N

N
N

HAL

open science

Monitoring Information flow by Diagnosis Techniques

Jérémy Dubreil, Thierry Jéron, Hervé Marchand

» To cite this version:

Jérémy Dubreil, Thierry Jéron, Hervé Marchand. Monitoring Information flow by Diagnosis Tech-

niques. [Research Report] PI 1901, 2008, pp.15. inria-00312747v2

HAL 1d: inria-00312747
https://inria.hal.science/inria-00312747v2
Submitted on 26 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00312747v2
https://hal.archives-ouvertes.fr

ISSN 1166-8687

PUBLICATION

INTERNE
N° 1901

MONITORING INFORMATION FLOW BY DIAGNOSIS TECHNIQUES

JEREMY DUBREIL, THIERRY JERON, HERVE MARCHAND

 IRISA

CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES
Campus de Beaulieu — 35042 Rennes Cedex — France

B ,
Tél. : (33) 029984 7100 — Fax: (33) 029984 71 71
» I R I S A http://www.irisa.fr

Monitoring Information flow by Diagnosis Techniques

Jérémy Dubreil, Thierry Jéron, Hervé Marchand

Systémes communicants
Projets VerTeCs

Publication interne n1901 — August 2008 — 15 pages

Abstract: In this paper, we are interested in constructing monitors for the detection of confidential
information flow in the context of partially observable discrete event systems. We focus on the case
where the secret information is given as a regular language. We first characterize the set of observations
allowing an attacker to infer the secret behaviors. We consider the general case where the attacker and
the administrator have different partial views of the system. Further, based on the diagnosis of discrete
event systems, we provide necessary and sufficient conditions under which detection and prediction of
secret information flow can be ensured and a construction of a monitor ensuring this task.

Key-words: security, opacity, discrete event systems, partial observation, diagnosis, on-line detec-
tion.

(Résumé : tsup)

ks &

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(umMR 6074) Université de Rennes 1 — Insa de Rennes et en Automatique — unité de recherche de Rennes

Supervision de fuites d’information via des techniques de diagnostic

Résumé : Nous nous intéressons & la construction de moniteurs permettant de détecter la fuite
d’information confidentielle pour des systémes partiellement observables, modélisés par des systéemes
de transition finis. Nous considérons le cas ot le secret peut se modéliser par des langages réguliers.
Nous commencons par définir la notion d’opacité pour formaliser la fuite d’information et caractérisons
I’ensemble des observations pour lesquelles un attaquant infére de 'information confidentielle. Ensuite,
considérant le cas général ou l'attaquant et I’administrateur ont des vues partielles potentiellement
différentes du systéme, nous adaptons les techniques de diagnostic sur des systémes & événement
discrets, nous explicitons des conditions nécessaires et suffisantes sur le systéme pour permettre la
détection et/ou la prédiction de cette fuite d’information et construisons un moniteur permettant un
administrateur d’assurer cette détection.

Mots clés : Sécurité, opacité, systémes a événements discrets, observation partielle, diagnostic,
détection en ligne

Monitoring Information flow by Diagnosis Techniques 3

1 Introduction

There has been an increasing interest in research about computer security in the past decades. Indeed,
the emergence of web services and the improvements of the possibilities of mobile and embedded systems
allow lots of new and interesting features. But some of these services such as online payment, medical
information storage or e-voting system may deal with some critical information. In the meantime,
having more applications and devices for accessing these services also increases the possibilities for
such information to flow. To avoid security breach, using automatic tools based on formal methods
for security analysis can be beneficial. In this context, there has been a growing interest in verification
[3, 10] and testing of security properties [5] and monitoring security properties [12] in past years. In
order to specify such automatic analysis methods, security properties are generally separated into three
different categories: availability (a user can always perform the actions that are allowed by the security
policy), integrity (something illegal cannot be performed by a user) and confidentiality (some secret
information cannot be inferred by a user) [4].

In this paper, we focus on confidentiality and more particularly on the notion of opacity as defined
in [4]. The general problem of confidentiality consists of determining whether an attacker having only
a partial observations of the system, is able or not to discover some secret behaviors (e.g. a password
stored in a file, the value of some hidden variables, etc) occurring during execution. The motivation
of this paper is to provide an analysis method for detecting information flows. Therefore we proceed
first from an attacker point of view, for generating the set of possible attacks, and second from the
administrator point of view interested in monitoring this set of attacks.

Overview of the problem. We consider three components: a system (G, an attacker A and a
monitor M (modelling for example the administrator of the system or an intrusion detection system)
(C.f. Figure 1). We assume that the system G is modeled by a finite transition system. Users interact
with G through an interface I 4, corresponding to the inputs/outputs of the system.

I IT
Monitor <—M System 4 Attacker
M - G A

Figure 1: Architecture

For this system, one can define some confidentiality policies. Following the approach of [8] for
the diagnosis and [1, 4], a secret is modeled by a property ¢ given as a regular language over the
alphabet X of the system G. The secret is preserved as far as the attacker cannot surely infer that
the property ¢ is satisfied by the current execution of the system based on the observations performed
through the interface I14. We characterize the set of observations allowing the attacker A to infer
the secret information. A contrario, the monitor M tries to analyze the information flow between
the system G and the attacker A in order to raise an alarm whenever the secret has been revealed.
M can also try to predict the information flow. To do so, we assume that M knows the power of
the attacker (i.e. he knows the model of the system G and the interface II4 of the attacker). He
observes the system through the interface Iy (we do not assume any link between the two interfaces).
Further, based on the set of observations allowing the attacker to infer the secret information, we
provide necessary and sufficient conditions under which detection and prediction of secret information
flow can be ensured, and construct a monitor M allowing an administrator to detect the attacks. This
supervision is performed on-line, the monitor raising an alarm whenever an information flow occurs.

The structure of the document is as follows: In section 2, we define the mathematical terminology
and notions used throughout the paper. In Section 3, we show how to build a monitor in charge of the
supervision of the system according to a given property. In Section 4, we define the notion of opacity

PI n1901

4 Jérémy Dubreil, Thierry Jéron, Hervé Marchand

formalizing information flow. With this notion, we can characterize the set of observations for which
an attacker can infer confidential information. In Section 5, we use diagnosis techniques to exhibit
necessary and sufficient conditions under which a monitor can diagnose and/or predict the information
flow. Finally, we study in Section 6 how to deal with abstractions.

2 Models & Notations

Let X be a finite alphabet of events. A string is a finite-length sequence of events in . € denotes
the empty string. Given a string s, the length of s is denoted by |s|. The set of all strings formed by
events in Y is denoted by X*. Any subset of X* is called a language over Y. Let L be a language over
Y. Given astring s € L, L/s 2 {t € ¥* | s.t € L} is called the post-language of L after s and defined
as L/s. L is said to be eztention-closed when L.X* = L. We assume that the systems are modeled as
Labelled Transitions Systems (LTS for short). The formal definition of an LTS is as follows.

Definition 1 (LTS) An LTS over ¥ is defined by a 4-tuple G = (Qa, X, —a, q%) where Qg is a finite
set of states, 3 is the set of events of G, q?, € Q¢ is the initial state, and —sC Qg X X X Q¢ is the
partial transition relation. o

Notations In the remainder of this section, we consider a given LTS G = (Qq, X, —a, ¢4)-

o We write ¢ 54 ¢ if (¢,a,q¢') €—¢ and ¢ 54 for 3¢ € Qg, ¢ ¢ ¢'. We extend — to arbitrary
S € sa / S " "9 /
sequences by setting: ¢ —¢ ¢ for all states ¢, and ¢ —=¢ ¢’ whenever ¢ —¢ ¢” and ¢ —¢ ¢/, for
some ¢" € Qg.

e 3(q) 2 {aeX|q iG} corresponds to the set of events admissible in state ¢ of G. G is said to
be complete whenever Vq € Qq, X(q) = X. Tt is said to be live if X(q) # 0, for each ¢ € Q.

e We set Ax(q,l) 2 { €Qc|q —Z>G ¢'}. By a slight abuse of notation, for any language L C ¥*,

Ac(g, L) 2{¢d € Qs | Fs € L,q S¢ ¢} For any X C Qq, Ac(X, L) = U,cx Aa(q,). Also, X
is said to be stable if Aq(X,>¥*) C X.

qeX

e We denote by L(G) = {l € ¥*,q, i>G} the set of trajectories of the system G.

Given a special set of states Fq C (), the notions above are extended in this setting by letting

the language Lp,(G) = {l € ¥* | 3q € Fq, ¢ L q} be the set of trajectories that end in a state
of F. Note that Fg is stable if Lg,(G) is extention-closed. Also, if G is complete and Fg is
stable, then Lp,(G) is extention-closed.

We now define the synchronous product of two LTSs.

Definition 2 (Synchronous product) Let G* = (Qi,E,HGi,qgi), i = 1,2 be two LTSs. The syn-
chronous product between G and G? is an LTS G' x G? = (Q' x Q% %, =41 4 o2, (q21,q22)), where

(6", ¢*) Zar v a2 (¢, q7) whenever ¢ %1 ¢t and 2 Lo ¢

Clearly, L(G' x G?) = L(G') N L(G?) and for F; C Q%,i = 1,2, we also have Lp xp,(G' x G?) =
L, (GY) N L, (G?). Also, if for i = 1,2 the set Fj is stable in G%, F} x Fj is stable in G! x G2.

Given a set of states E C Qg of an LTS G, the operators pref, et preZ are defined as follows:

Pre2(E) ={qeQ|3a e, As(q,a) N E # 0}
Prel(E) = {q € Pre2(E) |Ya € ¥,Aq(q,a) C E}

Irisa

Monitoring Information flow by Diagnosis Techniques 5)

The states belonging to PreY(E) are the states such that all immediate successors belong to F,
while the states belonging to PreJ,(E) are such that at least one immediate successor belongs to E.

Given a live LTS G, let Inevg(FE) be the set of states that inevitably lead to a set F in a finite
number of steps and CoReachg(E) the set of states from which E is reachable. These sets are given
by the following least fix-points (I fp):

Inevs(E) = Ifp(AX.E U prels(X))
CoReachg(E) = Ifp(AX.E U preZ (X))

Observable behavior The key point of our approach concerns the ability of an user ¢/ to deduce
information from a system by observing only a subset of the events or only an abstraction of them.
For this purpose, we introduce the concept of observation mask. An observation mask is a function
Iy = ¥ — ¥y U {e}, where IIj; is defined for all o € 3. The set 3 is another event set called the
observed events. We denote by Ezjl = {0 € X | lIy(o) # €} the set of observable events, i.e. the events
of 3 inducing an observation for ¢. The observation mask is extended to any trajectory by assigning
IIy(e) = € and Vs € ¥* 0 € X, y(so) = y(s)y (o). This is further extended to any language
L C ¥* by letting:
Iy (L) = {Ily(s) | s € L}

The inverse observation mask for T C 3, is given by:
ILNT) = {l e &% | Ty (1) € T}.

We say that G is Yy -live if Vg € Q,ds € ¥*,0 € Ez;l, ¢ 2%, meaning that there is no terminal loop
of events that cannot be observed by the observation mask.

Starting from a system G and a set of observable events Y, the set of observed traces of G is
simply given by 7(G) = Iy (L(G)).

We define the semantic [uly of a trace p € T(G) as the set of trajectories of G that are compatible
with the trace u:

A [I () N LG) NSS! if £ €
[l = { {€} otherwise.

This means that (except for the empty trace), trajectories compatible with a trace u are trajectories
of G ending with an observable event and having trace p. This is consistent with an on-line observation
performed by a user of the system for whom the system is only seen through the interface given by the
observation mask II;;. We suppose that the observers are reacting faster than the system. Therefore,
when an observable event occurs, observers can take a decision or raise an alarm before the system
proceeds with any unobservable event. This explains why we do not consider trajectories ending with
unobservable events in the definition of the semantic.

An LTS G is said to be deterministic if for all ¢ € Qq, for all a € &, ¢ ¢ ¢’ and ¢ ¢ ¢” implies
q/ — q//.

In order to build monitors in charge of the observation of the system, we will need to build, starting
from a non-deterministic LTS G, a deterministic LTS Dety/(G) over the alphabet Y preserving the
set of traces, i.e. L(Dety(G)) = Ty(G).

Definition 3 Let G = (Qg, X, — ¢, q%) be an LTS and 11, an observation mask. The determinization
of G with respect to Ily is the LTS Dety(G) = (X, Sy, —q, X°) where X = 296 (the set of subsets of
Qq called macro-states), X° = {q%} and —q= {(X,y(a), Ac(X, (2\Z,")*.a) | X € X and a € ;' }.

Notice that this definition is consistent with the above semantic of observations [.J;;: the target
macro-state X’ of a transition X —54 X’ is composed of the set of states ¢’ of G which are targets of
sequences of transitions ¢ =% ¢/ ending with an observable event a such that ITy (a) =0, with ¢ € X.
PI n1901

6 Jérémy Dubreil, Thierry Jéron, Hervé Marchand

From the definition of —g, we get A per,(c) (X% 1) = {Aa(q%, [#le)}. This means that a macro-
state that is reached from X° by u in Dety(G) is composed of states that are reached from ¢ by
trajectories of [u]y in G.

3 Inference of properties under partial observation

In this section, we consider a user U interacting with a system modeled by a LTS G = (Q¢g, X, —, q%)
through an interface modeled by an observation mask Il;;. We consider properties modeled by regular
languages over X that are defined as follows.

Definition 4 A property is given by a marked language L, () C X* of a complete and deterministic
LTS v = (Qy, X, =4, qS}) equipped with a distinguished set .

We say that a trajectory s € L(G) is recognized by 9, noted s =t whenever s € Lg,(1). As ¢ is
complete, we get L(G x ¢) = L(G) and Loy g, (G x ¥) = L(G) N LE, (¢) is the set of trajectories of
G satisfying .

Let s € L(G) be a trajectory that has been triggered by the system. The user U/ aims to infer
whether s satisfies the property @ by observing u = Ily(s) € T/(G). However, the user cannot
distinguish s from any trajectory s’ € [ulyy compatible with the observation p. Thus, U can only infer
partial information regarding s |= ¢ from [u]y. For example, U is sure that s = 4 if [u]y C Lr, (¢).
Meanwhile, if there exists s € [u]y and s [~ 1, then it is impossible for U to know if the current
trajectory is s or s’ and then U cannot infer whether s |= 1 or not. To go further, & might be also
interested in the fact that after observing p, ¢ will be inevitably satisfied, or will not be satisfied
anymore by the trajectories of G extending s.

Next, we formalize these ideas and propose a way to build a function OZ’ , inspired by [8], which
gives access, for each observation u € 7(G) to what a user U can infer on s and . Formally, if s is
the current execution of the system and p = II;/(s) is the corresponding observation, the verdicts we
are interested in are defined by the following function:

oy ¥ — V ={Yes, Inev,Inev_Yes, Never, No, 7}
where the semantic of the verdicts is as follows:
1) O¥(u) = Yes if U knows that for the current execution s (s.t. Iy(s) = p), s = 1

2) O, (1) = Inev if U knows that s [~ ¢ but also that ¢ will be inevitably satisfied by all the possible
extension of s;

3) (’);f(u) = Inev_Yes if U knows that s |= 1 or that ¢ will inevitably be satisfied in the future but
cannot distinguish between the two cases so far

4) Oﬁ(u) = Never if U knows that 1 will never be satisfied by the executions of G extending s;

5) OY (1) = No if U knows that s b 1, but ¢ is neither unavoidable nor impossible;

6) OY(u) = ?in all the other cases, meaning that 2/ cannot infer any useful information with regards
to s and 1 after the observation p = IIy(s).

3.1 Construction of Oﬁ

In this section, we now explain how to construct the function OZJ Xy — Ve

Irisa

Monitoring Information flow by Diagnosis Techniques 7

Step 1. Construct the synchronous product Gy = G x ¢ = (Qg,,, %, _)G%b’qgw) as well as the set of

final states Fg, = Q% x F,. By the property of the synchronous product, and using the fact
that ¢ is complete, we get L(Gy) = L(G) and Lrg, (Gy) = L(G) N LE,(1). Thus, the accepted
trajectories of Gy in Fg,, Lp% (Gy), are exactly the trajectories of G accepted by 1.

Step 2. Compute Inevg,(Fg,) on Gy and consider the following partition: Qg, = Fg, U lg, U
Pgw U NGW where

e Ig, = Inevg, (Fg,) \ FG,is the set of states not belonging to Fg,, but from which Fg,, is
unavoidable;

* Pg, =0Qq, \CoReacth(FGw), i.e. the set of states from which Fg, is unreachable;

e Ng, = Qq, \ (FGw Ulg, U PGw) is the set of all other states.

Step 3. Build x};(G) = Dety(Gy) = (X, Sy, —a, X°). We thus have L(xi,(G)) = T4(G). For each
observation i € Ty(G), we get & v o) (X% 1) = {Aq, (a5, [1du)}-

Step 4. We finally compute the observation function (’);f from X;ﬁ(G) and the sets Fg, I¢,, Pa,, N,
as follows:
Vi € Ty(G),
: 0
Yes, if sz’ﬁ(G)(X 1) C Fg,
: 0
Inev, if AX;ﬁ(G)(X) € g,

Inev_Yes, if Ax;ﬁ(G)(XO’“) < (g, UFg,)
A Axg(G)(Xo,u) N IG¢ # 0

Oitp(ﬂ) = A Axg(G)(Xo,u)ﬂFgw #0
: 0
No, if szﬁ(G)(X 1) € Ng,
H 0
Never if AX;ﬁ(G) (X% 1) C Pg,
? otherwise.

\

It is easy to check that the construction of (9;,/) conforms to the informal definition previously introduced.

For example, for the verdict Yes, consider an execution s € L(G) together with its corresponding

observation p = Iy (s) and O (u) = Yes. We thus have AX‘”(G) (XY, 1) C Fg,. Now, according to
U

the definition of XZ/;(G), for all §" € [u]u, Agw(qgw,sl) - Axw(G) (X0 1) C Fg,, thus s’ |= 9. Hence,
u

for all trajectories s’ € [uly, s’ E v and in particular s |= ¢. Similarly for Oz,p(,u) = Inev. It implies
that Agw(qOGw, [1]u) € Ig,,. Then, the trajectories in [u]ys are for sure not satisfying ¢ and all their
continuations will inevitably satisfy . Then this also holds for s.

To conclude this section, given a system G that is observed by a user U through the interface 11y,
we know how to construct a function (’);f : X, — V that gives access to all the information that the
user U can deduce with respect to the executions of G and the property .

PI n1901

8 Jérémy Dubreil, Thierry Jéron, Hervé Marchand

4 Characterization and verification of opacity

Assume now that the attacker A is a user of a system G trying to infer confidential information. We
assume that the attacker perfectly knows the model of G, but only observes it through the interface
IT4. We now consider a secret ¢ given by a marked language of a complete deterministic LTS, ¢ =
(Qcp,qg,, ¥, —,F,). We do assume that A knows how to build an observational function as described
in the preceding section and our aim is to know if the attacker can know that the current execution
s € L(G) reveals the secret . Here is a very simple example to illustrate the approach.

Example 1 Let G be a LTS with ¥ = {h,p,l1,l2,l3}, ¥4 = {l1,l2,13} (the observation Mask is
reduced to the natural projection). The secret under consideration is the occurrence of the event p.
This should not be revealed to the users of the system, knowing that p is not observable. However,

V3

Figure 2: An example of interference

users can infer that p has occurred by observing the event ly. Such a system is then not secure because
the fact that p occurs during execution is modifying what A can observe. Note however that for a
different observation mask such that I14(l1) = I14(l2), then the occurrence of p does not change the
observations and G is safe. o

4.1 Definition of Opacity

Intuitively, a secret ¢ is said to be opaque with respect to a system G and an observation mask Il 4 if
the attacker A can never be sure that the current execution of G satisfy ¢ |1, 4, 2|.

Definition 5 [Opacity| Given a system G and a secret @, ¢ is said to be opaque w.r.t. G and I1 4 if
Vs € L(S), [1Ta(s)]a € Lr,(¢) (1)
In other words, ¢ is opaque w.r.t. G and II 4 if and only if
Y € TaA(G), [wla € Lr,(p),
and ¢ is non-opaque w.r.t. G and Il 4 if and only if
€ Ta(G), [p]a € Lk, (¢)

Based on the semantics of O% described in the preceding section, one can say that ¢ is opaque with

respect to G and Il 4 if
Vs € L(GQ), O%(I14(s)) # Yes

Irisa

Monitoring Information flow by Diagnosis Techniques 9

4.2 Verification of Opacity

In this section, we are interested in checking whether a secret ¢ is opaque with respect to a system
G and an interface II 4. This happens to be a particular case of the inference of property that we
presented in Section 3. To do so, consider x%(G) = Det4(G X ¢) = (X, X4, —4,X°) equipped with

the set of final states F = 2@ Fy, By construction of x%(G), we get the following property

[Lr(X3(G))]a = {s € L(S) N .23 | [Mals)]a € L, ()}
which gives a characterization of opacity:
Proposition 1 ¢ is opaque with respect to G and the interface I 4 if and only if Lp(x%(G)) =0. o

Hence, checking the opacity of a secret ¢ consists of checking that the set of states F' is not reachable
in Xj(G). If it is reachable, then ¢ is not opaque and there exists at least one observation allowing the
attacker to infer that ¢ is satisfied. In other words, Lr(x%(G)) corresponds to the set of observations
for which the attacker A knows that the current execution reveals . In that case, the attacker A,
based on the preceding techniques, can compute the LTS Xj(G) and deduce an observation function
O% such that, for a given observation p of 7(S):

o if Of(p) = Yes, then p € Lp(x%(G)) and [u]a € Lr,(p); the attacker, based on this observa-
tion, can deduce that ¢ is satisfied on GG and there is an information flow;

o if O%(n) =74, A cannot deduce ¢ and there is no information flow, where ?4 = {No, Inev,
Inev Yes, Never,?}!.

Example 2 Consider the system G described in Fig. 3 (a). The alphabet of G is ¥ = {a,b,¢, X, Y, Z, a,, 7,6}
We assume here that the secret property is given by the LTS described in Fig. 3 (b); The marked state

is represented by the black state. In this example, the attacker tries to infer the occurrence of the
event a, in the system.

2\ {a,}

Gy

(a) The system G (b) The opacity property ¢

Figure 3: G and ¢

For simplicity, we assume that the projection mask is reduced to the natural projection. The
interface of the attacker is reduced to ¥ 4 = {a, b, c,d}. The observer O% that the attacker A can build
is given by the LTS depicted in Fig. 4.

If A observes a.b.6* then ¢ is revealed A is then sure that the event a, occurred in S (the set of
compatible trajectories is a.X.Z.a,.b.6* and X.a,.a.b.Z.6*). A contrario, if A simply observes a or
a.c.0™, then he is not sure that o is satisfied or not. Some of the compatible trajectories satisfy the
secret and some other do not, thus A cannot infer the secret.

Remark 1 It is also possible to consider other kinds of opacity:

!Compared with (1), we consider here that the attacker A is only interested by the detection of the satisfaction of
the secret.

PI n1901

10 Jérémy Dubreil, Thierry Jéron, Hervé Marchand

Yes: A knows ¢
NN
))6

O
),
Bs.

N

?7: A doesn’t know ¢

A

Figure 4: The function O% based on x7

"y is satisfied by the current execution

e In some cases, A might be interested by the information:
of the system G or will inevitably be in the future". In that case, we will say that the secret is
opaque if and only if Vi € TA(G), [pu]a & Llnevs@(st)(Sw)' The verification of opacity and the

construction of the associated observer are similar.

e [t is also possible to consider the case where there is an information flow as soon as the attacker
knows that either is satisfied or —p is satisfied (c.f. [1]). In other words, being opaque (for this
definition), means that ¢ has to be opaque as well as = (according to definition 5).

The associated observer will have three verdicts {Yes, Noa, ? 4}, where the verdict Yes corre-
sponds to the verdict described in (1), the verdict No 4 encompasses the verdicts No, Inev, Never
whereas ? 4 corresponds to the other cases. o

5 Monitoring Opacity

Given a secret ¢, based on the techniques described in the preceding sections, it is possible to check
whether ¢ is opaque w.r.t. G and the interface II 4. When ¢ is not opaque, it can be important for an
administrator to supervise the system on-line by means of a monitor M and raise an alarm as soon as
an information flow occurs.

For this, we assume that M knows the model of the system G and observes it through the interface
ITr¢. Moreover, M knows the ability of the attacker A, meaning that the monitor knows that A
observes the system via the interface II4 and that he can construct an observation function O%. We
do not assume any relation between II 4 and I1,4. Thus, M has to infer the attacker’s knowledge based
on the observation of Ty(G) C £%,.

If ¢ is not opaque w.r.t. the system G and the interface II4, an administrator can build an
observation function to diagnose the fact that the secret has been revealed. One can also be more
accurate and try to predict the fact that the secret will be inevitably known by the attacker strictly
before the information flow, or that the secret will never be revealed anymore.

Note that it is not necessary to diagnose the fact that the system performed a sequence satisfying
the secret if this sequence does not correspond to a non-opaque execution (this sequence does not
reveal anything to the attacker); only the executions that lead to an information flow have to be
taken into account. Indeed, the secret ¢ is revealed to the attacker by an execution s € L(G) if
and only if I4(s) € Lr(x%,(G)). In other words, we are interested in diagnosing the property:
"The secret ¢ has been revealed to the attacker", which corresponds to the extention-closed language:
H;l(LF(val(G))) - 3*. This language can be recognized by an LTS €, equipped with a set of final
states Fq such that:

Lr,(Q) = I (Lr(x34(G))) - & (2)

Example 3 To illustrate the computation of (2), let us come back to Example 2. The corresponding
LTS Q is shown in Fig. 5:

Irisa

Monitoring Information flow by Diagnosis Techniques 11

Figure 5: The LTS Q computed from x%(G))

5.1 Supervision of Information Flow

Given a system G, an attacker A observing G via the interface II 4 and a secret ¢ (that we assume to
be non-opaque), we describe now a method allowing an administrator M observing G via the interface
ITpr¢ to know whether there is an information flow or not. We assume that the monitor in charge of
the supervision has a full knowledge of G and knows the observation mask I 4.

As mentioned in the introduction of this section, M does not directly observe ¢. Only the tra-
jectories causing an information flow have to be supervised. We consider then the stable property €2
corresponding to the trajectories of G inducing an information flow from G to A (see (2)).

In order to construct the observer (’)% in charge of the supervision of (i.e. corresponding to the
information leak of ¢), we first build Go = G x Q and the sets Fg,, Is,, Pa,, Neo, (as described in
Step 2., Section 3.1).

Now, based on the techniques of the section 3.1, one can compute the LTS X%I(G) over Y from
which we can derive an observer O, with the following verdicts: for u € T(G),

e O% (1) = Yes: M infers that is satisfied and thus can deduce that A knows ¢;
° O?A (1) = No: M knows that A does not know ¢ but might know it in the future;
o O (1) = Inev: M knows that A will inevitably know ¢ but does not know it yet:
o O% (1) = Inev_Yes: M knows that A already knows or will know ¢

o 0% (1) = Never: M knows that A will never know ¢.

° (’)ff,1 (1) =? means that M cannot deduce anything about the knowledge of A.

Unfortunately, the case O, (1) =? does not imply that the attacker A does not know . As M
and A observe the system via different interfaces, it might be the case that A already knows ¢ and
that M will never infer this information. This corresponds to the non-diagnosability of € [8|. This can
occur when there exist two arbitrarily long trajectories s and s’ corresponding to the same observation
p such that s € L, () (thus a non-opaque trajectory of) and s’ & Lp,(2). In the next section, we
will give necessary and sufficient conditions under which this case does not occur.

5.2 Necessary and sufficient conditions for detection/prediction of information
flow

Consider the system G as well as the property 2 described in the previous section.

PI n1901

12 Jérémy Dubreil, Thierry Jéron, Hervé Marchand

5.2.1 Diagnosability

Intuitively, G is 2-diagnosable ([11, 8]) if there exists n € N such that for any trajectory s of G such
that s = Q, Q becomes non-opaque after waiting for at most n observations. This can be formalized
as follows

Definition 6 Given a system G, a stable property €} and an interface Iy, G is 2-diagnosable if,

In € N,Vs € L(G) N L, (2) N %2,
V' € L(G),t' =s-t A [TIpm(1)] > n = [Tm(s - 8)]m € Liy,(Q)

HJ’ X
) | s

c
s
! ~
' w
compatible | =
trajectoir : =
! Ra)
| s
' =

observation

Figure 6: Intuition of the diagnosability property

The 2-diagnosability property means that whenever a trajectory s of the system satisfies 2, then
whatever the extension t of s, t having at least n observable events w.r.t. I, all the trajectories
compatible with the observation II(s.t) satisfy €.

In the case of monitoring opacity, this means that when the monitor is observing a trace in Lz, (€2),
a “Yes” answer should be produced by the observer after finitely many observed events. Hence, if there
exists s € L(Q) triggered by the system such that ¢ is non-opaque for A, then M will surely know it
at most n observed events after the observation of II(s).

5.2.2 Predictability

If the system is)-diagnosable, then it might be interesting to refine the verdict by predicting the
satisfaction of the property strictly before its actual occurrence [7|. Roughly speaking, € is predictable
if it is always possible to detect the future satisfaction of €, strictly before this happens, only based
on the observations.

Definition 7 Given a system G, a property €} and an interface Ily, G is Q-predictable if

In € N,Vs € L(G) N L, () NSS4,
Jte (LG)NS* Sy) U{el, t<s A t¢ Lg,(Q) s.t.
Vu € [TIm(t)]m, Yo € L(G)/u, [Tpm(v)| > n = u.v € Lr, ()

This property means that for any trajectory s that satisfies €2, there exists a strict prefix ¢ that
does not satisfy €, such that any trajectory u compatible with observation ITx(¢) will inevitably be
extended into a trajectory w.v satisfying Q2.

In our setting, this means that M can always predict that A will know ¢ and then the system
operator can be warned in time to halt the system or can take counter-measures in order to avoid the
secret to be revealed. In other words, if M observes a trace u € Ty(G) such that p = ITy(¢), then
M knows that the secret is not revealed to A, but will be after at most n observations.

*Note that predictability implies diagnosability [7].

Irisa

Monitoring Information flow by Diagnosis Techniques 13

Compatible
trajectories

Figure 7: Intuition of the Q-predictability

Remark 2 There is an algorithm of polynomial complexity for verifying that a system G is Q2-diagnosable
or Q-predictable. More details can be found in [8, 7].

Example 4 To illustrate this section, we still consider the system G and the secret ¢ defined in
Example 2. The property 2 and the set of non-opaque trajectories (i.e. the ones that reveal the secret
@) are given by the LTS described in Fig. 5.

Yes: M .knows that Yes: M knows that Pred: M knows that Yes: M knows that
(A knows or will know ¢) (Aknows) (A will but does not know yet)

)

Never: M knows that
will never know ¢)

knows ¢)

will never know ¢)

(a) By ={2,Y,6} (b) Xp = {X, Y, 0}

Figure 8: Observation function O, w.r.t. two different interfaces

Assume that the interface of the monitor M is reduced to ¥pq = {Z,Y,0}. Then, one can show
that G is)-diagnosable, but not ()-predictable. The corresponding (95\24 is represented in Figure 8(a).
A contrario, if the interface of the monitor M is ¥y = {X,Y,d}, then the system is Q-predictable.
Indeed, after the observation of X, M knows that all the possible extensions will satisfy 2 and thus
that the secret will be revealed (C.f. Figure 8(b)).

6 Construction of Monitors Using Abstractions

Until then, we made the assumption that the attacker A knows a model perfectly reflecting the behavior
of the system. This entails that all the attack scenarios that A can compute correspond to real attacks.
Especially, the opacity of the model implies the opacity of the system. But the methods presented
above may be not effective for the kind of models we might be interested in for modelling real systems.
For example, our approach relies on reachability analysis and determinization which are in general not
possible for infinite systems. Moreover, even for finite LTS, the determinization has an exponential
complexity in the number of states which can be intractable for large L'TS. It is then realistic to consider
an attacker reasoning on a finite state abstraction of the system.

Unfortunately, as we will see later, opacity is not preserved by abstraction. Then abstraction
cannot be used to infer that a system is opaque when the abstraction is. Also, reasoning on the
abstraction, there can be cases of information flow which are not possible on the system. Then using
abstraction to verify opacity is not relevant for accepting or rejecting systems. Nevertheless, we will
see how abstractions can help an attacker to infer secret information and the administrator to detect
the attacks.

PI n1901

14 Jérémy Dubreil, Thierry Jéron, Hervé Marchand

Let S be a system over an alphabet ¥ with a set of behaviors L(S) C ¥*. Let A be an attacker
interacting with .S via an interface IT 4 and knowing a finite abstraction G = (Qg, X, — ¢, q%) of S such
that L(S) € L(G). Following the techniques described in section 3.1, A builds the monitor x%(G)
and the function O%. Let s € L(S) be the sequence executed in S and pu = T14(s) € 74(S) be the
observation of the attacker.

e Suppose that O%(u) = Yes. This happens if and only if L(G) N E*.E;ll N H;l(u) C Lr, ()
Since L(S) C L(G), it follows that L(S)N Z*.Z;ll ﬂH;ll(,u) C Lg,(¢). The attacker A can then
deduce from O%(u) = Yes that s € Lp,(¢) and there is an information flow.

e Because of the abstraction, the verdict O%(u) =74 is no more accurate regarding the opacity
of S. Indeed, S may be non-opaque for p, but the uncertainty can come from a sequence
s’ € L(G) \ L(S) such that s' € [u]4 in G and s" ¢ Lp,(¢). This sequence will somehow hide
the non-opacity of S to the attacker.

It is important to note that the abstraction G of S is a parameter of the problem. We assume G
to be a part of the attacker’s model, beside his observation power IT4 and [.] 4 as well as his ability to
compute OF. Indeed, the more precise is the abstraction, the more accurate will be the verdict of the
function O%, and then the likelihood to infer information. On the other hand, given an abstraction
such that 0% ' (Yes) N 74(S) = 0, another attacker A’ using a less precise abstraction of S than the
abstraction G will not be able to infer any information about ¢.

We adopt now the administrator point of view, assuming that A and M are using the same
abstraction G.

o if for all u € T4(S), ObAp(n) # Yes, then S is safe as the attacker will not be able to infer any
information;

e otherwise, any observation u € 74(S) such that O%(u) = Yes corresponds to a real attack.

Following the methodology of Section 5, M can thus build a function O, where Q is such that
Lp,(Q) = {s € L(G) | O5(I14(s)) = Yes}.£*. The verdicts given by the function O%, are sound: all

the alarms the monitor raises correspond to real cases of information flow.

7 Conclusion

In this paper, given a system modeled by a labeled transition system and a secret property modeled
by a regular language, we have shown how to characterize cases of confidential information flow. Then
we exposed how an administrator can construct a monitor raising an alarm whenever an attack is
detected. Further, we provide necessary and sufficient conditions for such information flows to be
always detected by the administrator; in a bounded delay in the case of diagnosability or before they
occur in the case of predictability. We finally showed how to use abstraction for generating attacks
and monitoring them. In this paper, we focused on the detection of information flow. The monitors
are passive, they raise an alarm whenever an attack occurred. In parallel, we have investigated in [6]
the on-line control of the system by a supervisor in order to avoid the secret to be revealed. This, in
some points, extends the approach proposed in [2|, in which all the events are controllable, and earlier
work done by Schneider on security automata [12], and subsequently extended to edit automata |9].
Future Work: We first plan to extend these results to more expressive models mixing control and
data. Also, the attacker is interested in deducing a given secret and the administrator is concerned
with what does the attacker knows. Epistemic logic seems to be a good candidate to generalize this
approach to more than two participants. Finally, we presented in a simple case how an attacker
can infer information knowing only an abstraction of the system. But the initial knowledge plays an
important role in our approach. A natural extension would then be to consider an attacker having

Irisa

Monitoring Information flow by Diagnosis Techniques 15

an arbitrary initial knowledge of the system and using learning techniques. This attacker will try to
acquire a more precise model of the system to likely infer some confidential information.

References

[1] Rajeev Alur, Pavol Cerny, and Steve Zdancewic. Preserving secrecy under refinement. In /CALP
'06: Proceedings (Part II) of the 33rd International Colloquium on Automata, Languages and
Programming, pages 107-118. Springer, 2006.

[2] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and P. Darondeau. Concurrent
secrets. In S. Lafortune, F. Lin, and D. Tilbury, editors, 8th Workshop on Discrete Fvent Systems,
WODES’06, Ann Arbor, Michigan, USA, July 2006.

[3] B. Blanchet, Abadi; M., and C. Fournet. Automated Verification of Selected Equivalences for
Security Protocols. In 20th IEEE Symposium on Logic in Computer Science (LICS 2005), pages
331-340, Chicago, IL, June 2005. IEEE Computer Society.

[4] Jeremy Bryans, Maciej Koutny, Laurent Mazaré, and Peter Y. A. Ryan. Opacity generalised to
transition systems. International Journal of Information Security, 2008.

[5] V. Darmaillacq, J.-C. Fernandez, R. Groz, L. Mounier, and J.-L. Richier. Test generation for
network security rules. In TestCom 2006, volume 3964 of LNCS, 2006.

[6] J. Dubreil, Ph. Darondeau, and H. Marchand. Opacity enforcing control synthesis. In Workshop
on Discrete Fvent Systems, WODES’08, Gothenburg, Sweden, March 2008.

[7] T. Jéron, H. Marchand, S. Genc, and S. Lafortune. Predictive diagnosis for discrete event systems.
Technical Report 1834, IRISA, March 2007.

[8] T. Jéron, H. Marchand, S. Pinchinat, and M-O. Cordier. Supervision patterns in discrete event
systems diagnosis. In Workshop on Discrete Event Systems, WODES’ 06, Ann-Arbor (MI, USA),
July 2006.

[9] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement mechanisms for run-time
security policies. International Journal of Information Security, 4(1 2):2 16, February 2005.

[10] G. Lowe. Towards a completeness result for model checking of security protocols. Journal of
Computer Security, 7(2-3):89-146, 1999.

[11] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen, and D. Teneketzis. Diagnosability of
discrete event systems. [EEE Transactions on Automatic Control, 1995.

[12] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30-50, 2000.

PI n1901

