Markov and semi-Markov switching linear mixed models for identifying forest tree growth components.

Florence Chaubert-Pereira 1, 2, * Yann Guédon 1, 2 Christian Lavergne 1, 3 Catherine Trottier 1, 3
* Auteur correspondant
1 VIRTUAL PLANTS - Modeling plant morphogenesis at different scales, from genes to phenotype
CRISAM - Inria Sophia Antipolis - Méditerranée , INRA - Institut National de la Recherche Agronomique, Centre de coopération internationale en recherche agronomique pour le développement [CIRAD] : UMR51
Abstract : Observed tree growth is the result of three components: (i) an endogenous component which is assumed to be structured as a succession of roughly stationary phases separated by marked change points asynchronous between individuals, (ii) a time-varying environmental component which is assumed to take the form of local fluctuations synchronous between individuals, (iii) an individual component which corresponds to the local environmental of each tree. In order to identify and to characterize these three omponents, we propose to use semi-Markov switching linear mixed models, i.e. models that combine linear mixed models in a semi-markovian manner. The underlying semi-Markov chain represents the succession of growth phases (endogenous component) while the linear mixed models attached to each state of the underlying semi-Markov chain represent in the corresponding growth phase both the influence of time-varying environmental covariates (environmental component) as fixed effects and inter-individual heterogeneity (individual component) as random effects. In this paper, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a MCEM-like algorithm whose iterations decompose into three steps (sampling of state sequences given random effects, prediction of random effects given the state sequence and maximization). The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates.
Type de document :
Rapport
[Research Report] RR-6618, INRIA. 2008
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00311588
Contributeur : Florence Chaubert-Pereira <>
Soumis le : mardi 19 août 2008 - 13:39:53
Dernière modification le : jeudi 11 janvier 2018 - 16:18:55
Document(s) archivé(s) le : jeudi 3 juin 2010 - 18:32:58

Fichiers

RR-6618.pdf
Accord explicite pour ce dépôt

Identifiants

  • HAL Id : inria-00311588, version 1

Citation

Florence Chaubert-Pereira, Yann Guédon, Christian Lavergne, Catherine Trottier. Markov and semi-Markov switching linear mixed models for identifying forest tree growth components.. [Research Report] RR-6618, INRIA. 2008. 〈inria-00311588〉

Partager

Métriques

Consultations de la notice

739

Téléchargements de fichiers

416