A partitioned Newton method for the interaction of a fluid and a 3D shell structure

Miguel Angel Fernández 1 Jean-Frédéric Gerbeau 1 Antoine Gloria 1, 2 Marina Vidrascu 3
1 REO - Numerical simulation of biological flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6
2 MICMAC - Methods and engineering of multiscale computing from atom to continuum
Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
Abstract : We review various fluid-structure algorithms based on domain decomposition techniques and we propose a new one. The standard methods used in fluid-structure interaction problems are generally ``nonlinear on subdomains''. We propose a scheme based on the principle ``linearize first, then decompose''. In other words we extend to fluid-structure problems domain decomposition techniques classically used in nonlinear elasticity.
Document type :
Reports
Complete list of metadatas

Cited literature [47 references]  Display  Hide  Download

https://hal.inria.fr/inria-00315765
Contributor : Jean-Frédéric Gerbeau <>
Submitted on : Saturday, August 30, 2008 - 5:41:06 AM
Last modification on : Tuesday, May 14, 2019 - 10:16:38 AM
Long-term archiving on : Friday, October 5, 2012 - 11:57:26 AM

File

RR-6623.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00315765, version 1

Citation

Miguel Angel Fernández, Jean-Frédéric Gerbeau, Antoine Gloria, Marina Vidrascu. A partitioned Newton method for the interaction of a fluid and a 3D shell structure. [Research Report] RR-6623, INRIA. 2008, pp.30. ⟨inria-00315765⟩

Share

Metrics

Record views

588

Files downloads

324