsDCT.vhd" }

Figure 20: The DCTLine and DCTColumn elementary tasks are respectively deployed
on the dctL and dctC IPs.

6.1.2 Block Modeling

These elementary tasks are used to build the DCTBlockLine and the DCTBlockColumn
data parallel tasks, as illustrated on the top of Figure 21. The data arrays
manipulated by these tasks are represented with the ports blockin and blockout.
DCTBIlockLine and DCTBIlockColumn respectively apply the DCTLine and the DCTColumn
tasks onto a 8x8 data array in order to produce a 8x8 data array. More
precisely, DCTBlockLine applies the DCT on the lines of the input data array. The
construction of the patterns relies on data dependencies expressed with tilers.
These data dependencies are illustrated in the bottom of Figure 21. Each data
in the data array is consumed once. Similarly to DCTBlockLine, DCTBlockColumn
applies the DCTColumn task onto the columns of the input data array. The
combining of these data parallel tasks allows one to construct the DCTBlock
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hierarchical task illustrated in Figure 22. Indeed, by successively applying the
DCTBIockLine and the DCTBIlockColumn tasks onto a 8 x8 data array, DCTBlock applies
a DCT-2D task onto a block.

<<ApplicationComponent>> =) <<ApplicationComponent>> =)
DCTBIlockLine DCTBlockColumn

| <<ElementaryComponent>> =] | | <<ElementaryComponent>> =] |
blookin| [(5.8}] | <<ApplicationComponent>> i blockout {8,8)] blockin [(8.81] | <<ApplicationComponent>> i blockout[(8.8)]
detl : DCTLine [{8}] ] § detc : DCTColumn [{8}] Y
e[{8] s [{8] e[{8] s [{8]

<Tiers T o ten L <t T o fien
fiting ="ro g . ] )

origin ="{0,0)" , origin ="(0,0}" origin ="(0,0}" ,
paving = "{{0,1}}" } paving ="{{0.1}}" } paving = "{{1,0}" }

fiting = "({1,0})" {fiting = "({0,1}}"

Figure 21: DCTBIlockLine and DCTBlockColumn apply a mono-dimensional DCT onto
blocks (top). Data dependencies expressed in DCTBlockLine (bottom).

6.1.3 Macroblock Modeling

A macroblock is composed of six blocks (four luminance blocks and two chromi-
nance blocks). A macroblock thus corresponds to a of 8x8x6 data array.
DCTMacroBlock applies the DCTBIlock task onto each block contained in a mac-
roblock, as shown in Figure 23. Each iteration in the repetition space can
be performed independently from the others since each block is independent
from the other blocks. In order to manage the overall video frame, another
data parallel task is necessary. This data parallel task aims at applying the
DCTMacroBlock task onto each macroblock contained in a QCIF video frame. This
operation is performed by the QCIF task illustrated on the bottom of Figure 23.
In a frame, the macroblocks are independent from the others. Each iteration of
the DCTMacroBlock task thus can be executed independently from the others.

<<ApplicationComponent>> =]
DCTBlock
| ZA;pIic;tioFCo;po;en;>_ é] I :<A;plic;tioFCoEpoFent_>>_ I
blockin|[{8,8}] | line : DCTBlockLine | | column:DCTBlockColumn | blockout|[{8,8}]

I:H_D blogkin blockout blockin blockout D

Figure 22: DCTBIlock combines two data parallel tasks in order to apply a bi-
dimensional DCT onto blocks.

6.2 Exploration of the Design Space

This UML model highlights the data parallelism available in the H.263 encoder
application. According to the way this data parallelism is executed, different
hardware accelerators can be generated by our HLS flow. In order to explore the
overall design space, each configuration of the design space is evaluated. For this
purpose, we use the PARALLELIZE and the SEQUENTIALIZE functions. They are
applied on the ISP model generated with the UML2ISP model transformation.
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<<ApplicationComponent>> ]
DCTMacroBlock
MacroBlockin [{8,8.6)] @ — — — — — — — — —
aorgBlockin {8.8,6}] I <<ApplicationComponent>> 3]1 MacroBlockout [{8,8,6}]
D\&b block : DCTBlock [{6}] I_E'/[:l
<<Tiler>> lockin [{8,8}] blockout [{8,8}] <<Tiler>>
{fitting = "{{1,0,0},{0,1,0}}" .| | {fitting = "{{1,0,0},{0,1,0}}" |
origin="0,00y" , T T~ T origin ="{0,0,0}" ,
paving = "{{0,0,1}}" } paving = "{{0,0,1}}" }
<<ApplicationComponent>> =
QCIF
" <<ApplicationComponent>> 7] |
QCIF|n [{11,9.8,8,6}] | macro : DCTMacroBlock [{11,9}] | QcIFout [{11,9,8/8,6}]
[]\D MacroBlockin MacroBlockout
<<Tiler>> T m——— o
{tiler = FrameTiling } {tiler = FrameTiling }

FrameTiling : Tiler
origin = "{0,0,0,0,0}"
paving = "{{1,0,0,0,0},{0,1,0,0,0}}"
fitting = "{{0,0,1,0,0},{0,0,0,1,0},{0,0,0,0,1}}"

Figure 23: The DCTMacroBlock (resp. QCIF) data parallel task applies the DCTBIlock
(resp. DCTMacroBlock) task onto each block of the macroblock (up) (resp. each
macroblock of the video frame (bottom)).

This ISP model is illustrated Figure 24. Here, the refactoring functions can
impact the data parallelism available in the macro and the block data parallel

tasks 9.

Figure 24: The ISP model generated from the UML model of the H.263 encoder
application.

The multidimensional repetition spaces available in these data parallel tasks
can be combined in many different manner, many configurations are thus gen-

9The loop transformation have no impact on the data parallelism available in dctl and dctc
because of the corner turn like data dependencies expressed between these tasks (data are
produced in line and are consumed in columns).
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erated. According to the ISP2RTL model transformation and the estimation
process, the corresponding hardware accelerators are instantaneously evaluated.
Figure 25 summarises the characteristics of the generated hardware accelerators.
As it was the case for the matrix multiplication example, each curve corresponds
to hardware software partitioning and each point in a curve corresponds to a
given parallel sequential partitioning of the hardware execution. Figure 25(a)
represents the time necessary for the hardware accelerator to execute the DCT
part of the H.263 encoder application onto a QCIF frame. As expected, the
performance of the hardware accelerator depends on its area cost. Figure 25(b)
and Figure 25(c) illustrate the overall execution time of the application, they
respectively rely on an efficient and a less-efficient execution of the software part.
These figures allow one to compare the hardware accelerator and to identify
those which minimise the execution time and the area cost.

Few minutes were necessary to explore the design space using our HLS flow,
while several days are necessary for an exploration at low abstraction levels.
The exploration in our HLS flow relies on a single high abstraction model of
the H.263 encoder application. The refactoring functions, the automatic model
transformations and the estimation process thus allow one to efficiently explore
the design space starting from this UML model. The selection of the hardware
accelerator depends on the execution performance and the area cost criteria. An
example of criteria specification is illustrated in Figure 25(b) and Figure 25(c)
according to the satisfying solutions area box. The solutions inside this box satisfy
the specified criteria.

In order to even more accelerate the exploration of the design space, the
global and the local strategies are used. They are applied for an efficient and a
less efficient software execution context (Figure 25(b) and Figure 25(c)). The
global strategy starts with a software execution of the overall data parallelism.
The corresponding generated hardware accelerator is represented with the mark A
in the figures. The user then successively increases the data parallelism executed
in parallel by the hardware accelerator. Once a solution satisfies the execution
performance (mark B), the local strategy aims at minimizing the area cost. For
this purpose, the heuristic successively increases the data parallelism to execute
in sequential by the hardware accelerator. As result, the heuristic validate the
solution marked C.

6.2.1 Integration of the Hardware Accelerator in an Embedded Sys-
tem

The RTL2VHDL model to text transformation ensures the automatic VHDL
code generation of the selected solution. This code corresponds to a hardware
accelerator able to executed the DCT part of the H.263 encoder application.
This accelerator has been successfully integrated in an embedded system able to
execute the overall H.263 encoder application [18].

Our HLS flow thus enables to design an efficient hardware accelerator for an
intensive signal processing application. Following our design space exploration
strategies, we explored the design space at a high abstraction level using infor-
mation resulting from the intermediate models generated by the transformation.
The most effective partitioning has then been selected, without the inconvenience
of low level implementations. The ease of modifications at high abstraction level
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coupled with the fast evaluations lead to a very powerful design space exploration

framework.
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7 Related works

During the last few years, the trend in HLS research field aims to generate
HDL code from C or C-like language [17,21,22,41]. Using C code to generate
hardware design offers opportunity to work with a well known language and at
higher abstraction level than RTL. However, this is not reliable without a major
inconvenience. C-like description becomes difficult to handle for hierarchical
applications that manage both tasks and data parallelism. The hierarchy appears
like functions, the task parallelism is expressed using C extensions (i.e. pragma)
and the data parallelism has to be extracted from loop statements. Moreover, just
subsets are supported (pointers usage is often forbidden). Therefore, the users
manipulate a subset of C syntax extended by annotations and lost interest in using
standard. Some other approaches aim to specify application with polyhedrons.
This offers the opportunity to use existing libraries for powerful optimizations in
the IR [3,14,20]. Such textual description has the same inconvenience like the
previously highlighted one.

An interesting high level language is the data-parallel formalism ALPHA [47].
It manipulates polyhedra instead of arrays. This leads to different specification
styles. ALPHA particularly suits for the specification of systolic architectures.
As a result, it does not offer a satisfactory solution to the design of other types
of application models as it is needed here for intensive signal applications.

MDE has been increasingly adopted for the design of embedded systems
in general [42]. The basic modeling formalism is the general purpose language
UML, which offers attractive graphical representations. Because of its generality,
UML is refined by the notion of profile to address domain-specific problems.
There are currently several profiles for the design of embedded systems such as
SysML [37], UML SPT [36], UML-RT [44], TUT Profile [24], ACCOR/UML [26]
and Embedded UML [31]. Because all these profiles may potentially overlap,
significant standardization efforts have been recently realized by the OMG,
resulting in the single unified and effective MARTE standard profile [35], on
which our HLS flow relies. MARTE stands for Model and Analysis Real-Time
Embedded system. Among other things, MARTE provides mechanism to express
in a factorized way the potential parallelism available in applications. MARTE
is thus well suited to the design of intensive signal processing applications.

While these profiles allow one to specify a system with high level models,
refinements from such models towards low level models have to be achieved.
Some propositions use specific notations, defining an entirely executable model
semantics [1,34,40]. Such expressive notations allow one to define models with
sufficient information so that the specified system can be completely generated.
However, the code is directly generated from the specifications, without any
intermediary representation. The same is observed in the VHDL code generation
from UML [5, 10], where the code is obtained directly by mapping the UML
concepts with the VHDL syntax. More generally, this absence of successive
refinements leads to a lack of flexibility when targeting new abstraction levels or
new languages. While these approaches rely on an abstraction of the system by
using high level models, they only exploit a little of its benefits by directly being
dependent on target languages or abstraction levels. Moreover, these tools focus
on the finite state machines, they do not address ISP applications.

INRIA



Model Driven Engineering Benefits for High Level Synthesis 39

8 Conclusion

This paper advocates the use of the MDE methodology for the high level synthesis
and the design space exploration. Indeed, in order to demonstrate the MDE
advantages, we developed a model based HLSflow. This flow relies on a precise
definition of sensitive features such as data parallelism and data dependencies
that are suitable to support intensive signal processing applications. We have also
shown that MDE provides key benefits to both users and designers of our HLS
flow: users work in a standardized unified graphical environment and designers
can easily extend and maintain the flow.

From applications designed at high abstraction levels in UML, the flow auto-
matically performs successive refinements and generates the corresponding VHDL
code. Such refinements rely on clear identification of concepts in the different
abstraction levels and on a suitable decomposition of the model transformations
into rules. We have also integrated an estimation process that allows one to
evaluate the generated hardware accelerators. This accelerates the exploration of
the design space which relies on strategies modifying high level models in order
to meet the performance requirements in low level models. We have validated
the relevance of our HLS flow for the design of a video processing application.

MDE abilities could also be used to extend the flow in order to enlarge the
scope of managed applications, to target other implementation languages or to
target other abstraction levels.
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