
HAL Id: inria-00315568
https://hal.inria.fr/inria-00315568v3

Submitted on 16 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Network Reconfiguration using Cops-and-Robber Games
David Coudert, Dorian Mazauric

To cite this version:
David Coudert, Dorian Mazauric. Network Reconfiguration using Cops-and-Robber Games. [Research
Report] RR-6694, INRIA. 2008. �inria-00315568v3�

https://hal.inria.fr/inria-00315568v3
https://hal.archives-ouvertes.fr

ap por t
de r e c h e r c h e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
66

94
--

FR
+E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Network Reconfiguration using Cops-and-Robber
Games

David Coudert — Dorian Mazauric

N° 6694

August 2008

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Network Reconfiguration using Cops-and-Robber
Games

David Coudert∗, Dorian Mazauric∗

Thème COM — Systèmes communicants
Projets Mascotte

Rapport de recherche n° 6694 — August 2008 — 14 pages

Abstract: The process number is the number of requests that have to be simultaneously
disturbed during a routing reconfiguration phase of a connection oriented network. From a
graph theory point of view, it is similar to the pathwidth. However they are not always equal
in general graphs. Determining these parameters is in general NP-complete. In this paper,
we propose a polynomial algorithm to compute an approximation of the process number of
digraphs, improving the efficiency of the previous exponential algorithm.

Key-words: Rerouting, process number, vertex separation, pathwidth.

This work was partially funded by the anr jc Osera, and by European projects ist fet Aeolus and
COST 293 Graal.

∗ MASCOTTE, INRIA, I3S, CNRS, Univ. Nice Sophia, Sophia Antipolis, France.
{david.coudert,dorian.mazauric}@sophia.inria.fr

Reconfiguration de routage à l’aide du jeu des
gendarmes et du voleur

Résumé : Le process number est le nombre de requêtes simultanément perturbées lors du
phase de reconfiguration de routage dans un réseau orienté connexions. Du point de vue
de la théorie des graphes, ce problème est similaire à la pathwidth, mais pas toujours égal.
Déterminer ce paramètre est en général NP-complet. Dans ce rapport, nous proposons un
algorithme heuristique estimant en temps polynomial le process number d’un graphe orienté.
Cet algorithme a de meilleures performances que les algorithmes existant.

Mots-clés : Reroutage, process number, vertex separation, largeur de chemins

Network Reconfiguration using Cops-and-Robber Games 3

1 Introduction

When designing a wavelength division multiplexing (WDM) network, designers have to take
into account expected traffic patterns, class of services proposed for failure resilience, routing
algorithms, various functionality of the components, and many other parameters. Such
designs are extremely hard problems to solve, in particular due to unpredictable evolution
of the traffic pattern during the lifetime of the network. Also, links are generally oversized
to simplify the design of the network. However, with the rapid increase of bandwidth
requirements it is more and more difficult to adapt the network usage to traffic variation
and so to maintain a near-optimal usage of resources.

In WDM networks without wavelength conversion, the acceptation of a new connection
request is subject to the availability of a lightpath (and so resources) from end to end in
the network. Whatever the routing algorithm chosen, successive addition and removal of
connections may lead to a poor usage of resources. Thus new connection requests might be
rejected although the network has enough resources to handle the traffic pattern, up to the
rerouting of some requests. For example, in Fig. 2(a), the network is a 9 nodes grid with
one wavelength and 5 requests a, b, c, d, e. A new connection request r will be rejected in
Fig. 2(a) although the routing of Fig. 2(b) is possible. Therefore, it is necessary to change
from time to time the routing of established connections to improve the usage of resources,
and so accept more traffic.

In this paper we concentrate on the reconfiguration phase, that is the problem of switch-
ing the set of connections from current routing, R1, to a new pre-computed routing, R2.
To solve this problem, several strategies are possible. For example, one may interrupt all
connections requests that have to be rerouted and after restart them with their new routes
in R2. This strategy is very simple, but requires to store a huge amount of traffic during
the reconfiguration phase and so requires large and costly buffers.

Another strategy is to reroute connection requests one after the other, as soon as des-
tination resources (lightpath in the new routing) are available, minimizing the number of
simultaneous interrupted requests during the reconfiguration. It corresponds to compute
the process number (Sec. 2) in the dependency digraph [6]. This requires to compute the
scheduling of the rerouting, taking into account that destination resources might be currently
used by other connections. More precisely, resources assigned to request r in R2 might be
used by some request r′ in R1, thus request r′ has to be rerouted before r. We represent
these constraints by a digraph D = (V,A), the dependency digraph [6], in which each node
corresponds to a request, and there is an arc from vertex u to vertex v if v must be rerouted
before u.

For example to switch from routing R1 of Fig. 2(a) to routing R2 of Fig. 2(b), we
construct the dependency digraph D of Fig. 2(c). It has one node per connection that has
to be rerouted, and so, connection e is not represented in D since it is not affected. It has
an arc from a to b since connection b has to be switched before connection a. Similarly, it
has arcs from b to c and from b to d since c and d must be switched before b, and so on.

When the digraph D is a dag (direct acyclic graph), the scheduling is straightforward,
but in general, it may contain cycles. To break them, some requests have to be temporarily

RR n° 6694

4 Coudert & Mazauric

interrupted, thus removing some incident arcs in D. So, the optimization problem is to find
a scheduling minimizing the number of requests simultaneously interrupted.

This problem has first been considered in [6]. They have proposed a heuristic algorithm
based on the minimum feedback vertex set (mfvs) of D (i.e. the smallest subset S of nodes
of D such that D − S is a dag) that performs well on small instances. This problem has
also been considered in [3, 4] with a modeling in terms of cops-and-robber game [8]: the
process number, denoted pn. It allows to use more advance theoretical concepts and so to
design more efficient heuristic algorithms. For example, the digraph of Fig. 1 is such that
|mfvs(D)| = n/2 and pn(D) = 2. So it is possible to reroute corresponding requests with
only two requests simultaneously interrupted.

This paper starts in Sec. 2 with the modeling of our reconfiguration problem as a cops-
and-robber game in the dependencies digraph, and so the definition of the process number.
Then, in Sec. 3 we present some previous results linking pathwidth, vertex separation and
process number. We also recall the heuristic algorithm proposed in [6]. In Sec. 4, we
propose a heuristic algorithm to compute the process number of digraphs (i.e. maximum
number of simultaneously interrupted requests) and the corresponding network reconfigura-
tion strategy. Finally, in Sec. 5 we present simulations results and analyze the efficiency of
our heuristic algorithm compared to others.

2 Modeling

It has been proved in [3, 4] that the routing reconfiguration problem can be expressed as a
cops-and-robber game [8], as for the pathwidth [10]. An interruption is represented by placing
an agent on the corresponding node in D. A node is said processed when the corresponding
request has been rerouted. If the node was occupied by an agent, then it can be reused. We
call a process strategy a series of the three following actions (rules) allowing to reroute all
requests with respect to the constraints represented by the digraph.

R1. Put an agent on a node (interrupt a connection).

R2. Remove an agent from a node if all its out-neighbors are either processed or occupied
by an agent (restart a connection on its final route when destination resources are
available). The node is now processed (connection has been rerouted).

R3. Process a node if all its out-neighbors are either processed or occupied by an agent1

(connection has been rerouted because destination resources are available).

A p-process strategy is a strategy which process the digraph using p agents and the
process number, pn(D), is the smallest p such that a p-process strategy exists.

Clearly, pn(D) is upper bounded by the minimum feedback vertex set (mfvs) of D, that
is the smallest subset S of nodes of D such that D−S is a dag. However, this bound is very

1In terms of cops and robber games in undirected graphs, rule R3 expresses that the fugitive is forced to
move at each step.

INRIA

Network Reconfiguration using Cops-and-Robber Games 5

large. For example, the digraph represented in Fig. 1 is such that |mfvs(D)| = n/2, but it
can be 2-processed. For that, we put an agent on node u (rule R1). Then we apply rule R3

to process node u′. After, we put a second agent on node v (rule R1), process node v′ (rule
R3) and then process node v (rule R2). We repeat on the predecessor of v until processing
of the out-neighbor w of u. Finally, we apply rule R2 on u.

v

v’ u’

wu

Figure 1: Digraph D such that pn(D) = 2 and mfvs(D) = n/2.

Notice also that when D is a dag the scheduling is straightforward using rule R3 from
the leaves (nodes with out-degree 0), and we have pn(D) = 0.

3 Previous work

First of all, it has been proved in [4] that vs(D) ≤ pn(D) ≤ vs(D) + 1, where vs(D) is the
vertex separation of D. This implies that determining pn(D) is NP-complete in general,
since it is also the case for vs(D). Furthermore, when D is a symmetric digraph, the
same result holds for the underlying graph G. We also have vs(G) = pw(G), where pw(G)
is the pathwidth of G [7, 10], and determining the pathwidth is NP-complete in general,
approximable within O(log2 |V (G)|), and there is no polynomial-time algorithm with an
absolute error guarantee of |V (G)|1−ε for any ε > 0 [8, 2]. The same holds for the process
number and so for the routing reconfiguration problem considered in [6, 4] and in this paper,
thus motivating the development of an efficient heuristic algorithm.

Notice that for specific topologies it is possible to determine the process number in
polynomial time. In particular, a characterization of digraphs with process number 1 and 2
is given in [4] as well as O(n+m) and O(n2(n+m)) respectively time complexity recognition
algorithms.

When the digraph is composed of several strongly connected components (sccs), it is
possible to process each scc independently, and then obtain the processing of D. For that,
let {scci} be the set of sccs of D. Let also Dscc be the dag of sccs of D, thus containing
one node per component of {scci} and one arc from node i to node j iff D contains an arc
from some node u ∈ scci to some node v ∈ sccj . Then the processing of D consists in
processing the sccs sequentially following the order given by Dscc. Since sccs are processed
independently from each other the Lemma 1 follows. Notice that the computation of {scci}
and Dscc takes time O(n + m) using standard algorithms.

RR n° 6694

6 Coudert & Mazauric

cb

r

e

d

a

(a) Initial routing R1 of requests a, b, c, d, e.
The new request r can not be satisfied.

b

a

c

e

r

d

(b) The new routing R2 with requests
a, b, c, d, e and r.

d

b

ca

(c) Dependency digraph D for switching the
routing from R1 to R2.

0.75

b

ca

d

0.25

0.25

0.25

0.250.75

0.25

0.375

0.375

0.25

0.25

(d) Dµ from D to apply flow circulation algo-
rithm.

Figure 2: Dependency digraph D (c) and corresponding Dµ (d) to switch from routing R1

(a) to routing R2 (b).

INRIA

Network Reconfiguration using Cops-and-Robber Games 7

Lemma 1. Given a digraph D and the set {scci} of its strongly connected components, we
have pn(D) = maxi{pn(scci)}.

We now recall the principle of the heuristic algorithm proposed in [6], HeurJS, to obtain
the rerouting ordering of a digraph D = (V,A). It uses Lemma 1, and so we may assume that
D is strongly connected. The main idea of HeurJS is to break elementary cycles. For that,
it first computes the c elementary cycles of D using Johnson’s algorithm [5] and assigns to
each node u the number α(u) of cycles it belongs to. Then it places an agent on the node u1

of maximum weight, thus breaking α(u1) cycles, updates the values of each remaining nodes
and repeats if α(ui) > 0, where ui is the new node of maximum weight. Let L be the set of
nodes covered by an agent. When all cycles have been broken, the digraph D − L is a dag
and so can be 0-processed. Thus it processes D−L in appropriate order and then the nodes
of L. The number of agents simultaneously used is |L|, and the time complexity of HeurJS is
dominated by the computation of elementary cycles which takes time O((n + m)(c + 1)) [6].
Notice that this algorithm is exponential with the number c of elementary cycles, and so
with the number n of nodes. Thus, HeurJS can only permit to solve the problem for small
digraphs, as it has been designed for.

To the best of our understanding, HeurJS is in fact a heuristic algorithm for mfvs applied
on each scc of D, following Lemma 1. Although shown to be quite efficient in practice
through a large number of experimentations [6], its result could be far from optimality (see
the example of Fig. 1).

4 Process strategy based heuristic algorithm

We now propose a heuristic algorithm HeurCM for solving the reconfiguration problem, taking
advantages of the modeling with the process number proposed in [4]. This heuristic algorithm
has polynomial time complexity, and with high probability improves upon HeurJS on the
number of agents needed simultaneously (corresponding to the number of requests disturbed
at the same time) in resulting strategy.

4.1 Flow circulation algorithm

Our algorithm is based on a flow circulation algorithm which has the objective of choosing
the best candidate node to receive an agent and so to break a large set of cycles.

The principle is the following. Given a dependency digraph D = (V,A), each node
u ∈ V is initially assigned a weight q0(u) = 1/ |V |. Then, at each round t, each node u
sends (1 − µ)qt(u)/d+(u) to each of its out-neighbors, where d+(u) = |Γ+(u)| with Γ+(u)
the set of out-neighbors of u in D, and µ ∈ (0, 1). Furthermore u keeps µqt(u) in order
to satisfy discrete Markov chain conditions. Indeed we transform the digraph D = (V,A)
into Dµ = (Vµ, Aµ), such that Vµ = V and Aµ = A ∪ {(u, u),∀u ∈ V }. In other words, we
add loops to each node of D. Clearly, the value of µ will influence the convergence time
(i.e. number of rounds) of the flow circulation algorithm without significant impact on the

RR n° 6694

8 Coudert & Mazauric

final weights. Thus, we choose it close to 0, and so we will only slightly slow down the
convergence time. We have for all u ∈ Dµ :

qt+1(u) = µqt(u) +
∑

v∈Γ−(u)

(1− µ)qt(v)/d+(v) (1)

where Γ−(u) is the set of predecessors of u.
After k rounds (the value of k will be discussed in Lemma 3), the node with maximum

weight is the best candidate. With flow circulation algorithm, we expect that the node with
maximum weight belongs to many cycles. So its removal from the digraph may break many
cycles.

We will now evaluate the number k of rounds needed in the flow circulation algorithm.
For that, we will first prove in Lemma 2 the convergence of the algorithm using a discrete
Markov chain for which we define the set of states {u1, u2, ..., u|Vµ|} corresponding to the
nodes in Vµ and the transition matrix M associated to Dµ. We have for all x, y ∈ Vµ

M [x, y] =

 (1− µ)/d+(x) when y ∈ Γ+(x)
µ when x = y
0 otherwise

(2)

where Γ+(x) is the set of out-neighbors of x and d+(x) = |Γ+(x)|. We also define the vector
of probability qt(Vµ) = (qt(u1), qt(u2), ..., qt(u|Vµ|)). qt(ui) (1 ≤ i ≤ |Vµ|) is the probability
that the state of the system is ui at step t ≥ 0.

Lemma 2. Let Dµ be a strongly connected digraph with loops. Whatever q0(Vµ), we have
limt→+∞ qt(Vµ) = q(Vµ), where q(Vµ) is the unique stationary weights vector.

Proof. The proof relies on the discrete time Markov chain described previously, where the
vector qt(Vµ) represents the probability of each state at step t ≥ 0 and M , associated to Dµ,
represents the transition matrix (see Equation 2).

From the Markov chains theory, we know that if the chain is irreducible and aperiodic
(ergodic), then there exists a unique stationary distribution q(Vµ) whatever the initial state
q0(Vµ) [9].

• The irreducibility of the Markov chain is obvious because Dµ is a strongly connected
digraph. Indeed from each state x, there exists a positive probability to move to state y
since there exists a path from x to y in Dµ.

• The Markov chain is aperiodic since Dµ is a strongly connected digraph with loops [9].

Fig. 2(c) consists on a digraph D = (V,A) of 4 nodes a, b, c, d. We construct Dµ =
(Vµ, Aµ) (Fig. 2(d)), adding loops in order to satisfy the Markov conditions described
before, even if it is not necessary in this example. The probabilities on the edges in
Fig. 2(d) represent the Markov transition matrix (see Equation 2). We have qt(Vµ) =
(qt(a), qt(b), qt(c), qt(d)) such that q0(Vµ) = (0.25, 0.25, 0.25, 0.25). After 4 steps, we have

INRIA

Network Reconfiguration using Cops-and-Robber Games 9

q4(Vµ) ≈ (0.1257, 0.2473, 0.2503, 0.3767), that is to say almost the stable vector q(Vµ) =
(0.125, 0.25, 0.25, 0.375). Thus node d has maximum weight.

The Markov chain admits always a stable state due to the artificial loop transition on
each node. We now have to choose k sufficiently large to get the stable vector q(Vµ) with an
allowed error ε, that is εk ≤ ε, where εk = ||qk(Vµ)− q(Vµ)||∞ = O(|λ2|k), denoting λ2 the
second largest eigenvalue of the transition matrix M . Thus we will obtain the node with
the maximum weight.

Lemma 3. If |λ2| < ε1/k, then flow circulation algorithm computes q(Vµ) with an allowed
error ε.

Proof. From Perron-Frobenius Theorem [1], we know that the convergence time from qt(Vµ)
to the stationary vector q(Vµ) depends only of the second largest eigenvalue λ2 of M (the
first largest is always 1). Thus when |λ2|k < ε, the stable state is obtained with ||qk(Vµ)−
q(Vµ)||∞ ≤ ε.

Since computing the second largest eigenvalue value λ2 of M is time consuming, in our
experiments we choose to fix arbitrarily k = n. For the example of Fig. 2(d), we thus have
||q4(Vµ)−q(Vµ)||∞ ≤ 0.003. Another example is with n = 500 requests and an allowed error
of ε = 0.01. Then, the flow circulation algorithm computes the stationary vector of the
Markov chain if |λ2| < 0.99 (remember that the second largest eigenvalue is strictly lower
than 1, and that 0.99500 < 0.01). Thus with a very high probability, we get the right stable
vector and so a good candidate node for breaking cycles. See Sec. 5.1 for more details.

4.2 Heuristic algorithm

We assume that we are given a strongly connected digraph D. Otherwise, we apply our
algorithm on each sccs, according to Lemma 1. We also assume that D is different than a
single node digraph (otherwise we can process it easily) and it has been transformed into
Dµ, but we say D for simplicity.

The heuristic algorithm, HeurCM, is described in Algorithm 1. It consists in choosing a
node to place an agent using the flow circulation algorithm, and then it decomposes the
digraph into sccs and repeats on each scci. Algorithm HeurCM maintains the set of nodes
covered by an agent, S, sorted by insertion dates. Also S.last is the latest inserted node
that has not yet been processed. After any step of HeurCM, S may change: insertion of a
new node covered by an agent (rule R1), and removal of nodes that can be processed (rule
R2). The number of agents used by HeurCM is thus the maximum size reached by S during
the algorithm, S.max.

The dependency digraph D of Fig. 2(c) is strongly connected and we apply HeurCM on
it. We first apply flow circulation algorithm to choose the node to be covered by an agent,
i.e. the node with maximum weight. So we choose d and add it to S (Fig. 2(c)). Since
D − {d} is a dag, we can now process all remaining nodes (line 1) and finally process d.
Thus HeurCM uses 1 agent in this example.

RR n° 6694

10 Coudert & Mazauric
s
e

c
o

n
d

 l
a

rg
e

s
t

e
ig

e
n

v
a

lu
e

0 100 200 300 400 500 600 700 800 900 1000

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

number of test

(a) λ2 for a number of nodes n = 100, 1000 tests,
and µ = 0.25.

number of tests

0 100 200 300 400 500 600 700 800 900 1000

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

s
e

c
o

n
d

 l
a

rg
e

s
t

e
ig

e
n

v
a

lu
e

(b) λ2 for a number of nodes n = 100, 1000 tests,
and µ = 0.25.

100

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

0

50

150

n
u

m
b

e
r

o
f

te
s
ts

 w
it
h

 t
h

e
 c

o
rr

e
s
p

o
n

d
in

g
 e

ig
e

n
v
a

lu
e

second largest eigenvalue

(c) Repartition of λ2 for n = 100 and 100 tests.

average out−degree

0 10 20 30 40 50 60 70 80 90 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

s
e

c
o

n
d

 l
a

rg
e

s
t

e
ig

e
n

v
a

lu
e

(d) λ2 according to the average out-degree for
graphs with n = 100 nodes and µ = 0.25. 100
tests for each average out-degree.

Figure 3: Simulations: second largest eigenvalue.

INRIA

Network Reconfiguration using Cops-and-Robber Games 11
n

u
m

b
e

r
o

f
a

g
e

n
ts

 r
e

q
u

ir
e

d

0 100 200 300 400 500 600 700 800 900 1000

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

number of nodes

(a) Number of agents required by HeurCM to pro-
cess digraphs of process number 2. 100 tests for
each number of nodes 10k, k = 1..100.

average out−degree

0 1 2 3 4 5 6

0

2

4

6

8

10

12

14

16

18

HeurJS

HeurCM

n
u

m
b

e
r

o
f

a
g

e
n

ts
 r

e
q

u
ir
e

d

(b) Number of agents required to process a 20
nodes random graph function of the average out-
degree.

square root of the number of nodes

0 5 10 15 20

0

5

10

15

20

25

30

35

40

45

HeurCM

Exact value

n
u
m

b
e
r

o
f
a
g
e
n
ts

 r
e
q
u
ir
e
d

HeurJS

(c) Number of agents required to process n × n
grids.

ti
m

e
 n

e
e

d
e

d

0 2 4 6 8 10 12

0

50

100

150

square root of the number of nodes

(d) Computation time to process n × n grids.

Figure 4: Simulations: efficiency of HeurCM.

RR n° 6694

12 Coudert & Mazauric

Algorithm 1 HeurCM

Require: A strongly connected digraph D, the set of nodes covered by an agent S and the
set of active nodes A

Ensure: The number of agents needed
1: Apply flow circulation on D.
2: Let u be one of the nodes of maximum weight. In case of equality we choose the closest

node to S.last.
3: Place an agent on u: add it to S and remove it from A.
4: Process all the nodes whose can be processed updating S and A.
5: Decompose D ∩ {A} into sccs: {scci}
6: if {scci} is not empty then
7: HeurCM(scci,S), i = 1.. |{scci}|
8: end if

With the dependency digraph of Fig. 1, and w.l.o.g., node u is chosen among the set of
nodes of maximum weights (all belonging to the main cycle) and added to S. Now, u′ is
processed and then the digraph is decomposed into sccs, each being a 2-cycle, on which we
apply recursively HeurCM (line 1). Thus, HeurCM will use only 2 agents.

When choosing the node of maximum weight at line 1 of Algorithm 1, it may happen
that among the set of candidates, one of them allows to process a node of S. This is typically
the case when the digraph is a bidirectional path u0, u1, u2, u3, . . . , ur, ur+1. W.l.o.g., we
may assume that u1 is chosen at line 1 and so added to S. We process node u0, and we
repeat the algorithm on u2, u3, . . . , ur+1. Now, candidates will be u3 and ur (the symmetry
of the graph give same weights for u3 and ur), but u3 is clearly a better choice since is allows
to process u2 and after u1 thus releasing one agent. It is why in case of equality, we choose
the closest node to S.last.

Lemma 4. The worst case time complexity of HeurCM is O(kn(n + m)).

Proof. Each flow circulation round takes time O(k(n+m)) and in the worst case D∩{A} =
D − {u} is a single scc.

Finally, note that the rerouting strategy follows directly our algorithm. With HeurCM, it
is sufficient to know entering and leaving dates in S and in A to know when a connection is
suspended (enter in S) or switched to its new route (leave S or A).

5 Simulations

In this section, we first analyze further the convergence time of the flow circulation algorithm.
Then, we analyze the performance of our heuristic algorithm HeurCM.

INRIA

Network Reconfiguration using Cops-and-Robber Games 13

5.1 Convergence time of flow circulation

We present here some simulations showing that the second eigenvalue λ2 of M respects
almost surely the conditions given in Lemma 3. For that, we have designed different kinds
of random Markov matrices Mn×n.

• A fully random matrix, that is to say for each line of M (i.e. for each node), the out-
degree and the out-neighbors are chosen randomly and uniformly. Fig. 3(d) and Fig. 3(b)
show the distribution of λ2 for n = 100 and 1000 tests. For these two simulations, λ2 is
always lower than 0.7. Furthermore, Fig. 3(c) describes that with high probability, λ2 is
small.

• We have designed a random matrix with constant average out-degree d, that is to
say for each line of M , d is a binomial distribution of parameters d/n and n. Then the
out-neighbors are chosen randomly and uniformly. Fig. 3(d) shows the value λ2 for each
possible average out-degree for a digraph of 100 nodes. Note that for each average out-
degree, 100 tests has been done. λ2 is very small (lower than 0.5) except for very small
average out-degree.

5.2 Simulations of HeurJS and HeurCM

We have implemented and analysed the efficiency of HeurJS and our algorithm HeurCM (in
term of number of agents simultaneously required and in term of computation time).

• In [4], a characterization of the graphs with process number 2 is done and Fig. 4(a)
shows the approximate process number computed by HeurCM for these graphs. The number
of agents increases very slowly with the number of nodes (requests). For a digraph of 1000
nodes, the number of agents required is almost 5.

• For a symmetric grid Gn×n, Fig. 4(c) shows that the approximate process number
computed by HeurCM is closed to the exact value (n + 1 if n > 2) whereas the number
of agents required by HeurJS increases exponentially. Furthermore, the computation time
is very smaller for HeurCM compared to HeurJS (Fig. 4(d)), because a grid is a strongly
connected symmetric digraph and there is an exponential number of cycles.

• For a 20 nodes random graph, starting with an average out-degree d closed to 0,
increasing it until d = 6, Fig. 4(b) shows that HeurCM requires less agents that HeurJS.

6 Conclusion

In this paper, we have proposed a new heuristic algorithm for the reconfiguration problem
of switching the connections from one routing to another with objective of minimizing the
number of connections simultaneously interrupted. This new heuristic algorithm is based
on a modeling with cops-and-robbers games and improves upon previous proposal in both
efficiency and computation time, as shown by our simulation results.

The next step is to design an exact and efficient exponential algorithm viable in practice
for digraphs with a small number of nodes.

RR n° 6694

14 Coudert & Mazauric

Acknowledgments

This work has been partially supported by ANR JC OSERA, région PACA, European
projects IST FET AEOLUS and COST 293 Graal.

References

[1] O. Axelsson. Iterative solution methods. Cambridge University Press, 1994.

[2] H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms,
18(2):238–255, March 1995.

[3] D. Coudert, S. Perennes, Q.-C. Pham, and J.-S. Sereni. Rerouting requests in wdm
networks. In AlgoTel’05, pages 17–20, Presqu’̂ıle de Giens, France, mai 2005.

[4] D. Coudert and J-S. Sereni. Characterization of graphs and digraphs with small process
number. Research Report 6285, INRIA, September 2007.

[5] Donald B. Johnson. Finding all the elementary circuits of a directed graph. SIAM
Journal on Computing, 4(1):77–84, 1975.

[6] N. Jose and A.K. Somani. Connection rerouting/network reconfiguration. Design of
Reliable Communication Networks (DRCN), pages 23–30, October 2003.

[7] N. G. Kinnersley. The vertex separation number of a graph equals its pathwidth.
Information Processing Letters, 42(6):345–350, 1992.

[8] M. Kirousis and C.H. Papadimitriou. Searching and pebbling. Theoretical Computer
Science, 47(2):205–218, 1986.

[9] S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag,
London, 1993.

[10] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. J. Combin.
Theory Ser. B, 35(1):39–61, 1983.

INRIA

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Modeling
	Previous work
	Process strategy based heuristic algorithm
	Flow circulation algorithm
	Heuristic algorithm

	Simulations
	Convergence time of flow circulation
	Simulations of HeurJS and HeurCM

	Conclusion

