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Sélection de modeles en grande dimension pour des design
gaussiens

Résumé : We consider the problem of estimating the conditional mean of a real Gaussian
variable Y = Zle 6; X; + € where the vector of the covariates (X;)i<i<p follows a joint Gaussian
distribution. This issue often occurs when one aims at estimating the graph or the distribution
of a Gaussian graphical model. We introduce a general model selection procedure which is based
on the minimization of a penalized least squares type criterion. It handles a variety of problems
such as ordered and complete variable selection, allows to incorporate some prior knowledge on
the model and applies when the number of covariates p is larger than the number of observations
n. Moreover, it is shown to achieve a non-asymptotic oracle inequality independently of the
correlation structure of the covariates. We also exhibit various minimax rates of estimation in
the considered framework and hence derive adaptivity properties of our procedure.

Mots-clés : Sélection de modeles, régression linéaire, inégalités oracles, modeles graphiques
gaussiens, vitesse minimax d’estimation
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1 Introduction

1.1 Regression model

We consider the following regression model
Y = X6+e€, (1)

where 6 is an unknown vector of RP. The row vector X := (X;)1<i<p follows a real zero mean
Gaussian distribution with non singular covariance matrix ¥ and € is a real zero mean Gaus-
sian random variable independent of X with variance o2. The variance of € corresponds to the
conditional variance of Y given X, Var(Y|X). In the sequel, the parameters 6, 3, and o2 are
considered as unknown.

Suppose we are given n i.i.d. replications of the vector (Y, X). We respectively write Y and
X for the vector of n observations of Y and the n x p matrix of observations of X. In the present
work, we propose a new procedure to estimate the vector 8, when the matrix 3 and the variance
o? are both unknown. This corresponds to estimating the conditional expectation of the variable
Y given the random vector X. Besides, we want to handle the difficult case of high-dimensional
data, i.e. the number of covariates p is possibly much larger than n. This estimation problem
is equivalent to building a suitable predictor of ¥ given the covariates (X;)i1<i<p. Classically,
we shall use the mean-squared prediction error to assess the quality of our estimation. For any

(01,02) € RP it is defined by

101,0,) = E | (X0, — Xeﬂ . 2)

1.2 Applications to Gaussian graphical models (GGM)

Estimation in the regression model () is mainly motivated by the study of Gaussian graphical
models (GGM). Let Z be a Gaussian random vector indexed by the elements of a finite set I'. The
vector Z is a GGM with respect to an undirected graph G = (T, E) if for any couple (i, j) which
is not contained in the edge set E, Z; and Z; are independent, given the remaining variables.
See Lauritzen [23] for definitions and main properties of GGM. Estimating the neighborhood of
a given point ¢ € I' is equivalent to estimating the support of the regression of Z; with respect
to the covariates (Z;);er\ (s} Meinshausen and Biihlmann [26] have taken this point of view in
order to estimate the graph of a GGM. Similarly, we can apply the model selection procedure we
shall introduce in this paper to estimate the support of the regression and therefore the graph G
of a GGM.

Interest in these models has grown since they allow the description of dependence structure of
high-dimensional data. As such, they are widely used in spatial statistics [16, 27] or probabilistic
expert systems [15]. More recently, they have been applied to the analysis of microarray data.
The challenge is to infer the network regulating the expression of the genes using only a small
sample of data, see for instance Schéfer and Strimmer [29], or Wille et al. [39)].

This has motivated the search for new estimation procedures to handle the linear regression
model () with Gaussian random design. Finally, let us mention that the model () is also of
interest when estimating the distribution of directed graphical models or more generally the joint
distribution of a large Gaussian random vector. Estimating the joint distribution of a Gaussian
vector (Z;)1<i<p indeed amounts to estimating the conditional expectations and variance of Z;
given (Z;)1<j<i—1 for any 1 <i <p.

RR n° 6616



4 Verzelen

1.3 General oracle inequalities

Estimation of high-dimensional Gaussian linear models has now attracted a lot of attention. Var-
ious procedures have been proposed to perform the estimation of § when p > n. The challenge at
hand it to design estimators that are both computationally feasible and are proved to be efficient.
The Lasso estimator has been introduced by Tibshirani [33]. Meinshausen and Biithlmann |26]
have shown that this estimator is consistent under a neighborhood stability condition. These
convergence results were refined in the works of Zhao and Yu [40], Bunea et al. |[11], Bickel et al.
[5], or Candeés and Plan [12] in a slightly different framework. Candés and Tao [13] have also in-
troduced the Dantzig-selector procedure which performs similarly as /1 penalization methods. In
the more specific context of GGM, Biihlmann and Kalisch [21] have analyzed the PC algorithm
and have proven its consistency when the GGM follows a faithfulness assumption. All these
methods share an attractive computational efficiency and most of them are proven to converge
at the optimal rate when the covariates are nearly independent. However, they also share two
main drawbacks. First, the l; estimators are known to behave poorly when the covariates are
highly correlated and even for some covariance structures with small correlation (see e.g. [12]).
Similarly, the PC algorithm is not consistent if the faithfulness assumption is not fulfilled. Sec-
ond, these procedures do not allow to integrate some biological or physical prior knowledge. Let
us provide two examples. Biologists sometimes have a strong preconception of the underlying
biological network thanks to previous experimentations. For instance, Sachs et al. |28]) have
produced multivariate flow cytometry data in order to study a human T cell signaling pathway.
Since this pathway has important medical implications, it was already extensively studied and a
network is conventionally accepted (see [28]). For this particular example, it could be more inter-
esting to check whether some interactions were forgotten or some unnecessary interactions were
added in the model than performing a complete graph estimation. Moreover, the covariates have
in some situations a temporal or spatial interpretation. In such a case, it is natural to introduce
an order between the covariates, by assuming that a covariate which is close (in space or time)
to the response Y is more likely to be significant. Hence, an ordered variable selection method
is here possibly more relevant than the complete variable selection methods previously mentioned.

Let us emphasize the main differences of our estimation setting with related studies in the
literature. Birgé and Massart [8] consider model selection in a fixed design setting with known
variance. Bunea et al. [10] also suppose that the variance is known. Yet, they consider a random
design setting, but they assume that the regression functions are bounded (Assumption A.2 in
their paper) which is not the case here. Moreover, they obtain risk bounds with respect to the
empirical norm HX(t’?f 0)||? and not the integrated loss I(.,.). Here, ||.||,, refers to the canonical
norm in R™ reweighted by /n. As mentioned earlier, our objective is to infer the conditional
expectation of Y given X. Hence, it is more significant to assess the risk with respect to the loss
I(.,.). Baraud et al. [4] consider fixed design regression but do not assume that the variance is
known.

Our objective is twofold. First, we introduce a general model selection procedure that is very
flexible and allows to integrate any prior knowledge on the regression. We prove non-asymptotic
oracle inequalities that hold without any assumption on the correlation structure between the
covariates. Second, we obtain non-asymptotic rates of estimation for our model () that help us
to derive adaptive properties for our criterion.

In the sequel, a model m stands for a subset of {1,...,p}. We note d,, the size of m whereas

the linear space Sy, refers to the set of vectors 6 € RP whose components outside m equal zero.
If d,, is smaller than n, then we define 60,, as the least-square estimator of 6 over S,,. In the

INRIA
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sequel, II,, stands for the projection of R™ into the space generated by (X;);em. Hence, we have
the relation Xé\m = I1,,Y. Since the covariance matrix ¥ is non singular, observe that almost
surely the rank of II,, is d,,. Given a collection M of models, our purpose is to select a model
m € M that exhibits a risk as small as possible with respect to the prediction loss function (., .)
defined in (). The model m* that minimizes the risks E[l(6,,,6)] over the whole collection M is
called an oracle. Hence, we want to perform as well as the oracle @n*, However, we do not have
access to m™* as it requires the knowledge of the true vector §. A classical method to estimate a
good model m is achieved through penalization with respect to the complexity of models. In the
sequel, we shall select the model m as

m = in Crit(m) := in [|[Y-1IL,Y||? 1 , 3
m := arg min Crit(m) := arg min || 7 [1 4 pen(m)] 3)

where pen(.) is a positive function defined on M. Besides, we recall that ||.||, refers to the
canonical norm in R"™ reweighted by y/n. Observe that Crit(m) is the sum of the least-square
error ||[Y —I1,,,Y||2 and a penalty term pen(m) rescaled by the least-square error in order to
come up with the fact that the conditional variance o2 is unknown. We precise in Section [ the
heuristics underlying this model selection criterion. Baraud et al. [4] have extensively studied
this penalization method in the fixed design Gaussian regression framework with unknown vari-
ance. In their introduction, they explain how one may retrieve classical criteria like AIC [2], BIC
[30], and FPE [1] by choosing a suitable penalty function pen(.).

This model selection procedure is really flexible through the choices of the collection M and
of the penalty function pen(.). Indeed, we may perform complete variable selection by taking the
collection of subsets of {1,...,p} whose is smaller than some integer d. Otherwise, by taking a
nested collection of models, one performs ordered variable selection. We give more details in Sec-
tions 2 and Bl If one has some prior idea on the true model m, then one could only consider the
collection of models that are close in some sense to m. Moreover, one may also give a Bayesian
flavor to the penalty function pen(.) and hence specify some prior knowledge on the model.

First, we state a non-asymptotic oracle inequality when the complexity of the collection M is
small and for penalty functions pen(m) that are larger than Kd,,/(n — d,,) with K > 1. Then,
we prove that the FPE criterion of Akaike [1] which corresponds to the choice K = 2 achieves an
asymptotic exact oracle inequality for the special case of ordered variable selection. For the sake
of completeness, we prove that choosing K smaller than one yields to terrible performances.

In Section [B.2] we consider general collection of models M. By introducing new penalties
that take into account the complexity of M as in |9], we are able to state a non-asymptotic oracle
inequality. In particular, we consider the problem of complete variable selection. In Section [3.4]
we define penalties based on a prior distribution on M. We then derive the corresponding risk
bounds.

Interestingly, these rates of convergence do not depend on the covariance matrix ¥ of the
covariates, whereas known results on the Lasso or the Dantzig selector rely on some assumptions
on X, as discussed in Section We illustrate in Section [B] on simulated examples that for
some covariance matrices % the Lasso performs poorly whereas our methods still behaves well.
Besides, our penalization method does not require the knowledge of the conditional variance

o2. In contrast, the Lasso and the Dantzig selector are constructed for known variance. Since

o? is unknown, one either has to estimate it or has to use a cross-validation method in order
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6 Verzelen

to calibrate the penalty. In both cases, there is some room for improvements for the practical
calibration of these estimators.

However, our model selection procedure suffers from a computational cost that depends lin-
early on the size of the collection M. For instance, the complete variable selection problem is
NP-hard. This makes it intractable when p becomes too large (i.e. more than 50). In contrast,
our criterion applies for arbitrary p when considering ordered variable selection since the size of
M is linear with n. We shall mention in the discussion some possible extensions that we hope
can cope with the computational issues.

In a simultaneous and independent work to ours, Giraud |19] applies an analogous procedure
to estimate the graph of a GGM. Using slightly different techniques, he obtains non-asymptotic
results that are complementary to ours. However, he performs an unnecessary thresholding to
derive an upper bound of the risk. Moreover, he does not consider the case of nested collections
of models as we do in Section Bl Finally, he does not derive minimax rates of estimation.

1.4 Minimax rates of estimation

In order to assess the optimality of our procedure, we investigate in Section [ the minimax rates
of estimation for ordered and complete variable selection. For ordered variable selection, we
compute the minimax rate of estimation over ellipsoids which is analogous to the rate obtained
in the fixed design framework. We derive that our penalized estimator is adaptive to the collection
of ellipsoids independently of the covariance matrix 3. For complete variable selection, we prove
that the minimax rates of estimator of vectors # with at most k& non-zero components is of order
% when the covariates are independent. This is again coherent with the situation observed in

the fixed design setting. Then, the estimator 0 defined for complete variable selection problem
is shown to be adaptive to any sparse vector §. Moreover, it seems that the minimax rates may
become faster when the matrix ¥ is far from identity. We investigate this phenomenon in Section
All these minimax rates of estimation are, to our knowledge, new in the Gaussian random
design regression. Tsybakov |35] has derived minimax rates of estimation in a general random
design regression setup, but his results do not apply in our setting as explained in Section

1.5 Organization of the paper and some notations

In Section 2] we precise our estimation procedure and explain the heuristics underlying the pe-
nalization method. The main results are stated in Section[3l In Section [, we derive the different
minimax rates of estimation and assess the adaptivity of the penalized estimator 67. We perform
a simulation study and compare the behaviour of our estimator with Lasso and adaptive Lasso
in Section Bl Section [6] contains a final discussion and some extensions, whereas the proofs are
postponed to Section [7

Throughout the paper, ||.]|2 stands for the square of the canonical norm in R" reweighted
by n. For any vector Z of size n, we recall that II,,Z denotes the orthogonal projection of Z
onto the space generated by (X;);cm. The notation X, stands for (X;);em and X, represents
the n x d,, matrix of the n observations of X,,. For the sake of simplicity, we write 0 for the
penalized estimator 0. For any x > 0, |z is the largest integer smaller than x and [z] is the
smallest integer larger than x. Finally, L, Ly, Lo,... denote universal constants that may vary
from line to line. The notation L(.) specifies the dependency on some quantities.

INRIA
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2 Estimation procedure

Given a collection of models M and a penalty pen : M — RT, the estimator 0 is computed as
follows:

Model selection procedure
1. Compute 6,, = argmingres,, ||[Y — X0'||2 for all models m € M.
2. Compute m := argmin,epm ||Y — XHAmH% [1 4 pen(m)].

3. 0:= é\ﬁl

The choice of the collection M and the penalty function pen(.) depends on the problem under
study. In what follows, we provide some preliminary results for the parametric estimators é\m
and we give an heuristic explanation for our penalization method.

For any vector 6’ in RP, we define the mean-squared error +(.) and its empirical counterpart

Yn(.) as
O = Eg [(y - X@’)ﬂ and  7,(0) = |[Y — X0'|* . (4)

The function 7(.) is closely connected to the loss function I(.,.) through the relation I(8,60) =
v(B) —~(0).

Given a model m of size strictly smaller than n, we refer to ,,, as the unique minimizer of ~(.)
over the subset S,,. It then follows that E (Y|X,,) = >_.., 6;X; and v(0,,) is the conditional
variance of Y given X,,. As for it, the least squares estimator gm is the minimizer of ~,(.) over
the space Sy,.

iEm

~

O, = argellxelibp () as. .

It is almost surely uniquely defined since ¥ is assumed to be non-singular and since d,, < n.
Besides vy, (6,,) equals ||[Y —IL,,Y||2. Let us derive two simple properties of 6,,, that will give us
some hints to perform model selection.

Lemma 2.1. For any model m whose dimension is smaller than n—1, the expected mean-squared
error of 0., and the expected least squares of 0,, respectively equal

E[y(ém)} = (B, 0) + 0] <1+d7m) : (5)

n—d, —1
~ 9 dm
E[3n@n)] = [16m.0)+0%] (1-°2) . (6)
The proof is postponed to the Appendix. From Equation (&), we derive a bias variance
decomposition of the risk of the estimator 6,,:

dm

E [0 0)] = 10n,0) + [0* + 10, 0)] —— .

~

Hence, 6,, converges to 6, in probability when n converges to infinity. Contrary to the fixed

design regression framework, the variance term [02 + (0, 9)} ni‘flmf depends on the bias term

1
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8 Verzelen

1(0m,0). Besides, this variance term does not necessarily increase when the dimension of the
model increases.

Let us now explain the idea underlying our model selection procedure. We aim at choosing

~

a model m that nearly minimizes the mean-squared error v(6,,). Since we do not have access to

~(0,,) nor to the bias I(6,y,, ), we perform an unbiased estimation of the risk as done by Mallows
[24] in the fixed design framework.

50) = )0 ()
0 (80 + 8 [ (0] 722 |2 27
~ %(ﬁm) 1+ndmm <2+ndn;:11)] : (7)

By Lemma 2], these approximations are in fact equalities in expectation. Since the last ex-
pression only depends on the data, we may compute its minimizer over the collection M. This
approximation is effective and minimizing (@) provides a good estimator 6 when the size of the

collection M is moderate as stated in Theorem BIl We recall that | Y —IL, Y||2 equals v, (6,,).

Q

—d

Hence, our previous heuristics would lead to a choice of penalty pen(m) = nf’g 2+ niygfll
in our criterion (), whereas FPE criterion corresponds to pen(m) = n{dgl . These two penalties

are equivalent when the dimension d,, is small in front of n. In Theorem Bl we explain why
these criteria allow to derive approximate oracle inequalities when there is a small number of
models. However, when the size of the collections M increases, we need to design other penalties
that take into account the complexity of the collection M (see Section 3.2]).

3 Oracle inequalities

3.1 A small number of models

In this section, we restrict ourselves to the situation where the collection of models M only
contains a small number of models as defined in [9] Sect 3.1.2.

(Hpo): for each d > 1 the number of models m € M such that d,, = d grows at most
polynomially with respect to d. In other words, there exists a and § such that for any d > 1,
Card ({m € M, d, = d}) < ad®.

(H,,): The dimension d,, of every model m in M is smaller than nn. Moreover, the number
of observations n is larger than 6/(1 — 7).

Assumption (Hp,;) states that there is at most a polynomial number of models with a given
dimension. It includes in particular the problem of ordered variable selection, on which we will
focus in this section. Let us introduce the collection of models relevant for this issue. For any
positive number ¢ smaller or equal to p, we define the model m; := {1,...,i} and the nested
collection M; := {mg,m1,...m;}. Here, mg refers to the empty model. Any collection M;
satisfies (Hpe;) with 8 =0 and o« = 1.

INRIA



Model selection on a Gaussian design 9

Theorem 3.1. Let n be any positive number smaller than one. Assume that the collection M
satisfies (Hpoy) and (H,,). If the penalty pen(.) is lower bounded as follows

dm
pen(m) > K g for all m € M and some K > 1, (8)
n—am

then

n—dmy,

E {1(5,9)} < L(K,n) 7732?4 [Z(Gm,é‘) + pen(m) [0 + l(@m,H)]} + Tn s (9)

where the error term T, is defined as
2
T = Tn [Var(Y'), K, n, o, 8] := L1 (K, n, v, B) [U— + 03P Var(Y) exp [-nLa(K, 77)]] ;
n

and Lo(K,n) is positive.

The theorem applies for any n, any p and there is no hidden dependency on n or p in the
constants. Besides, observe that the theorem does not depend at all on the covariance matrix X
between the covariates. If we choose the penalty pen(m) = K nf’(’l"m, we obtain an approximate
oracle inequality.

E[l(@, 9)} < L(K,n) inf E[z(o?m,eﬂ o [Var(Y), K, n, o, 8]

thanks to Lemma I The term in n**#Var(Y) exp[—nLs(K,n)] converges exponentially fast
to 0 when n goes to infinity and is therefore considered as negligible. One interesting feature of
this oracle inequality is that it allows to consider models of dimensions as close to n as we want
providing that n is large enough. This will not be possible in the next section when handling
more complex collections of models.

If we have stated that 0 performs almost as well as the oracle model, one may wonder whether
it is possible to perform exactly as well as the oracle. In the next proposition, we shall prove
that under additional assumption the estimator § with K = 2 follows an asymptotic exact oracle
inequality. We state the result for the problem of ordered variable selection. Let us assume for
a moment that the set of covariates is infinite, i.e. p = 4+00. In this setting, we define the subset
O of sequences 0 = (6;);>1 such that < X,6 > converges in L2. In the following proposition, we
assume that 6 € O.

Definition 3.1. Let s and R be two positive numbers. We define the so-called ellipsoid EL(R)
as

+oo
10, O,
E((R) = {(91')1’20, Z @ < R202} .
i=1
In Section [£J] we explain why we call this set £.(R) an ellipsoid.

Proposition 3.2. Assume there exists s, s', and R such that 6 € EL(R) and such that for any
positive numbers R', 0 ¢ E.,(R"). We consider the collection M, /2) and the penalty pen(m) =

Qni’gm. Then, there exists a constant L(s, R) and a sequence T, converging to zero at infinity

such that, with probability, at least 1 — L(s, R)l(;}# ,

1(6,6) < [1+7(n))] o /i&llLfn/zj 10, 0) . (10)

RR n° 6616



10 Verzelen

Admittedly, we make n go to the infinity in this proposition but we are still in a high
dimensional setting since p = +o0 and since the size of the collection M|, /2| goes to infinity
with n. Let us briefly discuss the assumption on 6. Roughly speaking, it ensures that the oracle
model has a dimension not too close to zero (larger than log?(n)) and small before n (smaller
than n/logn). Notice that it is classical to assume that the bias is non-zero for every model m for
proving the asymptotic optimality of Mallows’ C}, (¢f. Shibata [31] and Birgé and Massart [9]).
Here, we make a stronger assumption because the bound (I0) holds in probability and because
the design is Gaussian. Moreover, our stronger assumption has already been made by Stone [32]
and Arlot [3]. We refer to Arlot [3] Sect.4.1 for a more complete discussion of this assumption.

The choice of the collection M|, /2| is arbitrary and one can extend it to many collections
that satisfy (Hpo) and (H,). As mentioned in Section [ the penalty pen(m) = 2nf’§m corre-
sponds to the FPE model selection procedure. In conclusion, the choice of the FPE criterion
turns out to be asymptotically optimal when the complexity of M is small.

We now underline that the condition K > 1 in Theorem [B1] is almost necessary. Indeed,
choosing K smaller than one yields terrible statistical performances.

Proposition 3.3. Suppose that p is larger than n/2. Let us consider the collection M\, /2| and
assume that for some v > 0,

dm
n—dmn,

pen(m) = (1 —v) , (11)
for any model m € M|y, /2. Then given 6 € (0,1), there exists some ng(v,0) only depending on
v and & such that for n > ng(v,d),

P, [dm > ﬂ >1-6 and E [1(5,9)} > (0 0) + L(5,v)0? .

Mn/2))

If one chooses a too small penalty, then the dimension dg of the selected model is huge and
the penalized estimator 6 performs poorly. The hypothesis p > n/2 is needed for defining the
collection M|, /5. Once again, the choice of the collection M|, /2| is rather arbitrary and the
result of Proposition B3 still holds for collections M which satisty (Hpo;) and (H,,) and contain
at least one model of large dimension. Theorem [B.1] and Proposition 3.3l tell us that nf’gm is the
minimal penalty.

In practice, we advise to choose K between 2 and 3. Admittedly, K = 2 is asymptotically
optimal by Proposition Nevertheless, we have observed on simulations that K = 3 gives
slightly better results when n is small. For ordered variable selection, we suggest to take the
collection M, /2.

3.2 A general model selection theorem

In this section, we study the performance of the penalized estimator 9 for general collections
M. Classically, we need to penalize stronger the models m, incorporating the complexity of the
collection. As a special case, we shall consider the problem of complete variable selection. This
is why we define the collections ./\/lg that consist of all subsets of {1,...,p} of size less or equal
to d.

Definition 3.2. Given a collection M, we define the function H(.) by

H(d) := élog [Card({m € M, dy, = d})] |

INRIA
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for any integer d > 1.

This function measures the complexity of the collection M. For the collection ./\/lg, H(k) is
upper bounded by log(ep/k) for any k < d (see Eq.(4.10) in [25]). Contrary to the situation
encountered in ordered variable selection, we are not able to consider models of arbitrary dimen-
sions and we shall do the following assumption.

(Hg,,): Given K > 1 and 7 > 0, the collection M and the number 7 satisfy

(14 V2H@,)] d

n—dn,

Vm € M, <n<nK), (12)

where 7(K) is defined as n(K) := [1 — 2(3/(K + 2))/%)2\/[1 — (3/K + 2)'/¢]? /4.

The function n(K) is positive and increases when K is larger than one. Besides, n(K)
converges to one when K converges to infinity. We do not claim that the expression of n(K) is
optimal. We are more interested in its behavior when K is large.

Theorem 3.4. Let K > 1 and let n < n(K). Assume that n is larger than some quantity no(K)
only depending on K and the collection M satisfies (Hg ). If the penalty pen(.) is lower bounded
as follows

pen(m) > K dn (1 + \/2H(dm))2 for anym e M , (13)

n—dmy,
then

n—dn,

E[10,0)] < L(K.n) it

nf {l(@m,é’) + pen(m) [0 + l(ﬁ’mﬁ)]} +Tn (14)

where T, is defined as

Tn =T [Var(Y),K,n] := 0

2@ + Lo(K,n)n®? Var(Y) exp [=nLs(K,n)] ,

and L3(K,n) is positive.

This theorem provides an oracle type inequality of the same type as the one obtained in the
Gaussian sequential framework by Birgé and Massart [8]. The risk of the penalized estimator
almost achieves the infimum of the risks plus a penalty term depending on the function H(.). As
in Theorem [B] the error term 7, [Var(Y'), K, 7] depends on € but this part goes exponentially
fast to 0 with n.

Comments:

o As for Theorem Bl the result holds for arbitrary large p as long as n is larger than the
quantity no(K) (independent of p). There is no hidden dependency on p except in the
complexity function H(.) and Assumption Hg , that we shall discuss for the particular
case of complete variable selection. Moreover, one may easily check Assumption Hg
since it only depends on the collection M and not on some unknown quantity.

e This result (as well as of Theorem BI]) does not depend at all on the covariance matrix X
between the covariates.
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e The penalty introduced in this theorem only depends on the collection M and a number
K > 1. Hence, performing the procedure does not require any knowledge on o2, ¥, or 6.
We give hints at the end of the section for choosing the constant K.

e Observe that Theorem [3.]is not just corollary of Theorem 3.4l If we apply Theorem [3.4]

to the problem of ordered selection, then the maximal size of the model has to be smaller
1157[((%), which depends on K and is always smaller than n/2. In contrast, Theorem
BT handles models of size up to n — 7.

than n

3.3 Application to complete variable selection

Let us now restate Theorem [3.4] for the particular issue of complete variable selection. Consider
K >1,n<n(K) and d > 1 such that Mg satisfies Assumption (Hg ). If we take for any model

m e ./\/lg the penalty term
2
1+ /2log (;—p)] , (15)

E [1(5,9)} < L(K.n) inf {zwm,e) + %’” log <%> 02} + 1 [Var(Y), K, 1] .

dm

n —am

pen(m) = K

then we get

We shall prove in Section 4.2] that the term log(p/d,,) is unavoidable and that the obtained
estimator is optimal from a minimax point of view. If the true parameter 6 belongs to some
unknown model m, then the rates of estimation of 6 is of the order % log(p/dy)o?. Let us
compare our result with other procedures.

e The oracle type inequalities look similar to the ones obtained by Birgé and Massart [g],
Bunea et al. [10] and Baraud et al. [4]. However, Birgé and Massart and Bunea et al.
assume that the variance o2 is known. Moreover, Birgé and Massart and Baraud et al. only
consider a fixed design setting. Yet, Bunea et al. allow the design to be random, but they
assume that the regression functions are bounded (Assumption A.2 in their paper) which
is not the case here. Moreover, they only get risk bounds with respect to the empirical
norm ||.||,, and not the integrated loss (., .).

e As mentioned previously, our oracle inequality holds for any covariance matrix ¥. In con-
trast, Lasso and Dantzig selector estimators have been shown to satisfy oracle inequalities
under assumptions on the empirical design X. In |13], Candés and Tao indeed assume that
the singular values of X restricted to any subset of size proportional to the sparsity of 6 are
bounded away from zero. Bickel et al. [5] introduce an extension of this condition prove
both for the Lasso and the Dantzig selector. In a recent work [12], Candés and Plan state
that if the empirical correlation between the covariates is smaller than L(log p)~!,then the
Lasso follows an oracle inequality in a majority of cases. Their condition is in fact almost
necessary. On the one hand, they give examples of some low correlated situations, where
the Lasso performs poorly. On the other hand, they prove that the Lasso fails to work well
if the correlation between the covariates if larger than L(logp)~!. Yet, Candes and Plan
consider the loss function ||X6 — X6||2, whereas we use the integrated loss (6, 8), but this
does not really change the impact of their result. We refer to their paper for further de-
tails. The main point is that for some correlation structures, our procedure still works well,
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whereas the Lasso and the Dantzig selector procedures perform poorly. In many problems
such as GGM estimation, the correlation between the covariates may be high and even the
relaxed assumptions of Candeés and Plan may not be fulfilled. In Section [, we illustrate
this phenomenon by comparing our procedure with the Lasso on numerical examples for
independent and highly correlated covariates.

e Suppose that the covariates are independent and that 6 belongs to some model m, the rates
of convergence of the Lasso is then of the order 2= log(p)o?, whereas ours is 4= log(p/d,y, )02
Consider the case where p, and d,,, are of the same order whereas n is large. Our model
selection procedure therefore outperforms the Lasso by a log(p) factor even if the covariates
are independent.

o Let us restate Assumption (Hg,,) for the particular collection M. Given some K > 1
and some 1 < n(K), the collection Mg satisfies (Hg,j) if

n & 2 -
1+ [1 +20+ 1og(p/d))}

If p is much larger than n, the dimension d of the largest model has to be be smaller than
the order n#m. Candes and Plan state a similar condition for the lasso. We believe that

d<

(16)

this condition is unimprovable. Indeed, Wainwright states in Th.2 of [38] a result going in
this sense: it is impossible to estimate reliably the support of a k-sparse vector 6 if n is
smaller than the order klog(p/k). If log(p) is larger than n, then we cannot apply Theorem
B4 This ultra-high dimensional setting is also not handled by the theory for the Lasso
and the Dantzig selector. Finally, if p is of the same order as n, then Condition ([I6) is
satisfied for dimensions d of the same order as n. Hence, our method works well even when
the sparsity is of the same order as n, which is not the case for the Lasso or the Dantzig
selector.

Let us discuss the practical choice of d and K for complete variable selection. From numerical

studies, we advise to take d < 5[z oe(ZV1)] Ap even if this quantity is slightly larger than what

is ensured by the theory. The practical choice of K depends on the aim of the study. If one
aims at minimizing the risk, K = 1.1 gives rather good result. A larger K like 1.5 or 2 allows to
obtain a more conservative procedure and consequently a lower FDR. We compare these values
of K on simulated examples in Section

3.4 Penalties based on a prior distribution

The penalty defined in Theorem [3.4] only depends on the models through their cardinality.
However, the methodology developed in the proof may easily extend to the case where the user
has some prior knowledge of the relevant models. Let 7w be a prior probability measure on the
collection M. For any non-empty model m € M, we define [,,, by

. Jog(ma(m))
m ™ :

By convention, we set [y to 1. We define in the next proposition penalty functions based on the
quantity I, that allow to get non-asymptotic oracle inequalities.
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Assumption (]HIIKW): Given K > 1 and n > 0, the collection M, the numbers [,, and the
number 7 satisfy

[+ Vo) dn

Y
m e M, .

<n<n(K), (17)

where 1(K) is defined as in (Hg ;).

Proposition 3.5. Let K > 1 and let n < n(K). Assume that n > no(K) and that Assumption
(HlKn) is fulfilled. If the penalty pen(.) is lower bounded as follows

pen(m) > Kn fnzl (1 + \/%)2 for any m e M\ {0}, (18)
then
~ . n— dm 2
EP&@]gMKmhgﬂﬁwmm+ mmm”a+u%ﬁﬂ}+m, (19)

where L(K,n) and 1, are the same as in Theorem [3]]
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Comments:

e In this proposition, the penalty (I8]) as well as the risk bound (I9) depend on the prior

distribution 7. In fact, the bound (I9) means that 6 achieves the trade-off between the
bias and some prior weight, which is of the order

—log[map (m)][o? + (0, 0)]) /n

This emphasizes that 0 favours models with a high prior probability. Similar risk bounds
are obtained in the fixed design regression framework in Birgé and Massart [7].

e If the proofs of Proposition [3.5 and Theorem [3.4] are very similar, Proposition [3:5] does not
imply the theorem.

e Roughly speaking, Assumption (]HIIKW) requires that the prior probability ma¢(m) is not
exponentially small with respect to n.

4 Minimax lower bounds and Adaptivity

Throughout this section, we emphasize the dependency of the expectations E(.) and the proba-
bilities P(.) on 6 by writing Eg and Py. We have stated in Section Bl that the penalized estimator
9 performs almost as well as the best of the estimators 9 . We now want to compare the risk of
0 with the risk of any other possible estimator estimator 0. There is no hope to make a pointwise
comparison with an arbitrary estimator. Therefore, we classically consider the maximal risk over
some suitable subsets © of RP. The minimaz risk over the set © is given by infzsupycg Eo[l(0, 0)],
where the infimum is taken over all possible estimators 0 of 0. Then, the estimator 0 is said to
be approximately minimaz with respect to the set © if the ratio

SUPgee o {l (67, 9)}
inf; supgee Eo {z (5, 9)}

is smaller than a constant that does not depend on ¢2, n, or p. The minimax rates of estimation

were extensively studied in the fixed design Gaussian regression framework and we refer for
instance to [8] for a detailed discussion. In this section, we apply a classical methodology known
as Fano’s Lemma in order to derive minimax rates of estimation for ordered and complete variable
selection. Then, we deduce adaptive properties of the penalized estimator 6.

4.1 Adaptivity with respect to ellipsoids

In this section, we prove that the estimator 0 introduced in Section Bl to perform ordered
variable selection is adaptive to a large class of ellipsoids.

Definition 4.1. For any non increasing sequence (ai)lgi§p+1 such that a1 =1 and apy1 =0
and any R > 0, we define the ellipsoid E,(R) by

2 1 (O, ., 0m,
E.(R) := {9 € RP,Z(#Q”) < RQ} .

a?
=1 ?
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This definition is very similar to the notion of ellipsoids introduced in [36]. Let us explain
why we call this set an ellipsoid. Assume for one moment that the (X;)i<i<p are independent
identically distributed with variance one. In this case, the term ! (Gmifl,é'mi) equals 67 and the
definition of £,(R) translates in

E.(R) = {9€R i

which precisely corresponds to a classical definition of an ellipsoid. If the (X;)i<i<p are not
i.i.d. with unit variance, it is always possible to create a sequence X! of i.i.d. standard Gaussian
variables by orthonormalizing the X; using Gram-Schmidt process. If we call 6’ the vector in R?
such that X0 = X'¢’, then it holds that I (6,,,_,,0m,) = 6/>. Then, we can express & (R) using
the coordinates of 0’ as previously:

p 9/
Eu(R) 6 € R? Z LQ <R
The main advantage of this definition is that it does not directly depend on the covariance of
(Xi)1<i<p-

Proposition 4.1. For any sequence (a;)i1<i<p and any positive number R, the minimaz rate of
estimation over the ellipsoid E,(R) is lower bounded by

@w|@w

~ 2.
inf sup Eg [1(9,9)} > L sup [a?RQ A 2] . (20)
6 0cea(R) 1<i<p n

This result is analogous to the lower bounds obtained in the fixed design regression framework
(see e.g. [25] Th. 4.9). Hence, the estimator # built in Section Blis adaptive to a large class of
ellipsoids.

Corollary 4.2. Assume that n is larger than 12. We consider the penalized estimator 0 with

the collection M|y, 2 and the penalty pen(m) = Kni’gm . Let E,(R) be an ellipsoid whose radius

R satisfies %2 < R% < 0?n” for some 3 > 0. Then, 0 is approzimately minimaz on E,(R)

sup l(g,H)SL(K,ﬁ)igf sup [Eq [1(9\,9)} ,
el (R) 0 6c&.(R)

if either n > 2p or a%n/2J+1R2 < o?/2.

In the fixed design framework, one may build adaptive estimators to any ellipsoid satisfying
R? > 0?/n so that the ellipsoid is not degenerate (see e.g. [25] Sect. 4.3.3). In our setting,
when p is small the estimator 0 is adaptive to all the ellipsoids that have a moderate radius
o2 /n < R2 < nP. The technical condition R? < nf is not really restrictive. It comes from the
term n31(0,, 0) exp(—nL(K)) in Theorem B.I] which goes exponentially fast to 0 with n. When p
is larger, 0 is adaptive to the ellipsoids that also satisfies afn /2] HRQ < 0?/2. In other words, we
require that the ellipsoid is well approximated by the space Sy, |, /2] of vectors 6 whose support
is included in {1,...,[n/2]}. If this condition is not fulfilled, the estimator 6 is not proved to be
minimax on &,(R). For such situations, we believe on the one hand that the estimator 0 should
be refined and on the other hand that our lower bounds are not sharp. Finally, the collection
M 2) may be replaced by any M|, in Corollary 21
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Since the methods used for minimax lower bounds and the oracle inequalities are analogous
to the ones in the Gaussian sequence framework, one may also adapt in our setting the arguments
developed in [25] Sect. 4.3.5 to derive minimax rates of estimation over other sets such Besov
bodies. However, this is not really relevant for the regression model (IJ).

4.2 Adaptivity with respect to sparsity

Our aim is now to analyze the minimax risk for the complete variable selection problem. Let
us fix an integer k between 1 and p. We are interested in estimating the vector § within the
class of vectors with a most k& non-zero components. This typically corresponds to the situation
encountered in graphical modeling when estimating the neighborhoods of large sparse graphs.
As the graph is assumed to be sparse, only a small number of components of § are non-zero.

In the sequel, the set O[k,p] stands for the subset of vectors § € RP, such that at most k
coordinates of ¢ are non-zero. For any r > 0, we denote O[k, p](r) the subset of O[k, p] such that
any component of # is smaller than r in absolute value.

First, we derive a lower bound for the minimax rates of estimation when the covariates are
independent. Then, we prove the estimator 6 defined with some collection /\/lg and the penalty
(I3) is adaptive to any sparse vector 6. Finally, we investigate the minimax rates of estimation
for correlated covariates.

Proposition 4.3. Assume that the covariates X; are independent and have a unit variance. For
any k < p and any radius r > 0,

inf  sup K [1(5, 9)} > Lk
0 6cOlkp](r)

n

7 /\02%] . (21)

Thanks to Theorem [3.4] we derive the minimax rate of estimation over Ok, p].

Corollary 4.4. Consider K > 0, 8 > 0, and n < n(K). Assume that n > no(K) and that the
covariates X; are independent and have a unit variance. Let d be a positive integer such that
Mg satisfies (Hg ). The penalized estimator 0 defined with the collection ./\/lg and the penalty

(I3) is adaptive minimax over the sets O[k,p](n”)

sup Ey [10,0)] < LK, B,n)inf  sup By [B,0)]
0€O[k,p] 0 0€B[k,p](n?)

for any k smaller than d.

Hence, the minimax rates of estimation over O[k, p](n?) is of order k%, which is similar
to the rates obtained in the fixed design regression framework. As in previous Section, we restrict
ourselves to a radius 7 in Ok, p](r) smaller than n because of the term 7, (Var(Y'), K, ) which
depends on [(0,,6) but goes exponentially fast to 0 when n goes to infinity. Let us interpret
Corollary B4 with regard to Condition (). If p is of the same order as n, the estimator ]
is simultaneously minimax over all sets O[k, p](n®) when k is smaller than a constant times n.
If p is much larger than n, the estimator 6 is simultaneously minimax over all sets ©[k, p](n?)
with k smaller than Ln/log(p). We conjecture that the minimax rate of estimation is larger than
klog(p/k)/n when k becomes larger than n/logp. Let us mention that Tsybakov [35] has proved
general minimax lower bounds for aggregation in Gaussian random design regression. However,
his result does not apply in our Gaussian design setting setting since he assumes that the density
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of the covariates X; is lower bounded by a constant ug.

We have proved that the estimator g is adaptive to an unknown sparsity when the covariates
are independent. The performance of 6 exhibited in Theorem [3.4] do not depend on the covari-
ance matrix X. Hence, the minimax rates of estimation on G [k, p| is smaller or equal to the order
klog(p/k)/n for any dependence between the covariance. One may then wonder whether the
minimax rate of estimation over O[k, p] is not faster when the covariates are correlated. We are
unable to derive the minimax rates for a general covariance matrix ¥. This is why we restrict
ourselves to particular examples of correlation structures. Let us first consider a pathological
situation: Assume that Xi,..., X} are independent and that Xj1,..., X, are all equal to X;.
Admittedly, the covariance matrix ¥ is henceforth non invertible. In the discussion, we mention
that Theorems 3.1 and [3.4] easily extend when ¥ is non-invertible if we take into account that the
estimators 6,, and m are non-necessarily uniquely defined. We may derive from Lemma 2Tl that
the estimator 0 ;) achieves the rate k/n over [k, p](n®). Conversely, the parametric rate

k/n is optimal. However, the estimator 0 defined with the collection M’; and penalty (I3 only

achieves the rate klog(p/k)/n. Hence, 6 is not minimax over Ok, p for this particular covari-
ance matrix and the minimax rate is degenerate. This emergence of faster rates for correlation
covariates also occurs for testing problems in the model () as stated in [36] Sect. 4.3. This is
why we provide sufficient conditions on ¥ so that the minimax rate of estimation is still of the
same order as in the independent case. In the following proposition, ||.|| refers to the canonical
norm in RP.

Proposition 4.5. Let U denote the correlation matriz of the covariates (X;)1<i<p. Let k be a
positive number smaller p/2 and let 6 > 0. Assume that

(L= 02ll0]* <6"wo < (1+0)[l6] (22)

for all 6 € RP with at most 2k non-zero components. Then, the minimax rate of estimation over
Ok, p|(r) is lower bounded as follows

P
inf  sup [y [z(@, 9)} > L(1 - 8)%k |72 A 2Lt og (k)
0 0colk.p)(r) (1+6)*n

Assumption ([22) corresponds to the §-Restricted Isometry Property of order 2k introduced
by Candes and Tao |14]. Under such a condition, the minimax rates of estimation is the same
as the one in the independent case up to a constant depending on § and the estimator 0 defined
in Corollary 4] is still approximately minimax over such sets O[k, p].

However, the d-Restricted Isometry Property is quite restrictive and seems not to be neces-
sary so that the minimax rate of estimation stays of the order klog(p/k)/n. Besides, in many
situations this condition is not fulfilled. Assume for instance that the random vector X is a
Gaussian Graphical model with respect to a given sparse graph. We expect that the correlation
between two covariates is large if they are neighbors in the graph and small if they are far-off
(w.r.t. the graph distance). This is why we derive lower bounds on the rate of estimation for
correlation matrices often used to model stationary processes.

Proposition 4.6. Let Xy,..., X, form a stationary process on the one dimensional torus. More
precisely, the correlation between X; and X is a function of |i—j|, where |.|, refers to the toroidal
distance defined by:

i =jlp = (i =g A (p—Tli=3l) -
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Uy (w) and Wo(t) respectively refer to the correlation matriz of X such that

corr(X;, X;) = exp(—wli— j|p) where w >0,
corr(X;, X;) = (1+i —jlp)~" wheret > 0.

Then, the minimax rates of estimation are lower bounded as follows

7 ko® log(4k) /w] 1
it sup o, [10,0)] > 257 |1 410 ( IBURTEL |
0 0€Ok,p] n A
if k is smaller than p/[log(4k)/w] and
ko?

inf sup Egy, |1(0,0)| > L~—
il sup By 0 [10.0)] = 1=

if k is smaller than p/[(4k)t — 1].

In the proof of the proposition, we justify that the correlations considered are well-defined
at least when p is odd. Let us mention that these correlation models are quite classical when
modelling the correlation of time series (see e.g. [20])

If the range w is larger than 1/p” or if the range ¢ is larger than + for some vy < 1, the lower
bounds are of order 02%(1 +logp/k). As a consequence, for any of these correlation models the
minimax rate of estimation is of the same order as the minimax rate of estimation for indepen-
dent covariates. This means that the estimator 6 defined in Proposition [£.4] is rate-optimal for
these correlations matrices.

In conclusion, the estimator 0 defined in Corollary 24l may not be adaptive to the covariance
matrix ¥ but rather achieves the minimax rate over all covariance matrices X:

sup sup [y {1(5,9)} < L(K,B,n)infsup sup E {1(5,9)}
3>00€0Olk,p](n?) 0 X>00e0lk,p](nf)

Nevertheless, the result makes sense if one considers GGMs since the resulting covariance matrices
are typically far from being independent.

5 Numerical study

In this section, we carry out a small simulation study to evaluate the performance of our estimator
0. As pointed out earlier, an interesting feature of our criterion lies in its flexibility. However, we
restrict ourselves here to the variable selection problem. Indeed, it allows to assess the efficiency
of our procedure with having regard to the Lasso [34] and adaptive Lasso proposed by Zou [41]].
Even if these two procedures assume that the conditional variance o2 is known, they give good
results in practice and the comparison with our method is of interest. The calculations are made
with R www.r-project.org/.

5.1 Simulation scheme

We consider the regression model () with p = 20, and 62 = 1. The number of observations n
equal 15, 20, and 30. We perform two simulation experiments.
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1. First simulation experiment: The covariance matrix ¥; is the identity matrix. This corre-
sponds to the situation where the covariates are all independent. The vector 6; has all its
components to zero except the three first ones, which respectively equal 2, 1, and 0.5.

2. Second simulation experiment: Let A be the p x p matrix whose lines (ai1,...,ap) are
respectively defined by

ar = (1,-1,0,...,0)/v2

az = (-1,1.2,0,...,0)//1+4 1.22
as = (1/V2,1/V2,1/p,....1/p)/\/1/2+ (p—2)/p%,

and for 4 < j < p, a; corresponds to the 4" canonical vector of RP. Then, we take
the covariance matrix Yo = A*A and the vector 65 = (40,40,0,...,0). This choice of
parameters derives from the simulation experiments of [4]. Observe that the two first
covariates are highly correlated.

For each sample we estimate 6 with our procedure, the Lasso and the adaptive Lasso. For
our procedure we use the collection M3 for n = 15, M3 for n = 20 and, M} for n = 30. The
choice of smaller collections for n = 15 and 20 is due to Condition (I6). We take the penalty
(@E) with K = 1.1 1.5, and 2. For the Lasso and adaptive Lasso procedures, we first normalize
the covariates (X;). Here, 2y/logpo would be a good choice for the parameter A of the Lasso.
However, we do not have access to 0. Hence, we use an estimation of the variance \//BE(Y) which
is a (possibly inaccurate) upper bound of o?. This is why we choose the parameter A of the Lasso

between 0.3 x 24/log p\//aE(Y) and 24/log p\//aE(Y) by leave-one-out cross-validation. The number
0.3 is rather arbitrary. In practice, the performances of the Lasso do not really depend on this
number as soon it is neither too small nor close to one. For the adaptive Lasso procedure, the
parameters v and A are also estimated thanks to leave-one-out cross-validation: ~ can take three

values (0.5,1,2) and the values of A vary between 0.3 x 2 logp\//aE(Y) and 2 1og(p)\//aE(Y).
We evaluate the risk ratio
E [1(5, 9)}

inf e E [1(§m, 9)}

ratio.Risk :=

as well as the power and the FDR on the basis of 1000 simulations. Here, the power corresponds
to the fraction of non-zero components 6 estimated as non-zero by the estimator 6, while the
FDR is the ratio of the false discoveries over the true discoveries.

Card({i, 6; = 0 and 6; # 0})
Card({i, 0; # 0})

Card({i, 6; # 0 and 6; # 0})
Card ({7, 0; #0})

Power .= E

] and FDR :=FE l

5.2 Results

The results of the first simulation experiment are given in Table [l We observe that the five
estimators perform more or less similarly as expected by the theory. The results of the second
simulation study are reported in Table[2l Clearly, the Lasso and adaptive Lasso procedures are
not consistent in this situation since the power is close to 0 and the FDR is close to one. Con-
sequently, the risk ratio is quite large and the adaptive Lasso even seems unstable. In contrast,
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n=15 n =20
Estimator | ratio.Risk Power FDR ratio.Risk Power FDR
K=11 48+04 067+002 0234+0.02| 48+0.3 0.77£0.01 0.28+0.02
K=15 574+04 0.624+0.02 0.20£0.01 | 53+0.4 0.744+0.02 0.254+0.01
K=2 73+05 0.544+0.02 0.17£0.01 | 66+£0.5 0.684+0.02 0.21+0.01
Lasso 584+0.2 0.644+0.01 029+0.02| 6.0+0.2 0.744+0.01 0.234+0.01
A. Lasso 48+03 064+002 0304£0.02| 47£04 0.75£0.02 0.30+0.01
n =30

Estimator | ratio.Risk Power FDR

K=1.1 42+0.3 0.87+0.01 0.234+0.02

K=15 41+02 0.84+0.01 0.194£0.01

K=2 43+0.2 0.81+0.01 0.144+0.01

Lasso 6.6+0.2 0.83+0.01 0.184+0.01

A. Lasso 43+05 0.86+0.02 0.26+0.01

Table 1: Our procedure with K = 1.1, 1.5, and 2 and Lasso and adaptive Lasso procedures:
Estimation and 95% confidence interval of Risk ratio (ratio.Risk), Power and FDR when p = 20,

¥ =39, 8 =05, and n = 15, 20, and 30.

n=15 n =20
Estimator | ratio.Risk Power FDR ratio.Risk Power FDR
K=1.1 53+04 0.77+0.03 0.41+£0.02 | 64+£0.5 0.87+£0.02 0.3940.02
K=15 53+04 0.764+0.03 0.41+0.02 | 59+£0.5 0.874+0.02 0.36=+0.02
K=2 55+0.5 0.754+0.03 0.40+0.02 | 5.5+£0.5 0.86+0.02 0.33+0.02
Lasso 13.54+0.3 0.02+0.01 0.99+0.01 | 16.7£0.3 0.02+0.01 0.98+0.01
A. Lasso 150£1.2 0.02+0.01 0904+0.02 | 20.5£1.8 0.04£0.01 0.89=+0.02
n =30

Estimator | ratio.Risk Power FDR

K=1.1 45+0.3 0.96+0.02 0.244+0.02

K=15 39+03 095+0.01 0.1940.02

K=2 3.5+0.3 0.94+0.01 0.164+0.02

Lasso 22.04+£0.3 0.024+0.01 0.99+0.01

A. Lasso 31.8+3.0 0.04+0.01 0.88+0.02

Table 2: Our procedure with K = 1.1, 1.5, and 2 and Lasso and adaptive Lasso procedures:
Estimation and 95% confidence interval of Risk ratio (ratio.Risk), Power and FDR when p = 20,
¥ =34, 0 =01, and n = 15, 20, and 30.

our method exhibits a large power and a reasonable FDR.

In the two studies, choosing a larger K reduces the power of the estimator but also decreases
the FDR. It seems that the choice K = 1.1 yields a good risk ratio, whereas K = 2 gives a better
control of the FDR. Contrary to the parameter X for the lasso, we do not need an ad-hoc method
such as cross-validation to calibrate K. The second example is certainly quite pathological but it
illustrates that our estimator 6 performs well even when the Lasso does not provide an accurate
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estimation. The good behavior of our method illustrates the strength of Theorem [3.4] that does
not depend on the correlation of the explanatory variables.

6 Discussion and concluding remarks

Until now, we have assumed that the covariance matrix X of the covariates is non-singular. If ¥
is singular, the estimators 6,, and the model m are not necessarily uniquely defined. However,
upon defining 6, as one of the minimizers of v, (6’) over Sy,, one may readily extend the oracle
inequalities stated in Theorem [B.1] and [3.4

Let us recall the main features of our method. We have defined a model selection criterion
that satisfies oracle inequalities regardless of the correlation between the covariates and regard-
less of the collection of models. Hence, the estimator 6 achieves nice adaptive properties for
ordered variable selection or for complete variable selection. Besides, one can easily combine this
method with prior knowledge on the model by choosing a proper collection M or by modulating
the penalty pen(.). Moreover, we may easily calibrate the penalty even when o2 is unknown,
whereas the Lasso-type procedures require a cross-validation strategy to choose the parameter .
The compensation for these nice properties is a computational cost that depends linearly on the
size of M. Hence, the complete variable selection problem is NP-hard. This makes it intractable
when p becomes too large (i.e. more than 50). In contrast, our criterion applies for arbitrary p
when considering ordered variable selection since the size of M is linear with n. In situations
where one has a good prior knowledge on the true model, the collection M is then not too large
and our criterion is also fastly calculable even for large p.

For complete variable selection, Lasso-type procedures are computationally feasible even when
p is large and achieve oracle inequalities under assumptions on the covariance structure. However,
there are both theoretical and practical problems with these estimators. On the one hand, they
are known to perform poorly for some covariance structures. On the other hand, there is some
room for improvement in the practical calibration of the lasso, especially when o2 is unknown. In
a future work, we would like to combine the strength of our method with these computationally
fast algorithms. The problem at hand is to design a fast data-driven method that picks a
subcollection M of reasonable size. Afterwards, one applies our procedure to M instead of M.
A direction that needs further investigation is taking for M all the subsets of the regularization
path given by the lasso.

7 Proofs

7.1 Some notations and probabilistic tools

First, let us define the random variable ¢, by
Y = Xb,+enteas. . (23)

By definition of 6,,, €, follows a normal distribution and is independent of € and of X,,,. Hence,
the variance of €, equals [(6,,,60). The vectors € and €, refer to the n samples of € and e,,.
For any model m and any vector Z of size n, II:- Z stands for Z — I1,,,Z. For any subset m of
{1,...,p}, X, denotes the covariance matrix of the vector X/,. Moreover, we define the row

vector Zpy, i= XmV/ Zm! in order to deal with standard Gaussian vectors. Similarly to the matrix
X, the n x d,, matrix Z,, stands for the n observations of Z,,. The notation (.,.),, refers to
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the empirical inner product associated with the norm ||.||,,. Lastly, ¢¥max(A) denotes the largest
eigenvalue (in absolute value) of a symmetric square matrix A.

We shall extensively use the explicit expression of §m;
X0y = Xp(X5Xn) 'XEY . (24)
Let us state a first lemma that gives the expressions of vn(gm), 7(§m), and the loss l(@m, Om)-

Lemma 7.1. For any model m of size smaller than n,

e (0n) = I e+ em) 2 (25)
Y(Bn) = 0+ 10n,0) + 1B, Om) - (26)
1Om,0n) = (€+ €m) (25, Zm) 225, (€ + €) (27)

The proof is postponed to the Appendix.

We now introduce the main probabilistic tools used throughout the proofs. First, we need to
bound the deviations of x? random variables.

Lemma 7.2. For any integer d > 0 and any positive number x,

P (XQ(d) <d- 2\/@) < exp(-z),

P (Xz(d) > d+2Vdx + 21‘) < exp(—z) .

These bounds are classical and are shown by applying Laplace method. We refer to Lemma
1 in [22] for more details. Moreover, we state a refined bound for the lower deviations of a x?
distribution.

Lemma 7.3. For any integer d > 0 and any positive number x,
2
9 2x
Px*(d) <d|{1=da—/— | VO < exp(-z),

where 04 := ’/% + exp(—d/16) . (28)

The proof is postponed the Appendix. Finally, we shall bound the largest eigenvalue of
standard Wishart matrices and standard inverse Wishart matrices. The following deviation
inequality is taken from Theorem 2.13 in [17].

Lemma 7.4. Let Z*Z be a standard Wishart matriz of parameters (n,d) with n > d. For any
positive number x,

P Pmax [(Z*Z)_l} > |n (1 - \/g 1') < exp(fnx2/2) s

and

2
d
Pl omax (Z7Z) <n (1 + \/j—i—m) < exp(—nz?/2) .
n
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7.2 Proof of Theorem [3.7]

Proof of Theorem [31l For the sake of simplicity we divide the main steps of the proof in several
lemmas. First, let us fix a model m in the collection M. By definition of m, we know that

Tn(0) [1 4 pen(m)] < 4 (0m) [1 + pen(m)] .

Subtracting () to both sides of this inequality yields

1(0,0) < U(0m,0) + vn(Om)pen(m) + 7, (0m) — n(0)pen(m) —7,(0) , (29)
where 7,,(.) := vn(.) — ¥(.). The proof is based on the concentration of the term —Tn(a). More
precisely, we shall prove that with overwhelming probability this quantity is of the same order
as the penalty term 7, (8)pen(m).

Let k1 and ko be two positive numbers smaller than one that we shall fix later. For any

model m’ € M, we introduce the random variables A,,, and B,  as

”HL/EW’H2 -1 HHm(e"'em’)HQ
Ay = 1- 2" max | (25 Loy 40 T n
K1+ 10, 0) + Kanp [( m ) } 16, 0) + 02
s Tyt (e + )2
- K m n 30
n—dm  1(Op,0)+02 (30)
M6 T e | (el 7 T (e )2
Bm’ = *1< m’ S tm/Em/n m n max{ */Zm’ 1:| m m’)lln
"1 210, 0) o? +rang (Zon ) 10, 0) + 02
, HL, m 2

n — dpy l(@m/,9)+0'2

We recall that the notations €., Zm, (., .)n, and @max(.) are defined in Section [[7Jl We may

upper bound the expression —7,,(0) — v, (0)pen(m) with respect to Az and Bg, as follows.
Lemma 7.5. Almost surely, it holds that

~7(0) = v(O)pen(i) — o® + |le]}, < 1(0,0) [Am V (1 = k2)] + 0” B - (32)

Let us set the constants

1 _ (E-1—ym)?
KL= g and ko= 16 Al (33)

We do not claim that this choice is optimal, but we are not really concerned about the constants
for this result. The core of this proof consists in showing that with overwhelming probability the
variable Az is smaller than 1 and By, is smaller than a constant over n.

Lemma 7.6. The event 1 defined as

Q= {Aﬁ < g} N {@n@mw (252:)7] < K4— 1}

satisfies P(25) < LCard(M) exp [-nL'(K,n)], where L'(K,n) is positive.

Lemma 7.7. There exists an event Qo of probability larger than 1 — exp (—nL) with L > 0 such
that

L(K,n,«a,
B [Balonn,) < SO0
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Gathering the upper bound ([29) and Lemma [T5] [0, and [[.7] we conclude that

E [z(é, 010,00, <n2 A é)] < U8, 6) +E [y (B )pen(m)

52 L(K,n,a,p)

n

+ +E [La,no, (Tn (0m) +0° = [€l7)] -

As the expectation of the random variable 7,, (6,,) + 02 — ||€||2 is zero, it holds that
E [1o.n0, (Tn (0m) +0° = [l€ll2)] = E [asuas (T, (0n) + 0% = [|€]7)]
< /20 + P©5) [VEllenll ~ 10,00 + 2/ETe ]
2
P(5) + P(ﬂ@ﬁ (10, 0) + 0/21(0,,,0)] -

The probabilities P(Q2§) and P(Q25) converge to 0 at an exponential rate with respect to n. Hence,
by taking the infimum over all the models m € M, we obtain

~ 0.2
E |:l(95 9)191092} < L(K7 77) migf\/l [Z(Gma 9) + (02 + l(ema 9)) pen(m)} + LQ(Kvna aaﬁ); +

Card(M)
n

+ L3(K,n) [0 +1(0p,0)] exp [-nLa(K,n)] (34)

with L4(K,n) > 0. In order to conclude, we need to control the loss of the estimator 6 on the
event of small probability 2§ U Q5. Thanks to the following lemma, we may upper bound the
r-th risk of the estimators 6,,.

Proposition 7.8. For any model m and any integer r > 2 such that n —d,, —2r+1>0,

1
™

E [z(@m,em)ﬂ < Lrdyn [02 + (0, 0)] -

The proof is postponed to Section [[4 We derive from this bound a strong control on
E |:l(95 9>1Q§u(zg}-

Lemma 7.9.

E [1(6,0) 105005 | < LK, n)n® Card(M) Var(Y') exp [-nL'(K,n)] . (35)

where L'(K,n) is positive.

By Assumptions (Hpe;) and (H,), the cardinality of the collection of M is smaller than
an'*P. We gather the upper bounds (34) and (3H) and so we conclude. O

Proof of Lemma[7.0] Thanks to Lemma [T, we decompose Vn(g) as

5,(0) = L4 (e + €)l1% — 0> — 107, 6) — (1 — k2)l(6, 0) — rale + €r) B (2 Zir) B (e + €r)
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Since 2ab < kia® + k7 'b? for any Ky > 0, it holds that

— |z (e +ex) |2+ lelz = |Hamell2 — [|[Hrenl? — 2(Uxe Oxem)n
Mhe,hen)? | [Unel? I el
< 2 —1<m’mmn m&iin 1(07,0) |— m M iin
R = () o2 }” D~ e M

Besides, we upper bound Expression (27]) of [ (5, 07 ) using the largest eigenvalue of (Z%Zm)_l

(e+€mn) Zin(Z5Z7) "Zh(e+€m) < Omax [(Z5Z7) '] (e+ ) Zan(Z5Z7) 25 (€ + €7)
15 (€ + €m)]l7

0% + 16m.6)] momas | (2 2) ™' | Z 5552 540)

IN

o2+
Thanks to Assumption (8), we upper bound the penalty terms as follows:

IMa (e + el - dn
O'2+l(977“9) n—dgm '

—vn(a)pen(ﬁ%) < - [02 +1(07,0)]

By gathering the four last identities, we get

7, () — @ pen(i) — o® + lel2 < 1B,0)[Am v (1 — k2)] + 0> B
since 1(6,0) decomposes into the sum 1(6, 6,) + (65, 6). O

Proof of Lemma[7.6. We recall that for any model m € M,

5 | pemlly _1p (e + €m)|I7
A, = - -2 -1 max | (25 2, —_—
17 Wb e (20 Zm) ] g o

e et e

n—dy U(0m,0)+ 0>

In order to control the variable Az, we shall simultaneously bound the deviations of the four
random variables involved in any variable A,,.

Since X, is independent of €,,/+/1(0m,0) and since €,,/1/1(0m,0) is a standard Gaussian
vector of size n, the random variable n||IL} €., || /1(0m,0) follows a x? distribution with n —
dn degrees of freedom conditionally on X,,. As this distribution does not depend on X,,,
n||IL € |2 /1(0rm, 0) follows a x2 distribution with n — d,,, degrees of freedom. Similarly, the
random variables n||TL,, (e + €, )2 /[1(0m, 0) + 02] and n||IL: (€ + €)% /[1(Om, 0) + 2] follow x2
distributions with respectively d,, and n — d,,, degrees of freedom. Besides, the matrix (Z,Z,,)
follows a standard Wishart distribution with parameters (n,d,).

Let x be a positive number we shall fix later. By Lemma and [T.4], there exists an event
Q of large probability

P(QY) < 4exp(—nz)Card(M) |
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such that for conditionally on €},

L €17, n—dnm (n—dpm)z
> _ g, /0T Gm)t
1(0m,0) = n n ) (37)
2
g%%%%g%%l < Tman/Ttia, (38)
1555 (e + €m) 12 n—dp (n — dp)x
> — L T
210 0) = o ° s (39)

P | (ZnZom) ™| 40)

A
3
| — |
N
=
\
=&
\
9
8
N~
<
o
| I
(V]

for every model m € M. Let us prove that for a suitable choice of the number z, A7 1q; is

smaller than 7/8. First, we constrain n&a¢max [(Z;;I Zﬁl)_li| to be smaller than % on the event
Q). By #0), it holds that

o [ < (1= =) ]
(1-vm)®

8

Constraining  to be smaller than ensures that the largest eigenvalue of (Z%Zm)fl

satisfies
4

S —
(L =)

By definition (B3] of kq, it follows that nka@max {(Z%Zﬁ)il} < (K —1)/4. Applying inequality
2ab < 6a? + 6~b? to the bounds 1), B8), and [B9) yields

NPmax {(Z%Zﬁ)_l} S

|Uealls _ 1, dn_,
107,00 — 2 o2p 7
17 1M (e + €m)|2 K—-1[ds 3z
max |(Z5Z 1}—”7“ 2l PR e
F2lPma [( %) 2+16m,0 - 2 |m 72
da |15 (e + €q)| dam  2Kn
-K n no< K —_— .
n—dm o2+107,0) — 2n +$1—77
Gathering these three inequalities, we get
K-1
U T PO ) o 1|
1T 4 4 1—n

If we set x to

8

then Az 1g is smaller than % and the result follows. O

o [8(2+3(K41)+2K177n)}_1A(1_7\/ﬁ)2,

Proof of Lemma[7_7 We shall simultaneously bound the deviations of the random variables in-
volved in the definition of B,, for all models m € M. Let us first define the random variable F,,
as

. (e Ihe,)? | [l
m = R .
L 6200, 0) o?
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Factorizing by the norm of €, we get

mt
b o el s Taen)l el
mo= g2 10, 0) o?

(41)

Lell,, ” follows a 2 distribution with n degrees of freedom. By Lemma there

The variable n-*—=
2
exists an event Qg of probability larger than 1 — exp (n/8) such that % is smaller than 2. As

k7' =4, we obtain

(it Dhen)d | el
E,1 < 8 “ ~
@2 = 1O, 0) o2

Since €, €,,, and X,,, are independent, it holds that conditionally on X,, and e,

te 1 2
(e > nem )

1(0,,0)

~X*(1) .

Since the distribution depends neither on X,,, nor on €, this random variable follows a x? distri-

2
bution with 1 degree of freedom. Besides, it is independent of the variable ”Hf;ifll” Arguing as
previously, we work out the distribution

||l

0_2 X2 (dm) .

Consequently, the variable FE,,1q, is upper bounded by a random variable that follows the

distribution of g )
=T+ =T,
n n

where T and T are two independent x? distribution with respectively 1 and d,, degrees of

€
freedom. Moreover, the random variables n”ﬁﬁ%ﬁl‘n and nlln(”jf%)!" respectively follow a
x? distribution with d,, and n — d,,, degrees of freedom.
2
Let us bound the deviations of the random variables E,,1q,, M nd M

1(0m.0)+02 1(0m,0)+02
for any model m € M. We apply Lemma 1 in [|22] for E,,1q, and Lemma (2 for the two
remaining random variables. Hence, for any = > 0, there exists an event F(z) of large probability

e % ( Z e—ﬁldm +e—€2dm +e—€3dm>

meM

P[F(x)°]

IN

IN

—+oo
3+a) diemd ety e—isd)] :

such that conditionally on F(z),

Enlg, < utB g 2 1G4 8% (E1dy, + ) + 16524 EE
”H’VTL(€+€’VTL)”2L < 1 d +2m+2 é. + )
(0, ,0)+02 — n m m [AdmGQ2 m&S2 T

I, etem)ll? o
nliddn; ”(0.217&;759 S 7n(fl(ildm) ( - *2\/n7 §3d +1')) ’

INRIA



Model selection on a Gaussian design 29

for all models m € M. We shall fix later the positive constants &;, &, and &3. Let us apply
extensively the inequality 2ab < 7a?+7-'b%. Hence, conditionally on F(z), the model m satisfies

Enle, < GEm 142G + 176 + ] + 21T+ + 2
T (etem)|I2 ds . o
(07:.0)+0° = a1+ 2VG+26+n|+ 2247
Kdg |15 (etem)|2 g I e 1 _dg
T n—dm  o241(07,0) < 7KT |:1 -2 §3n dm T3:| +K n—dp °

By Lemma [T.6] we know that conditionally on Q1, Kon@max {(Z%Zﬁ)il} is smaller than

K-l By assumption (H,), the ratio dZ}A is smaller than ﬁ Gathering these inequalities we
upper bound Bg on the event Q3 NNy NF(z),
da 72
Bs < U+ 2V 4+ =,
n n n

where U and V are defined as

U = 1+2\/§_1+17§1+71+%[1+2\/§_2+2§2+72}K[12\/§_3‘/—1in73]

K-1 1N
1747 +T[2+ 5 ]+K731ﬂ.

\%
Looking closely at U, one observes that it is the sum of the quantity — (K D and an expression
that we can make arbitrary small by choosing the positive constants 51, &, &3, T1, T2, and T3
small enough. Consequently, there exists a suitable choice of these constants only depending on
K and 7 that constrains the quantity U to be non positive. It follows that for any x > 0, with
probability larger than 1 — e *L(K,n, «, 3),

LK)

X
Bsla na, < EL(K’ n) + .

Integrating this upper bound for any = > 0, we conclude

L(K’n7 a? 6) .

E [Bslo,no,] < -

O

Proof of Lemma[7.9. We perform a very crude upper bound by controlling the sum of the risk
of every estimator 6,

E [0, 0) 105005 | < /PO%) +P(5), | S E [10.0)?] .

meM

As for any model m € M, l(é\m, 0) =10, 0) + l(gm, 0.m), it follows that

E [z(@m,e)ﬂ <2 {z(em,9)2 +E [z(@m,em)ﬂ} .

For any model m € M, it holds that n — d,, —3 > (1 — n)n — 3, which is positive by assumption
(H,,). Hence, we may apply Proposition [.8 with » = 2 to all models m € M:

E [z(@m,em)ﬂ

IN

L [dn(0® + (0, 60))]
< Ln*Var(Y)?,
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since for any model m, 02 + (0, 0) < Var(Y). By summing this bound for all models m € M
and applying Lemma and [T7], we get

E[l(@, 0)1o:uas | < n®Card(M)L(K,n)Var(Y) exp [-nL (K, n)]

where L'(K,n) is positive.

7.3 Proof of Theorem [3.4 and Proposition

Proof of Theorem[34] This proof follows the same approach as the one of Theorem Bl We
shall only emphasize the differences with this previous proof. The bound (29)) still holds. Let us
respectively define the three constants 1, k2 and v(K) as

VEe (K =) [ = ya* (1= i - v

= _— = /\1
i - yi—v(K) ™ 16 ’
1/6
o ()
S\ Q) 2 '

We also introduce the random variables A,,, and B,  for any model m' € M.

| €115 [T (€ + €m) 17
16, 0) (O, 0) + 02

2 dyy |1 (€+ €)1

- K |1+4++2H(d o n
|: + ( m)i| 7dm/ l(em/79)+0_2 ’
L(OL € T6: €)2 || Trel|?

Am’ = K1+ 1— + R2NPmax [(Z:‘n’zm/)il}

[T (€ + €m) |17

By = K] mase | (Z5 Zor )™t
Kq O'QZ(om/,Q) ) + KoNPma: [( m ) i| 10, 0) + 02
||HL (e +em)llz
- K [1 V2H(d) } .
n— + O, 0) + o

The bound given in Lemma [[.3] clearly extends to
7,0 (8) — v @pen() — o + €2 < 1@,6) [An v (1 — x3)] + 0> By

As previously, we control the variable Az on an event of large probability €; and take the
expectation of By on an event of large probability €2 N Q.

Lemma 7.10. Let Q1 be the event

- gy < (K1) (1= - v(K))”
O :={Az < s(K, n)}ﬂ {F;gmpmaz (Z5Z7)7"] < 1 } ,

where s(K,n) is a function smaller than one. Then, P (Qf) < L(K)nexp|[—nL'(K,n)] with
L'(K,n) > 0.

The function s(K,7n) is given explicitly in the proof of Lemma

Lemma 7.11. Let us assume that n is larger than some quantities no(K). Then, there exists
an event Qy of probability larger than 1 — exp [-nL(K,n)] where L(K,n) > 0 such that

L(K,n)

E [Bﬁlel nQQ] <
n
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Gathering inequalities ([29), (32]), Lemma [.T0] and [.TT] we obtain as on the previous proof
that

E 1(5,9)1QMZ} < LK) vt [(0n,0) + (0% + 10, 0)) pen(m)] +

+ L'(K,n) [% + (6% +1(0,,0)) nexp [-nL"(K,n)]| . (42)

Afterwards, we control the loss of the estimator 0 on the event of small probability Qf U QS.

Lemma 7.12. If n is larger than some quantity no(K),
E l(aa 9>1Q§UQ§:| < n5/2 (02 =+ l(opa 9)) L(K7 77) €xXp [*TLL/(K, 77)] )

where L(K,n) is positive.
Gathering this last bound with ([@2]) enables to conclude. O

Proof of Lemma[7.10 This proof is analogous to the proof of Lemma [L.6], except that we shall
change the weights in the concentration inequalities in order to take into account the complexity
of the collection of models. Let  be a positive number we shall fix later. Applying Lemma [7.2]
Lemma [73] and Lemma [[4] ensures that there exists an event 2] such that

P(Q/f) < 4exp(—nzx) Z exp [—dm H(dp)]
meM

and for all models m € M,

ITLL €, |12 n —dmy, 15 _[2dmH(dm) 2zn
1O, 0) n e dm n—dn Vn—dn

[T (€ + €m)I7
i+ €m)lln 1+ VA H(d 44
o2 + (0, 0) [ + )+ Hidy)] + 32 (44)

it + o) o e
(v )]

We recall that dg is defined in ([28]). Besides, it holds that

Y

IN

N Pman [(z;zm)—l}

IN

P(€°) < 4 exp[—na] Z Card[{m € M, d,, = d}] exp[—dH(d)] < 4nexp[—nz] .
d=0

By Assumption (Hg ), the expression (1 +/2H ) \/ B dm is hbounded by \/n. Hence, condi-

tionally on €],
ngme [(Z25) ] < [(1-vi-vaR) Vo]
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(1-vm)®

S ensures that

Constraining « to be smaller than

(K -1)(1 - 7 —v(K))?
7 :

NK2Pmax [(Z%Zﬁz)il} 1(2/1 S

By assumption (Hg ,), the dimension of any model m € M is smaller than n/2. If n is larger
than some quantities only depending on K, then §,, /5 is smaller than v(K). Let us assume first
that this is the case. We recall that v(K) is defined at the beginning of the proof of Theorem
B4 Since v(K) < 1— /7, inequality (3] becomes

T €7

0m0) = (1_%) (1= () = VI~ 22a.

n

Bounding analogously the remaining terms of Az, we get

di
Az < mi+1- [1*\/7_7*5n/2}2+7(1*\/5*571/2)2U1+\/5U2+:EU3 ;

where Uy, Uy, and Us are respectively defined as

U, = —K[1+\/W}QJFH(K_”/Q[HWTSO
Uy = 2V2[1+ K1)
Us == 3(K—-1)[1—7—v(K)

Since U is non-positive, we obtain an upper bound of Az that does not depend anymore on .

By assumption (Hg ), we know that n < (1 — v(K) — (Kiﬂ)l/fi)? Hence, coming back to the

definition of k1 allows to prove that ; is strictly smaller than [1 — /i — v(K)]?. Setting

N LS Y RS L i e O Vi
T AU, AU 8 ’

we get

on the event Q.

In order to take into account the case 4,2 > v(K), we only have to choose a large constant
L(K) in the upper bound of P(Q). O

Proof of Lemma[7.11] Once again, the sketch of the proof closely follows the proof of Lemma
[C11]l Let us consider the random variables E,, defined as

o e T 62 Ml
m — R .
! 210, 0) o?

Since n| €| /o? follows a x? distribution with n degrees of freedom, there exists an event Qg of
probability larger than 1—exp [-nL(K)]such that ||€||2 /o2 is smaller than x7* = /(K + 2)/3[1—
V1 — v(K)] on Q3. The constant L(K)in the exponential is positive. We shall simultaneously

T (e+em) I, 11T, (et+em) |12
l(enLae)Jl‘UZn, and G'Tzn'f‘l(enme)n ' Let 6

upper bound the deviations of the random variables E,,,
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be some positive constant that we shall fix later. For any x > 0, we define an event F(x) such
that conditionally on F(x) N,

—2
En < ity +%\/[dm+n;4] [dn (€ + H(d)) + 2]
+ 2/{;2 f(dm+H(dm))+I
I, (e+€m)|?
Palrenlls < 1 [dm + 2\/dm [din (& + H(dw)) + 2] +2 [dn (& + H(dw)) + x}]
2
H;,i;zyézeg)i > n—ndm [(1 _ 5n7dm o /dm(ljffidm)) _ /n2flm) vV 0:| ,

for any model m € M. Then, the probability of F(z) satisfies

e’ l > expl—dnH(dm)] (e*fdm +e T 4 ed?)]

meM

R L S
= ¢ \I-et T 16 "1 12)

P [F ()]

IN

Let us expand the three deviation bounds thanks to the inequality 2ab < Ta? + 7712
dm - - -
E, < 7[1+2\/g+2lil2§+7'1§+7'2}+%[2/€12+T21+T1}
-2
dm H (dp, dm/H(dp,
+ k1 [1+7'71 72}+ ( )[2nf2+ﬁ]+2 (dm)
n n
dm 2
o oo V) [t 2o

| &8

+ - [2&1 + 75 +7‘1} + [1-}-7‘171,%172} .

Similarly, we get

[MT (e + €m)lln < 9oim [1 4+ /2H(dm)} +5%
n n

10, 0) + 02—

If n is larger than some quantity ng(/), then 6, /5 is smaller than v(K). Applying Assumption
(Hg,), we get

(o) B
ng#”(H\/m) Kl\/ﬁy(K) 2 )vo}

n—dmn,

< —K%m (14 V2HE) (- Vi~ () — 73] + 2Ky

Let us combine these three bounds with the definitions of B,,, k1, and k2. Hence, Conditionally
to the event Q1 N Q2 NF(x),

2

dm ~ 2 LK)
By < S 1+ \/2H ()| U1+%U2+¥U3, (46)
where
U, = __(1_\/77_1/(K)) +KT3+2\/_+2/€ X+l
Uy = +T1+L(K nA+73),
Us = 1+7'1
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Since K > 1, there exists a suitable choice of the constants £, 7, and 79, only depending on K
and 7 that constrains U; to be non positive. Hence, conditionally on the event ; N Qs NF(x),

L(K,n)

x

B < + L'(K, n)g

Since P [F(2)¢] < e *L(K,n), we conclude by integrating the last expression with respect to x.
O

Proof of Lemma[7.19 As in the ordered selection case, we apply Cauchy-Schwarz inequality

E[l(@,@)miugg} < ./P(Qg)+P(Qg),/]E{1(5,9)2}.

However, there are too many models to bound efficiently the risk of ] by the sum of the risks of
the estimators #,,,. This is why we use here Holder’s inequality

meM
< L(K)Vnexsp[-nL(K,n)] | > P ”"E[l(ém,o)?v]l/v,(z;?)
meM

where v := L%J, and u =: ;5. We assume here that n is larger than 8. For any model m € M,

the loss {(6n,6) decomposes into the sum [(6p,,6) + (6, 0,). Hence,we obtain the following
upper bound by applying Minkowski’s inequality

T/zv }1/271 T/zv .

E [z(@m,e)%

We shall upper bound this last term thanks to Proposition [[.8 Since v is smaller than n/8
and since d,, is smaller than n/2, it follows that for any model m € M, n —d,, —4dv + 1 is
positive and

<U(0,0) +E [z(@m, 0,)%] " < Var(Y) +E [z(@m, O,0)2 (48)

~ 1/2v
E [l(em,em)ﬂ < WLndy, (0% + (0, 0))
for any model m € M. Since d,,, < n and since o2 + (6,,,0) < Var(Y), we obtain
~ 1/2v
E [z(em,em)ﬂ < 20Ln?Var(Y) . (49)
Gathering upper bounds (1), @8], and [@9) we get

10.0) 05005 | < LOK)Viexp [-nL/(K,n)

x  [Var(Y) 4 2vLn®Var(Y Z m)t
meM

Since the sum over m € M of P(m = m) is one, the last term of the previous expression is
maximized when every P (m = m) equals m. Hence,

E[l(é,enmugg < n®*Var(Y)L(K,n)Card(M)Y ) exp [-nL' (K, n)] ,
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where L'(K,n) is positive. Let us first bound the cardinality of the collection M. We recall that
the dimension of any model m € M is assumed to be smaller than n/2 by (Hg,,). Besides, for
any d € {1,...,n/2}, there are less than exp(dH (d)) models of dimension d. Hence,

log (Card(M)) <log(n)+ sup dH(d).
d=1,...,n/2

By assumption (Hg ,), dH(d) is smaller than n/2. Thus, log(Card(M)) < log(n) + n/2 and it
follows that Card(M)'/(2*) is smaller than an universal constant providing that n is larger than
8. All in all, we get

E[10.0)1osuas] < n¥/2Var(Y)L(K, n) exp[-nL/ (K, )] |

where L'(K,n) is positive. O

Proof of Proposition[3.0 We apply the same arguments as in the proof of Theorem [3.4] except
that we replace H(d,) by I

T € 12
1(0,nr, 0)

2 dyy |, (€ + €)|
— K |1+2, L n
[ + } n— dpm l(@m/ 9)+O’2
(I e T )2 [Toel2
Bm/ = 1< n m
"1 021(9mr 0) + o?

{1+\/W} \HL e+em/)||n.

m’39)+02

[T (€ + €)1
1O, 0) + 02

Apy = k1 +1-— + KoNPmax [(Z:‘n, Zm,)fl}

MLy (€ + €mr)[I5
l(@m/, 0) + o2

+ KoNPmax |:(Z:<n/ Zm’)_1:|

- K

n—

In fact, Lemma [[.I0, [ZI1] and [[.12 are still valid for this penalty. The previous proofs of
these three lemma depend on the quantity H(d,,) through the properties:

H(d,) satisfies assumption (Hg,;) and >3-, c v 4. —gexp(—dH (dp)) < 1.

Under the assumptions of Proposition 3.5 1, satisfies the corresponding Assumption (]HIIKW)
and is such that >° 4 _sexp(—dly,)) < 1. Hence, the proofs of these lemma remain valid
in this setting if we replace H(d,,) by L

There is only one small difference at the end of the proof of Lemma when bounding
log (Card(M)). By definition of I,,,

CardM) —1<  sup exp(dmln) -
meM\{0}

Hence, log(Card(M) < 1 + sup,,e amq\ 19} dmlm, which is smaller than 1 + n/2 by Assumption

(HZKW). Hence, the upper bound shown in the proof of Lemma [[.12is still valid.
o

7.4 Proof of Proposition [7.8
Proof of Proposition[7.8 Let m be a subset of {1,...,p}. Thanks to (27), we know that

-~

1O, 0m) = (€ + €m) Loy (Z5,2,) 2 Z7, (€ + €m)
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Applying Cauchy-Schwarz inequality, we decompose the r-th loss of HAm in two terms

3=

B [10n 00 ] < B[+ en) (e en)" [ 120 (25, 20) > 23 1]

IN

E[||(e + €m) (€ + €m)" ;]iE{tr [(z;zm)—Q} g}i, (50)

by independence of €, €,,, and Z,,. Here, ||.||r stands for the Frobenius norm in the space of
square matrices. We shall successively upper bound the two terms involved in (B0).

r/2

[e+em)eten) | = | D (e+en)lil’ (e+em)li]

1<ij<n

This last expression corresponds to the L, , norm of a Gaussian chaos of order 4. By Theorem
3.2.10 in [18], such chaos satisfy a Khintchine-Kahane type inequality:

Lemma 7.13. For all d € N there exists a constant Lq € (0,00) such that, if X is a Gaussian

chaos of order d with values in any normed space F with norm ||.|| and if 1 < s < g < 0o, then
1 q— 1 /2 1
@XM <. (151) EOXNT

Let us assume that r is larger than four. Applying the last lemma with d = 4, ¢ = r/2, and
s = 2 yields

1
2

E[[J(e-+ en) (e-+ €))7 < Latr/2 = DE || (e + €) (e + €[]

By standard Gaussian properties, we compute the fourth moment of this chaos and obtain

1
E [H(e Fem) (et em)*Hﬂ P< L2 [ 4 1(0m,0)]° .
Hence, we get the upper bound

E[|[(€+ €m) (e + em)*H;} "< L(r—Dnfo® +1(0n,0)] . (51)
Straightforward computations allow to extend this bound to r = 2 and r = 3.

Let us turn to bounding the second term of (B0). Since the eigenvalues of the matrix
(Z%,Z) " " are almost surely non-negative, it follows that

tr [(z;zm)—Q} < tr [(z;fnzm)—l]2

Consequently, we shall upper bound the r-th moment of the trace of an inverse standard Wishart
matrix. For any couple of matrices A and B respectively of size p; X g1 and py X g2, we define
the Kronecker product matrix A ® B as the matrix of size pi1ps X q1¢2 that satisfies:

1< <m
1<iy < po
1<jii<aq
1<ja<q

A® Blig + pa(in — 1); j2 + q2(j1 — 1)] := Ali1; j1] Blig; jo] ,  for any
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For any matrix A, ®*A refers to the k-th power of A with respect to the Kronecker product.
Since tr(A)* = tr (®kA) for any square matrix A, we obtain

E[tr(Z2:,Zm) " = E[tr (@825 Zm)")

]
= tr[E(®"(Z},Zm)"")]
Vs, B [94(Z5,20) |5 -

thanks to Cauchy-Schwarz inequality. In Equation (4.2) of [37], Von Rosen has characterized
recursively the expectation of ®*(Z¥ Z,,)~! as long as n — d,,, — 2k — 1 is positive:

IN

vec (IE [®k+1(anZm)_1]) = A(n,dm, k)" vec (IE [®k(Z:an)_1] ® I) , (52)

where 'vec’ refers to the vectorized version of the matrix. See Section 2 of [37] for more details
about this definition. A(n,d,, k) is a symmetric matrix of size d%1 x d®F! which only depends
on n, dn, and k and is known to be diagonally dominant. More precisely, any diagonal element
of A(n,d,, k) is greater or equal to one plus the corresponding row sums of the absolute values of
the off-diagonal elements. Hence, the matrix A is invertible and its smallest eigenvalue is larger
or equal to one. Consequently, @max (A_l) is smaller or equal to one. It then follows from (G2))
that

B (&2 Z) e = [fvee (B [@FH(Z5,Zm) " )| -

I

< pmax(A71) ||vee (B [0M(Z5,Zm) '] @ 1)
< Vi |[E[0425,Z0m) 7 -
By induction, we obtain
E [tr(Z;,Zm) "] < dl, | (53)

if n —d,, — 2r +1 > 0. Combining upper bounds (EIl) and (B3]) enables to conclude

1
r

E [z@m,em)r} < Lrdpn(o?+1(0,0)) .

7.5 Proof of Proposition

Proof of Proposition[3.2. Let m, be the model that minimizes the loss function [ (gm, 0):

My = ar inf 1(6, ,0) .

gmeM\_n/ZJ (Om, 0)
It is almost surely uniquely defined. Contrary to the oracle m*, the model m, is random. By
definition of m, we derive that

o~ o~ ~ ~

10,0) < U(Om.., 0) + Yo (O Jpen(m.) + 7, (0. ) — v (B)pen(im) —7,,(0) (54)

where 7,, is defined in the proof of Theorem Bl The proof divides in two parts. First, we state
that on an event  of large probability, the dimensions of m and of m* are moderate. Afterwards,
we prove that on another event of large probability 1 N Qy N Q3, the ratio 1(0,0)/1(0m+,0) is
close to one.
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Lemma 7.14. Let us define the event )y as:
0y = {logQ(n) <dp, < L and log?(n) < da < L} .
logn logn

The event Q1 is achieved with large probability: P (1) > 1 — %

Lemma 7.15. There exists an event Qo of probability larger than 1 — Llo% such that

|[7(6) = u@)pen(i) — o + [|e]}2] 1a,na. < 1B, 0)ra(n),

where T1(n) is a positive sequence converging to zero when n goes to infinity.

Lemma 7.16. There exists an event Q3 of probability larger than 1 — Llo% such that

5 @) + 30 B Jpen(m®) + 0% — [€l2] 100, < 1 (.. 0) ().

where T2(n) is a positive sequence converging to zero when n goes to infinity.

Gathering these three lemma, we derive from the upper bound (54)) the inequality

1(0,6) 14+ 72(n)
AilleQgﬂﬂg S T _ /N
16y, ,6) 1—m71(n)

which allows to conclude.
O

Proof of Lemma[7.14 Let us consider the model mpg , defined by dp, , := \_(nRQ)l_isJ If n is
larger than some quantity L(R,s), then dp,, , is smaller than n/2 and mpg s therefore belongs
to the collection M, /o). We shall prove that outside an event of small probability, the loss

l(@m .5+ 0) is smaller than the loss Z(HAm, 0) of all models m € M|, /2] whose dimension is smaller

n
logn

than log?(n) or larger than
probability.

. Hence, the model m, satisfies log?(n) < d,,, < Togn With large

~ ~ -~

First, we need to upper bound the 10ss I(0y,, ., 0). Since l(0r, ., 0) = 1(Omp..»0)H(Omp s Omr.. ),
it comes to upper bounding both the bias term and the variance term. Since 6 belongs to E.(R),

+oo

l (omR,s ) 9) = Z l(emifl ) emz)
i>d

MR, s

+00 =
1(Om,_1, Om, 2\ T+
(dp, +1)7° Z % <02 <R_) ) (55)

ns
i>dmp, |

IN

-~

Then, we bound the variance term (0, ., 0my ) thanks to (B6) as in the proof of Lemma [7.5l
2
ln

HHmR,s (e + emR,s)
02 +1(0mp.,,0)

l (§MR,579mR,S) < [02 +1 (omR,s’e):I Pmax [n(Z;R,SZmR,S)_l}

The two random variables involved in this last expression respectively follow (up to a factor n)
the distribution of an inverse Wishart matrix with parameters (n, dp, ) and a x? distribution
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with dp, , degrees of freedom. Thanks to Lemma and [[4] we prove that outside an event
of probability smaller than L(R, s)exp[—L'(R, s)nliis] with L'(R, s) > 0,

l(ng,saGmR,s) < 4 [02 +1 (0., 0)] A, :

n

if n is large enough. Gathering this last upper bound with (55]) yields

2 2\ 2
(O 0) <0 5R:S+4<R ) <t (56)

where C(R, s) is a constant that only depends on R and s.

Let us prove that the bias term of any model of dimension smaller than log®(n) is larger than
(B8) if n is large enough. Obviously, we only have to consider the model of dimension |log?(n)].
Assume that there exists an infinite increasing sequence of integers u,, satisfying:

S (O O) < 205

i>log? (un) (unJrl)m

(57)

Then, the sequence (v,) defined by v,, := log®(u,,) satisfies

> (b, 0m,) < C(R,5) exp [—m > } :

; 1+s
1>Vp

Let us consider a subsequence of (v,) such that |v,] is strictly increasing. For the sake of
simplicity we still call it v,. It follows that

= l (emi—l ) 9m1) = Lvn+1J l (omi—l ) 9m1)
> s = > > i
i=|vo|+1 n=0i=|v, |+1

+oo
< C(R,s) ZL%HJS exp { |vnt1] < oo,
n=0

s
1+s
and 6 therefore belongs to some ellipsoid £y (R’). This contradicts the assumption § does not
belong to any ellipsoid £, (R’). As a consequence, there only exists a finite sequence of integers
u, that satisfy Condition (B7)). For n large enough, the bias term of any model of dimension less
than log?(n) is therefore larger than the loss (6, .. 0) with overwhelming probability.

Let us turn to the models of dimension larger than n/logn. We shall prove that with large
probability, for any model m of dimension larger than n/logn, the variance term [ (HAm, Om) is
larger than the order 02/ logn. For any model m € Mins2)s

no? HHm(E"’Em)Hi
Pmax (Z%Zm) o2+ l(ema 9)
The two random variables involved in this expression respectively follow (up to a factor n) a
Wishart distribution with parameters (n,d,,) and a x? distribution with d,,. Again, we apply

Lemma and [.4] to control the deviations of these random variables. Hence, outside an event
of probability smaller than L(§) exp[—n&/logn],

(o) = o (102 ) e (ag).

! (ém,em) >
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for any model m of dimension larger than n/logn. For any model m € M|, 2, the ratio d,,/n
is smaller than 1/2. As a consequence, we get

(1-2v%) (1+\/1/_2+\/2)_2 .

g

R 2
1 (O 0) =

logn
Choosing for instance £ = 1/16 ensures that for n large enough the loss I (@m 0.,) is larger than
[(Omy..,0) for every model m of dimension larger than n/logn outside an event of probability
smaller than L; exp[—Lan/logn] + L3(R, s) exp[—L4(R, s)n'/ 1 +9)] with Ly(R,s) > 0.

Let us now turn to the selected model m. We shall prove that outside an event of small
probability,

Y <§mR’S) [1+pen(mps)] < vn <§m) [1+ pen(m)] , (58)

for all models m of dimension smaller than log? n or larger than n/logn. We first consider the
models of dimension smaller than log®(n). For any model m € M,,a) , Voo () %1/ [ 02 +1(01m, 0)]
follows a x? distribution with n — d,,, degrees of freedom. Again, we apply Lemma Hence,
with probability larger than 1 — e/[n?(e — 1)], the following upper bound holds for any model m
of dimension smaller than log?(n).

Tn (@n) [1+pen(m)] > o |1+ HOm, 0)] (1+2 dm ) [n _ndm _2\/(”*dm)(dm+210g(n))

L n—d n
[ (0,0 dm dm + 21
> o214 Wmb) <1+—) | _ g, [dm+2log(n)
o n n—dpy,
[ I
> o2 1+l(9m2,9) [1_40gn]7
i o vn

for n large enough. Besides, outside an event of probability smaller than #,

~ 1(Omp., 0 dmp .
Tn (emR,s) [1 +pen(mR7s)] < 0‘2 |:1 + %] (1 4 2%) %

- dmR,s

[n —dmp., N 2\/(71 —dpy..)2logn N 410gn]
n n n

1O, 0 dum v2Togn 1
< 0_2 |:1+ ( R,s )] (1+ nR,s) [1+2 ogn 14 ogn

0'2 n — dmR,s ’)’L*dmR,S

For n large enough, d;,, . is smaller than 7, and the last upper bound becomes:

Yn (@nm) [1+pen(mpg,)] < o® {1 * CéiS)r <1 i 10103(%1)> .

Hence, 7, (é\mR,S) 1+ pen(mp.s)] < n (@n) [1 4+ pen(m)] if

log(n)
= dlog(n)/v T ym

w

5 >

s

T+

l(emUogz nJaQ) C(R,s) o 1+ 10log(n)/v/n
g nits
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As previously, this inequality always holds except for a finite number of n, since 8 does not belong
to any ellipsoid £y (R’). Thus, outside an event of probability smaller than %, d is larger than

PR
2
log™ n.

Let us now turn to the models of large dimension. Inequality (B8] holds if the quantity

2dmp 2d.m 2dm 2dmp
llell <n — B m) + | Tnell2 <1 +— dm) + (M €mp s M €+ 2€mp ) (1 + ﬁ) (59)

dmR,s n— d MR,s

is non-positive. The three following bounds hold outside an event of probability smaller than
L(g).

Vviogn

2 > 1-4
el > 1-a¥ B
dm . .
IT.el? < (1+&)—=, for all models m of dimension d,, > IL ,
n ogn
n—dm n—dpy, logn 41
(W € Wi €+ 26mp )0 < 1O 0) [ e rad ) l087  dlogn

—d. 1
n 4,/1(9%3,9)0—\/(" n’“) osn

Gathering these three inequalities we upper bound ([B9) by

_o4s /logn+(1+€) (n—l—dm)
n n

dm (Omp.,,0 1Oy ., 0
+02L<1+ )(( 500) | VO >><1+ logn )
n o o n—dmp,

The dimension of any model m € M|, /3| is assumed to be smaller than n /2 and the dimensions
of the models m considered are larger than @. For ¢ small enough and n large enough, the

previous expression is therefore upper bounded by

3 logn
—(1 — 2+ 8y —
S 248/

For n large enough, this last quantity is clearly non-positive.
All in all, we have proved that for n large enough outside an event of probability smaller than
L) it holds that

3

2 dm dmR,s

n—dn,

o + 2072 +

n—dmnpg,

2 1
Tts Ri+s

R
+L02[ — +

2
o2
logn

(60)

a
ni+s n20+a)

log?(n) < dpm, < " and log?(n) < dm <

logn logn °
O
Proof of Lemma[7.15 Arguing as in the proof of Theorem Bl we upper bound
~9,(0) = Y (B)pen(i) + 0® + |lells < U0, 0)An + 0” B + (1 — k2(n))1(0,65) ,  (61)

where Az and Bp, are respectively defined in (30) and in (BI)). We will fix the quantities x1(n)
and k2(n) later. Besides, we define and bound the quantity Eg as in (@I).
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Applying Lemma [.2l and Lemma [.4l and arguing as in the proofs of Lemma and Lemma
[[.7, there exists an event Qs of large probability

—n__
logn

2d 5logn
P(Qf) < — -2 < _
() = el n/8]+5d 122( )exp{ 10g71] < oxp[=n/8] + 2n2(1 —1/logn)
=log=(n
and such that conditionally on ©; N s,
I3 €17 n—ds 20 —ds)dn/logn
1(0m,0) — n n ’
(e +em)llh  _ dm , 2v2dm L dm
o2 +107,0) — n  nylogn nlogn7
IMG(e+en)ls o n—dam 20— dm)dn/logn
o +10m,0) — n n
_ 1 ds \
o] < o (N
logn n
el < 2
dim + 267 (n) 2 1 ow2] 2da . di,
E; < F———=+—/|da+(2 —
- n + n [ +( M (n)) } logn & (n)nlogn

Gathering these six upper bounds, we are able to upper bound Az and B,

di, di, dm 1+ Lz/+/1
Am < ki(n)+ Ly +— | -1+ Loy | ———— + Kka(n) 3/ v/1og(n) 3
nlogn (n —dgm)logn =
|: (1 + logn) Tm):|

i i 1+ La/+/1
Bz < din —14 L din Ka(n) + La/+/log(n) 5

n (n—dm)logn —

|:1(1+ logn) Tm):|
+ L3d_ﬁ“b ki (n) n ki (n) n 1 ki 1(n) .
no| din logn  /log(n) \/log

Conditionally to the event €, the dimension of m is moderate. Setting x; to @, we get

A < Iy d
— logn
B, < |_

+
1—+H2(n) logn 3|
og 7
log(n)
Ly 1+ 7= Ly
—— + ka(n) 2+
log ) L Vlogn
4y/log(n)
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Hence, there exists a sequence ko(n) converging to one such that conditionally on Q4 NQs, By is
non-positive and Az is bounded by % when n is large enough. Coming back to the inequality

(©T) yields

|[7.(0) = 7 @)pen(i) — o + [le]2] 1a,nan < 1(6,9)

og 7 V(1 —=ka(n)| ,

which concludes the proof. O
Proof of Lemma[7.16, We follow a similar approach to the previous proof.
TV Orm.) + 10O Jpen(ms) +0° = [leliy < Con.lBm..0) + Din.0® + w2(n)l(Brm. . . )(62)

where for any model m’ € M|, 2], Cppr and Dy, are respectively defined as

I €2 Ao 1L (€ + €2
Chy = Im? 7T IR 1 49 m n
= (n) + l(@m/, 9) * n — d’m’ l(am/, 9) -+ 0-2
n ML (€ + €m) I
— 1 n
(Lt 2 (0) G 7y 1 ) + 02
Ik e, 1L e, || Tel|?
Dm’ — —1 < m' S > m/tmiin m n
K',l (n) U2l(9m/,9) 02
O R 0 ) R O 1 AR
2 Pmax (Z:‘n/ Zm’) l(em/, 9) + 0'2 n — dm/ l(@m/, 9) + 0‘2 ’

We fix k1(n) = 1/logn whereas ra(n) will be fixed later. Arguing as in the proof of Lemma
[.I5] there exists an event Q3 of large probability

n
Tog n

. 24
P(5) < exp[—n/8] + 5d IZZ( )exp [@} <exp[—n/8] +
=log?(n

5logn
2n2(1 — 1/log(n)) ’

such that conditionally on ©; N Q3, the two following bounds hold:

2
Ly 14+ L3y [ 1ogm

Ll dm

c, < = 1 —a :
* = logn n +1ogn (14 2 (n)) 1 L, 12
[ + \/logn}
1+L 2

dm L1 L2 3 logn

D, < Zme i1y 2t — Ve

T n +logn+\/logn (L+ rz(n) [1+ Ly r

Vliogn

if n is large. The main difference with the proof of Lemma lies in the fact that we now
control the largest eigenvalue of Z*, Z,, thanks to the second result of Lemma [[4l There exists
a sequence kz(n) converging to 0 such that conditionally on Q3 N Q3, D,,, is non-positive and
Cn, is bounded by é — when 7 is large. Coming back to (GI)) yields

lo,

~ ~ L
7O+ pentin.) 40 = [l 1oy <16 ) | o Vra(o)|

which concludes the proof. O
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7.6 Proof of Proposition

Proof of Proposition[3:3. The approach is similar to the proof of Proposition 1 in [9]. For any
model m € M|, /2], let us define

o~ ~

A(m,myy/2)) = Tn (Hmwm) [1+ pen(mn/2))] — n (Qm) [1 4+ pen(m)] .

We shall prove that with large probability the quantity A(m,m|,/2) is negative for any model
m of dimension smaller than n/4. Hence, with large probability dz will be larger than n/4. Let
us fix a model m of dimension smaller than n/4.

-~

First, we use Expression (28) to lower bound v, (6,,).
Tn (Gm) = ||H7J';7/ (6+€an/2J) ||31+ HH#L (Em _emtn/ZJ) ||31+2<H#1 (€+€mtn/2j) ’H’VJ‘;I (Em_emm/zj»n

2
H,J;L (em — ean/ZJ)
ln/

Y

1T, (6 + 6an/zJ) I - <H#L (6 + Emwm) "I (Em - EWLn/zj)

since 2ab > —a® — b? for any number a and b. Hence, we may upper bound A(m,m|,/s|) by
Alm,miny2)) < |y, (€4 €mp o) 7 [pen(myngz)) — pen(m)]
2
= T (e e | 1L pen(m)

1
1, (Em ~ €mpn

’ HH’IJﬁ (Gm - Emtn/2j)

+ <an (e + ean/2J) )|n> [1+4pen(m)] . (63)

Arguing as the proof of Lemma 21, we observe that |II: (€4 €mp, o) 12 xn/[0” +

M n/2)

(0m,,, 5, )] follows a x* distribution with n— [n/2| degrees of freedom. Analogously, the random
variable ||[ILL — H#an] (e+ ean/ZJ) |2 xn/[o? + UOm,, o)) follows a x? distribution with
(dm,, 5y — dm) degrees of freedom. Let us turn to the distribution of the third term. Coming

back to the definition of ¢,,, we observe that

€m = €m, ) =Y — XOp — (YfXGan/ZJ) =X —Gmmm) .

Hence, €, — €, ,, is both independent of X, and of e +¢€y,,, ,, . Consequently, by conditioning
and unconditioning, we conclude that the random variable defined in (G3) follows (up to a
(0% + 1(Om,,, ., )]/n factor) a x* distribution with 1 degree of freedom.

Once again, we apply Lemma and the classical deviation bound P (|JNV(0,1)| > v2z) <
2e". Let x be some positive number smaller than one that we shall fix later. There exists an
event ), of probability larger than 1 — exp(—nz/2) — 3exp(—(n/4 — 1)x)— such for any

I—e=
model of dimension smaller than n/4,
A(maan/Qj) n — LTL/2J
a5 = —— ) (1+2 2 _
02+ U Ominyey) T ( n ) (L 2V +22) (pen(mpnyz)) = pen(m))

W2+dm(1 — 2y — 22)(1 + pen(m)) .

We now replace the penalty terms by their values thanks to Assumption (II]). Conditionally to
., we obtain that

Al mung) 2 —dn [
e~ < - {4(1 )V + )[1+

m

}y(12\/52z)} .
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Since the dimension of the model m is smaller than n/4, ni’g is smaller than 1/3. Hence, the
last upper bound becomes

Ué(ini(fgtnm) - WQJR_ n {13—6(1 )Wt a) —v(l—2vF — 2:5)} .

an/ZJ)

There exists some x(v) such that conditionally on €., A(m,m|,/2)) is negative for any model
m of dimension smaller than n/4. Since P(2¢ (V)) goes exponentially fast with v to 0, there exists

some no(v, §) such that for any n larger than ng(v, ), P(2,,) is smaller than 6. We have proved
that with probability larger than 1 — 4, the dimension of m is larger than n/4.

Let us simultaneously lower bound the loss l(@m, 0.,) for every model m € M of dimension
larger than n/4. In the sequel, > means "stochastically larger than”. Thanks to 27), we
stochastically lower bound (6, 0., )

~

l(em; Hm) N¥max (Z:nzm)_l ||Hm(€ + Em)lli

" -1
Pmax (12, Zm) ||Hm€H72m

Y v

where Z¥, Z,, follows a standard Wishart distribution with parameters (n, d,,). Applying Lemma
and Lemma [T4 in order to simultaneously lower bound the loss 1(0,,, 0,), we find an event

%, such that

-2
~ d 2d d d
iy Om) Lo > [T+ =2 4= o? > D2
1(9 X )Q - ( + n + 16n> 2n0 - 8n0 ’

for any model m € M of dimension larger than n/4. On the event §2,(,), the dimension dg is

Q' of probability larger than 1 —

larger than n/4. As a consequence, 1(5, 9@)1Q/QQI(V) > g—; All in all, we obtain

E[z(é,e)} > z(emwzj,e)m[19,091@)1(5,9,%)}

0_2

UOmzy:0) + [1 = P(2,)) — POY)| 2
l(t?an/2J ,0) + L(5,v)0?

Y]

Y]

if n is larger than some ng(v, J).

7.7 Proofs of the minimax lower bounds

All these minimax lower bounds are based on Birgé’s version of Fano’s Lemma [6].

Lemma 7.17. (Birgé’s Lemma) Let (©,d) be some pseudo-metric space and {Py,0 € ©} be
some statistical model. Let r denote some absolute constant smaller than one. Then for any
estimator 6 and any finite subset ©1 of ©, setting § = minggceo, 620:d(0,0"), provided that
maxg g co, K(Po,Po) < klog|O1], the following lower bound holds for every p > 1,

sup Eq[d(0,0)] > 27707 (1 — k) .
[ASSHN
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First, we compute the Kullback-Leibler divergence between the distribution Py and Pyg.
K (Po; Pyr) = IC (Po(X); Por (X)) + Eg [K (P (Y]X); Por (Y] X)) | X]

The two marginal distributions Pg(X) and Pg(X) are equal. The conditional distributions
Pp(Y|X) and Py (Y|X) are Gaussian with variance 0% and with mean respectively equal to X6
and X6'. Hence, the conditional Kullback-Leibler divergence equals

X0
K (Bo(¥|X): B (v])) = 0L
Reintegrating with respect to X yields
1(0',0) on. DEn 1(60',0)
K (Pp; Ppr) = 557 and K (Py™Pg") =n TR (64)

Proof of Proposition [{-1] First, we need a lower bound of the minimax rate of estimation on a
subspace of dimension D.

Lemma 7.18. Let D be some positive number smaller than p and r be some arbitrary positive
number. Let Sp be the set of vectors in RP whose support in included in {1,...,D}. Then, for

any estimator 0 of 9,

- 2
sup E, [1(9, 9)} > LD {ﬁ A "—] . (65)
6€Sp,1(0,,0)<Dr? n

Let us fix some D € {1,...,p}. Consider the set Op := {6 € Sp,1(0,,0) < a},R*}. Since
the a;’s are non increasing, it holds that

D
il Mi—19 mZ SZ mz 19 mi) S l(Op,e) <R2

p) = )
a
i=1 D

for any 6§ € ©p. Hence Op is included in &,(R). Applying Lemma [TI8 we get

2 p2 2
inf sup > LD {GD A U—}
8 0et.(R) D n
D 2
> L [aQDRQ = }
n
Taking the supremum over D in {1,...,p} enables to conclude.

O

Proof of Lemma[7.18 Let us assume first that ¥ = I,. Consider the hypercube Cp(r) :=
{0,7}P x {0}*=P. Thanks to (64)), we upper bound the Kullback-Leibler divergence between
the distributions Py and Py

nDr?

where 6 and ¢’ belong to Cp(r). Then, we apply Varshamov-Gilbert’s lemma (e.g. Lemma 4.7
n [25]) to the set Cp(r).
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Lemma 7.19 (Varshamov-Gilbert’s lemma). Let {0,1}” be equipped with Hamming distance
dg. There exists some subset © of {0,1}P with the following properties

dm(0,0") > D/4 for every (0,0") € ©2 with 0 # ' and log|©| > D/8 .

Combining Lemma [T.T7] with the set © defined in the last lemma yields

~ D
inf sup Eg |dg(6,0)] > —
0 0eCp(r) |: ( :| 16

provided that ”2?722 < D/16. Coming back to the loss function I(.,.) yields

inf sup [Eg [l(é\, 9)} > LDr? |

0 oeCp(r)

if r2 < L%Z. Finally, we get

- 2
inf sup Ey [1(9,9)} > LD [rQ A ”—} .
0 0€Sp, 1(0,,0)<Dr2 n

If we no longer assume that the covariance matrix ¥ is the identity, we orthogonalize the

sequence X; thanks to Gram-Schmidt process. Applying the previous argument to this new
sequence of covariates allows to conclude. o

Proof of Corollary[{-3 This result follows from the upper bound on the risk of 9 in Theorem
2

BT and the minimax lower bound of Proposition Bl Let &,(R) an ellipsoid satisfying Z- <

R? < 0%nP, then 1(0,,0) is smaller than o?n®. By Theorem 3.1} the estimator 6 defined with

the collection M, /2)1p and pen(m) = an'gm satisfies

i 2

Ey [1(5,9)} < L(K) inf {l(@mi,9)+K ,[02+l(9mi,9)]}+L(K,ﬁ)%

1<i<|n/2|Ap n-—1

< LK,8) inf [1(9mi,9)+%02].

1<i<[n/2)Ap

If 6 belongs to £,(R), then

P
(Ons8) < a2y 3 Omartmis) o gz

a
j=it1

l(emj ) emjfl)
2
J

since the (a;)’s are increasing. It follows that

. < i 22 4 Lo2|
Eq [1(9,9)} < LK.p) _ nf [R @ty +—o } (66)

Let us define i* := sup {1 <i<p, R%? > "Tzl}, with the convention sup@ = 0. Since R? >

o?/n, i* is larger or equal to one. By Proposition 1l the minimax rates of estimation is lower
bounded as follows

o2i*

O'Qi*
— ]EL[a?*HRQ-i- - ] :

inf sup Ep {1(5,9)} ) [af* LRV
0 0c&.(R)
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If either p < 2n or af, | R? < 0%/2, then i* is smaller or equal to [n/2] A p and we obtain
thanks to (G0) that

ot

B [16,0)] < L(K.5) [a?*ﬂRM ”

IN

L(K,B)inf sup E[l(@,@)] .
0 0e&,(R)

O

Proof of Proposition[{-3 First, we use (64) to upper bound the Kullback-Leibler divergence
between the distributions corresponding to parameters § and ¢’ in the set ©[k, p|(r)

nkr?
202 "’

since the covariates are i.i.d standard Gaussian variables. Let us state a combinatorial argument
due to Birgé and Massart [7].

K (Pg"; Pg") <

Lemma 7.20. Let {0, 1}? be equipped with Hamming distance dg and given 1 < k < p/4, define
{0,1} .= {2 € {0,1}? : dy(0,2) = k}. There exists some subset © of {0,1}} with the following

properties
du(0,0') > k/8 for every (0,0') € ©2 with 0 # ' and log|©| > k/5log (2—)) :

Suppose that k is smaller than p/4. Applying Lemma [[T7 with Hamming distance dy and
the set r© introduced in Lemma yields

~ k nkr? k P
inf  sup Ey [d (9,9)} > " provided that <o (—) . 67
7 ocolkalt) L 16 20 =10 °\k (67)
Since the covariates X; are independent and of variance 1, the lower bound (&7 is equivalent to
~ kr?
inf Eo |1 (0,0)] = =
in sup 0 |0(0,0)] > 16

0 becolk.p)(r)
All in all, we obtain
~ log (2
inf sup g [l (9,9)} >Lk| A Mﬁ .
0 0€O[k,p](r) n
Since p/k is larger than 4, we obtain the desired lower bound by changing the constant L:
~ 1+ log (2
inf sup g [l (9,9)} >Lk|r? A ﬂ(ﬁ .
0 0€O[k,p](r) n
If p/k is smaller than 4, we know from the proof of Lemma [[I8, that
inf sup K [z (9,9)} > Lk (7’2 A —> .
8 oeci(r) n

We conclude by observing that log(p/k) is smaller than log(4) and that Cy(r) is included in

Ok, p|(r).
(]
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Proof of Proposition [[.5 Assume first the covariates (X;) have a unit variance. If this is not
the case, then one only has to rescale them. By Condition ([22)), the Kullback-Leibler divergence
between the distributions corresponding to parameters 6 and 6’ in the set Ok, p](r) satisfies

2
gnkr
202

K Py Pg") < (1496)

We recall that ||.|| refers to the canonical norm in RP. Arguing as in the proof of Proposition
3 we lower bound the risk of any estimator 6 with the loss function ||.||,

~ 1+log (2
inf sup Eg [H@ — 9”2} >Lk|rA igk)(ﬂ ,
8 0cO[k.p)(r) (1+0)*n

Applying again Assumption (22)) allows to obtain the desired lower bound on the risk

~ 1+1log ()
inf  sup Ky |1(0,0)| > Lk(1—6)|rP N ———ELs2 ) |
0 ee@[k,I;](r) ’ [ ( )} ( ) < (1+9)%n

O

Proof of Proposition[/.6 In short, we find a subset ® C {1,...,p} whose correlation matrix
follows a 1/2-Restricted Isometry Property of size 2k. We then apply Proposition with the
subset ® of covariates.

We first consider the correlation matrix ¥;(w). Let us pick a maximal subset ® C {1,...p}
of points that are [log(4k)/w] spaced with respect to the toroidal distance. Hence, the cardi-
nality of ® is |p[log(4k)/w]~!]. Assume that k is smaller than this quantity. We call C the
correlation matrix of the points that belong to ®. Obviously, for any (i,7) € ®2, it holds that
|C(4,5)| < 1/(4k) if i # j. Hence, any submatrix of C with size 2k is diagonally dominant
and the sum of the absolute value of its non-diagonal elements is smaller than 1/2. Hence, the
eigenvalues of any submatrix of C' with size 2k lies between 1/2 and 3/2. The matrix C' therefore
follows a 1/2-Restricted Isometry Property of size 2k. Consequently, we may apply Proposition
with the subset of covariates ® and the result follows. The second case is handled similarly.

Definition of the correlations

Let us now justify why these correlations are well-defined when p is an odd integer. We shall
prove that the matrices ¥;(w) and ¥4(¢) are non-negative. Observe that these two matrices are
symmetric and circulant. This means that there exists a family of numbers (ax)1<k<p such that

Uy (w)[is J] = Gi—j mod p forany 1 <i,j<p.

Such matrices are known to be jointly diagonalizable in the same basis and their eigenvalues
correspond to the discrete Fourier transform of (aj). More precisely, their eigenvalues (A;)1<i<p
are expressed as

p—1 .
29kl
A = Zexp( n )ak ) (68)
k=0 p

We refer to [27] Sect. 2.6.2 for more details. In the first example, aj equals exp(—w(k A (p — k)),
whereas it equals [1 + (kA (p — k))] ™! in the second example.
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CASE 1: Using the expression (G8]), one can compute ;.

(p—1)/2 orkl
—1+2 cos <—> exp(—kw)

(p—1)/2

—14 2Re Z exp [
k=0

1— e @5 (—1)e"s }

_ iomL
1—e¢ w+127rp

Al

k(i27r£ - w}
p

—1+2Re{

. 21 —e™%cos (27?1) + e~w®+D/2(_1) cos (%l) (e7v —1)

1+ e 2% — 2e~% cos (27?”)

Hence, we obtain that
N >0e 142 P21l cos (—) (e7¥—1)—e>>0.
p

It is sufficient to prove that
1— e 4 267w PH3)/2 _ 9o=w(pt1)/2 >
This last expression is non-negative if w equals zero and is increasing with respect to w. We

conclude that A; is non-negative for any 1 <! < p. The matrix ¥;(w) is therefore non-negative
and defines a correlation.

CASE 2: Let us prove that the corresponding eigenvalues \; are non-negative.

(p—1)/2 orkl
N=-1+2 cos(—) E+1)7?
l > eos () 4 1)

k=0
Using the following identity

1 o0
k 1 —t — —T(k-l—l) t—ld
(k+1) ROl /0 e rdr |

we decompose A; into a sum of integrals.
oo (p—1)/2
1 2mkl
A= —— / rtle™ | =142 cos (—) e Tk dr .
I) | Jo ,;) p

The term inside the brackets corresponds to the eigenvalue for an exponential correlation with
parameter r (CASE 1). This expression is therefore non-negative for any » > 0. In conclusion,
the matrix ¥y(t) is non-negative and the correlation is defined. O
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Appendix

Proof of Lemma[7.d] We recall that , (6 m) = ||Y —I1,,,Y||2. Thanks to the definition (23)) of €
and €p, , we obtain the first result. Let us turn to the mean squared error 7(6,). In the following
computation O, is considered as fixed and we only use that 0o belongs to S,,. By definition,

~

¥ (0rm)

—~ 12 ~ 2
Ey x [Y _ X@m} = 0% +Ex {X(G —~ Gm)}
= 0%+ 1(0m,0) + 1O, 0m) ,

since #,, is the orthogonal projection of # with respect to the inner product associated to the
loss I(.,.). We then derive that

O, Om) = B, [X (0 - ém)r = (0m - §m)* 5 (0 — ) -

Since é\m is the least-squares estimator of 6,,, it follows from (23] that
1Om, 0) = (€4 €m)* X (X5 Xon) 1800 (X5 X ) T1XE (€ + €) -
We replace X,, by Z,,v/2,, and therefore obtain
UOm,0m) = (€4 €m) Zn(ZEZn) L5 (€ + €m) -
O

Proof of Lemma[Zl Thanks to Equation (25), we know that v, () = HHJ‘(E + €m)]|%. The

variance of € + €, is 02 4 (6, 0). Since €+ €, is independent of X, Vo (O ) * 1/ [0% + 1(6,, 0)]
follows a x? distribution with n — d,, degrees of freedom and the result follows.
Let us turn to the expectation of v(6,,). By (24), 'y( m) equals

V(Bn) = 02 H10n,0) + e+ €5) T (ZinZim) 2T + €) |

following the arguments of the proof of Lemmal[7Il Since € + ¢, and X, are independent, one
may integrate with respect to € + €,

E[v(0a)] = [0® +1600.0)] {1+ E[tr (23,2.) )]} .

where the last term it the expectation of the trace of an inverse standard Wishart matrix of
parameters (n,d,,). Thanks to [37], we know that it equals O

dm
n—dmy,—1

Proof of Lemma[7.3. The random variable /x2(d) may be interpreted as a Lipschitz function
with constant 1 on R? equipped with the standard Gaussian measure. Hence, we may apply the
Gaussian concentration theorem (see e.g. [25] Th. 3.4). For any = > 0,

P (VA2() <E[VXP(@)] - V2z) < exp(-a) . (69)

In order to conclude, we need to lower bound E [ X2 (d)} Let us introduce the variable Z :=

1—4/ @. By definition, Z is smaller or equal to one. Hence, we upper bound E(Z) as

E(Z)g/olP(ZZt)dtg/O P(Zzt)dtJrP(Zz\/g).
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Let us upper bound P(Z > ¢) for any 0 < ¢ < \/g by applying Lemma [7.2]

P(Z > t)

IN

P (XQ(d) <d[l - t]2)

P (x*(d) < d - 2VdV/AP2) < exp (—‘%2) ,

IN

since t < 2 — v/2. Gathering this upper bound with the previous inequality yields
d N /4’00 dt2 i@t
exp | ——
16) "), P2
< d n 7
exp | —— — .
= P16 2d

Thus, we obtain E (\/XQ(d)) > /d—+/dexp(—d/16) — /7 /2. Combining this lower bound with
©9) allows to conclude. O

E(Z)
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