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Une méthode de Newton partionnée pour
l'interaction d'un �uide et d'une coque 3D

Résumé : Nous faisons une revue de divers algorithmes de couplage �uide-
structure basés sur des techniques de décomposition de domaine et nous en
proposons un nouveau. Les méthodes classiques utilisées en interaction �uide-
structure sont généralement �non linéaires par sous-domaine�. Nous proposons
un schéma basé sur le principe �linéariser puis décomposer�. En d'autres termes,
nous étendons aux problèmes d'interaction �uide-structure des techniques de
décomposition de domaine utilisées classiquement en élasticité non linéaire.

Mots-clés : interaction �uide-structure, algorithme de Newton, décomposi-
tion de domaine non linéaire, coque 3D



A partitioned Newton method for the interaction of a �uid and a 3D shell 3

Introduction

In this paper we review various numerical methods to treat the interaction
between an incompressible �uid and an elastic structure, and we propose a new
approach based on a Newton algorithm and domain decomposition methods.
To model the structure, we use 3D-shell elements, which allows us to use three
dimensional constitutive laws (see [10, 12, 11]). Up to our knowledge, this is
the �rst time such elements are used in �uid-structure interaction.

Fluid-structure algorithms are too numerous to be reviewed exhaustively. A
classi�cation of the various approaches is not obvious either. To begin with,
we can consider two groups of methods: the �strongly coupled� and the �loosely
coupled� schemes. This distinction is quite clear since it corresponds to a pre-
cise property: those schemes which can ensure a well-balanced energy transfer
between the �uid and the structure can be called �strongly coupled�, the other
ones are �loosely coupled�. All the methods presented in this study are strongly
coupled. Loosely coupled schemes, which are very powerful in many applications
but can be unstable in others, are not considered here. We refer for example
to [41, 18, 6] for explicit coupling schemes and to [19, 20] for a semi-implicit
coupling scheme.

We can then distinguish �monolithic� and �partitioned� schemes. For exam-
ple, an ad hoc solver whose purpose is to solve simultaneously the �uid and the
structure typically leads to a monolithic scheme (see [42, 45, 48, 28, 2, 30, 16, 5],
for instance). On the other hand, coupling one �uid solver and one structure
solver as black boxes clearly yields a partitioned scheme. Such a partitioned
scheme can be strongly coupled as soon as sub-iterations are performed at each
time step. The number of subiterations being very large in some application,
acceleration techniques have been investigated in several articles: for example
Le Tallec and Mouro [33] propose a steepest descent approach, Moket al. [38]
(see also [31]) propose an Aitken acceleration which is based on the two pre-
viously computed solutions, Vierendeels [47] a least-square method which uses
several previously computed solutions, and Badiaet al. [1] an speci�c linear
combination of the coupling conditions.

It is well-known, in particular since the work by Le Tallec and Mouro [33]
and more recently by Depariset al. [15, 14], that �uid-structure problems can
be tackled with domain decomposition approaches. Indeed, a �uid-structure
problem can be viewed as a general continuum mechanics problem set on one
domain which is split into a �uid part and a structure part. The �uid-structure
coupling conditions then appear as the transmission conditions which ensure
that the solution of the global problem is obtained by �sticking� the two sub-
problem solutions. This point of view has been adopted in various studies, either
with the so-called �Dirichlet-Neumann� algorithms (see for example [36, 26, 23])
or with �Neumann-Neumann� algorithms ([15, 14]).

All these methods have been devised following the rule �apply domain de-
composition to the nonlinear global problem and then solve on each subdomain
the nonlinear problems�. On the contrary, in other �elds � for example non-
linear elasticity [32] � domain decomposition is usually applied with the rule
�linearize �rst, then solve the tangent problem using domain decomposition�.
The purpose of this paper is to propose a �uid-structure algorithm based on
the last rule. The resulting algorithm can be viewed as a monolithic scheme
in the sense that we apply a Newton algorithm to the global �uid-structure
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4 M.A. Fernández, J.-F. Gerbeau, A. Gloria, M. Vidrascu

problem. But, it is more conform to the practical implementation to consider
it as a partitioned scheme, since the �uid and the structure are solved with two
di�erent solvers, with their own schemes, and can be run in parallel. Contrarily
to the methods following the �rst rule, these solvers are only used to solve the
tangent problems and to evaluate nonlinear residuals. The use of two di�erent
solvers has well-known advantages (re-usability of existing codes, �exible choice
of the numerical methods adapted to each sub-problem,etc.). Compared to
monolithic schemes presented in the literature [42, 45, 48, 28, 2, 30, 16, 5], our
approach may have another advantage: the use of domain decomposition meth-
ods to solve the tangent problem is expected to be more e�cient than direct
methods or iterative methods based on block-preconditioners.

The remainder of the paper is organized as follows. In Section 1 we review
some standard approaches to solve �uid-structure interaction problems, in par-
ticular those based on domain decomposition arguments, that use the so-called
Steklov-Poincaré operators. In Section 2 we recall the �uid and solid models
and we set the main notations. In Section 3 we propose a short review on
constitutive laws that have been developed recently to model soft tissues, and
in particular the arterial wall. The development of constitutive laws for soft
tissues is of interest from the numerical point of view. On the one hand, speci�c
features of the model can lead to speci�c numerical issues such as locking (in-
compressibility, thin three dimensional structures) and will motivate the use of
3D shell elements. On the other hand, the change of relative complexity of the
structure with respect to the �uid can change the relative e�ciency of a method
with respect to another one. The time scheme is presented in Section 4. In Sec-
tion 5 the new algorithm is introduced. We propose in Section 5.3 a simpli�ed
complexity analysis in which compare the e�ciency of the proposed algorithm
with other existing approaches. We propose in Section 5.3 a simpli�ed complex-
ity analysis whose conclusion may be sum up as follows: the more expensive
the structure problem and nonlinear the �uid (let think of the Navier-Stokes
equations but also of complex models for the �uid), the more competitive is
expected this new formulation. Numerical results and a comparison with exist-
ing methods are reported in Section 6. Finally, some conclusions are given in
Section 7.

1 Classical solution methods

In this section, we brie�y review some of the existing algorithms for the nu-
merical solution of the nonlinear system arising in the time discretization of the
�uid-structure problem with an implicit coupling scheme. These methods are
typically based on the application of a particular nonlinear iterative method to
three di�erent formulations of the nonlinear coupled system.

In general, the time discretization of a �uid-structure problem with an im-
plicit coupling scheme leads to a coupled nonlinear problem of the type: Find
the interface displacement , the �uid state x f and the solid state x s such that

Formulation (I):

8
><

>:

F (x f ;  ) = 0 ;

S (x s;  ) = 0 ;

I (x f ; x s) = 0 :

(1)

INRIA



A partitioned Newton method for the interaction of a �uid and a 3D shell 5

Equations (1)1 and (1)2 ensure the equilibrium of momentum when the �uid
and the solid are subjected to an interface displacement , whereas the last
equation enforces the equilibrium of mechanical stresses at the interface.

Problem (1) can be reformulated in terms of by eliminating the �uid and
solid unknowns x f ; x s. This yields to the so-called Steklov-Poincaré formula-
tion: Find the interface displacement  such that,

Formulation (II): Sf ( ) + Ss( ) = 0 : (2)

Here, Sf and Ss stand for the �uid and solid Steklov-Poincaré operators which
can be de�ned as follows: for a given interface displacement , Sf ( ) gives the
stress exerted by the �uid on the interface, and analogously forSs. All these
notations will be made precise below. In section 4.2, we shall describe the link
between (1) and (2).

Finally, the composition of the inverse operator S� 1
s with (2) gives rise to

the so-called Dirichlet-to-Neumann formulation:

Formulation (III): S� 1
s

�
� Sf ( )

�
�  = 0 : (3)

Formally speaking, Formulations (II) and (III) are similar. Nevertheless, we
prefer to distinguish them since they correspond to di�erent approaches in the
literature. The denominations �Dirichlet-Neumann formulation� and �Steklov-
Poincaré formulation� are purely conventional (both of them clearly involve
Steklov-Poincaré operators).

The three following paragraphs address a brief state-of-the-art on the itera-
tive methods for the numerical solution of (1), (2) and (3).

1.1 Monolithic formulation

A common approach in the numerical solution of nonlinear systems, arising in
implicit coupling, consists in applying a Newton based algorithm to the global
formulation (1). This requires the repeated solution of a tangent (or approxi-
mated tangent) problem with the following block structure:

2

4
Dx f F (x f ;  ) 0 D F (x f ;  )

0 Dx s S (x s;  ) D  S (x s;  )
Dx f I (x f ; x s) Dx s I (x f ; x s) 0

3

5

2

4
� x f

� x s

�

3

5 = �

2

4
F (x f ;  )
S (x s;  )
I (x f ; x s)

3

5 :

(4)
Newton algorithms based on the numerical solution of (4) in a monolithic
fashion, i.e. using global direct or iterative methods, have been reported in
[45, 48, 28, 2, 16]. It is worth noticing that such a monolithic approach makes
di�cult the use of separate solvers for the �uid and structure sub-problems.
Alternatively, system (4) can be solved in apartitioned manner through a block-
Gauss elimination of � x f , which leads to the so called block-Newton methods
[34, 35, 21, 22].

1.2 Dirichlet to Neumann formulations

Formulation (III) reduces problem (1) to the determination of a �xed point of
the Dirichlet-to-Neumann operator  7! S� 1

s

�
� Sf ( )

�
. This motivates the use

of �xed-point based methods [33, 39, 38, 37]:

 k+1 = ! k S� 1
s

�
� Sf ( k )

�
+ (1 � ! k ) k ; (5)

RR n° 6623



6 M.A. Fernández, J.-F. Gerbeau, A. Gloria, M. Vidrascu

with ! k a given relaxation parameter which is chosen in order to enhance con-
vergence [38, 37, 13, 31]. Alternatively, one can use Newton based methods
[26, 23] for a fast convergence towards the solution of (3). This requires the
solution of a tangent problem of the type

(J ( k ) � I )� = �
�
S� 1

s

�
� Sf ( k )

�
�  k �

; (6)

whereJ ( ) stands for the Jacobian, or approximated Jacobian [26], of the com-
posed operator 7! S� 1

s

�
� Sf ( )

�
. It is worth noticing that exact Jacobian

computations require shape derivative calculus for the �uid [23] (see also [16, 4]).
Let us also stress the fact that these methods are naturally partitioned.

1.3 Symmetric Steklov-Poincaré formulation

The Dirichlet-Neumann formulations share a common feature: their implemen-
tation is purely sequential. The Steklov-Poincaré formulation (2) may allow to
set up parallel algorithms to solve the interface equation.

Following the presentation of Depariset al. [14], the nonlinear problem (2)
can be solved through nonlinear Richardson iterations:

P( k+1 �  k ) = ! k (� Sf ( k ) � Ss( k )) ; (7)

for an appropriate choice of the preconditionerP, namely

P � 1
k = � k �

S0
f ( k )

� � 1
+ (1 � � k )

�
S0

s( k )
� � 1

; (8)

where� 7! S0
f (� ) �� is the di�erential of Sf at � , and

�
S0

f (� )
� � 1

its inverse. This
choice generalizes the standard preconditioners of linear domain decomposition
methods (for which S0 = S). If � k is 0; 1 or 0:5 we retrieve, respectively,
Dirichlet-Neumann, Neumann-Dirichlet or Neumann-Neumann preconditioners.
On the other hand, since equation (2) is nonlinear, one can apply a Newton
method, �

S0
f ( k ) + S0

s( k )
�
( k+1 �  k ) = � Sf ( k ) � Ss( k ); (9)

which corresponds to the nonlinear Richardson iteration (7) preconditioned with
Pk = S0

f ( k ) + S0
s( k ) and ! k = 1 . This linear equation can be solved, for ex-

ample, by an operator-free GMRES algorithm, with or without preconditioning.
For instance, in [14] the authors propose to use the preconditioners (8).

The Newton method applied to the Dirichlet-Neumann formulation is not
equivalent to the Newton method applied to the Steklov formulation, since the
roles played by the �uid and by the structure are not symmetric in the �rst ap-
proach, whereas they are in the second. After linearization, one cannot compose
(6) with Ss to retrieve (9). Finally (8) is not equivalent to (9) since in general
(A + B ) � 1 6= A � 1 + B � 1.

The advantage of formulation (II) compared to formulation (III) is that the
�uid and the structure sub-problems can be solved simultaneously and indepen-
dently for the residual computation (right-hand sides of (7)) and the application
of the preconditioner (S0

f and S0
s) as soon as� =2 f 0; 1g. However, as we shall see

in section 5.3, a simpli�ed complexity analysis shows that the overall computa-
tional costs of both methods might be of the same order, for instance, whenever
the cost of the �uid sub-problem solution is cheaper.

INRIA



A partitioned Newton method for the interaction of a �uid and a 3D shell 7

The formulations recalled in Sections 1.2 and 1.3 are �rst based on the
coupling conditions, giving rise to a nonlinear equation on the interface, which
involves nonlinear sub-problems. The algorithm we introduce in Section 5 �rst
treats the nonlinearity of the whole problem through a Newton method, and
uses a Steklov-Poincaré formulation on the tangent problems.

2 Mechanical setting

Let b
 = b
 f [ b
 s be a reference con�guration of the system, see Figure 1. We
introduce the motion of the solid medium

b' s : b
 s � R+ �! R3:

The current con�guration of the structure is then denoted by


 s(t) = ' s( b
 s; t):

We introduce the deformation gradient bFs( bx ; t) def= r bx ' s( bx ; t); and its deter-

minant bJs( bx ; t) def= det bFs( bx ; t). The displacement of the solid domain is given

by bds( bx ; t) def= b' s( bx ; t) � bx . The �uid domain 
 f (t) is parametrized by the
Arbitrary Lagrangian Eulerian ALE mapping (see [17], for instance),

bA : b
 f � R+ �! R3;

such that 
 f (t) = bA( b
 f ; t). In the sequel we will use the notation bA t
def=

bA(�; t) and the superscript b will be related to �elds de�ned on the reference
con�guration b
 f or b
 s. In addition, for a given Eulerian �uid quantity q (i.e.
de�ned in 
 f (t) for t > 0) we will denote its ALE description by bq, as a �eld
de�ned in b
 f � R+ as

bq( bx ; t) = q
� bA t (x ); t

�
; 8x 2 b
 f : (10)

We introduce the deformation gradient of the �uid domain

bF f ( bx ; t) def= r bx
bA( bx ; t);

and its determinant bJf ( bx ; t) def= det bF f ( bx ; t). The displacement of the �uid

domain is given by bdf ( bx ; t) def= bA( bx ; t) � bx and its velocity by

bw def=
@bA
@t

:

b�b
 f


 f (t )
�( t )


 s (t )

bA t

b
 s
b' s (�; t )

b� N

b� D

� f

Figure 1: Parametrization of the domains 
 f (t) and 
 s(t).

RR n° 6623



8 M.A. Fernández, J.-F. Gerbeau, A. Gloria, M. Vidrascu

The �uid-structure interface, namely @
 f (t) \ @
 s(t) is denoted by �( t),
and � f = @
 f (t)n�( t) stands for the portion of the �uid boundary that is
not shared with the boundary of the structure. The surface � f is assumed to
be independent oft. The boundary @b
 s of the reference con�guration for the
structure is divided into three disjoint parts b� D , b� N and b� , with �( t) = bA t ( b�) .
We denote by n the outward unit normal on the �uid boundary in the current
con�guration, and by bn s the outward unit normal on the reference structure
boundary.

2.1 The coupled problem

We consider an homogeneous, Newtonian viscous, incompressible �uid with den-
sity � f and dynamic viscosity � . Its state is described by its Eulerian velocity
u and pressurep. The constitutive law for the Cauchy stress tensor is given by
the following expression:

� (u ; p) = � pI + 2 � � (u );

with � (u ) def=
�
r u + ( r u )T

�
=2. In absence of body forces, these unknowns

satisfy the incompressible Navier-Stokes equations in an ALE formulation:
8
>><

>>:

� f
@u
@t

�
�
�

bx
+ � f (u � w ) � r u � div

�
2� � (u )

�
+ r p = 0 ; in 
 f (t);

div u = 0 ; in 
 f (t);

� (u ; p) � n = g; on � f ;

(11)

where
@
@t

�
�
�

bx
stands for the ALE time derivative, w def= bw � bA � 1

t , and g a given

density of surface force.
The structure is supposed to be hyperelastic under large displacements and

deformations. Its density is denoted by � s. Its state is described by its dis-
placement bds and its �rst Piola-Kircho� stress tensor bT . The latter is related
to bds as the gradient of an internal stored energy functionW ( bFs). The choice
of the internal stored energy will depend on the problem under consideration
and will not change the setting of the �uid-structure problem. Assuming that
the structure is clamped on � D and under no body and surface forces, these
unknowns are driven by the following elastodynamic equations

8
>>><

>>>:

bJs � s
@2 bds

@t2
� div bx

bT = 0; in b
 s;

bd = 0; on b� D ;

bT � bn s = 0 ; on b� N :

(12)

The coupling between the solid and the �uid, namely equations (11) and
(12), is realized through standard boundary conditions at the �uid-structure
interface �( t) that ensure the balance of the mechanical energy over the whole
domain. This is achieved by imposing three interface conditions:

ˆ A geometrical condition enforcing the matching between' s and bA on the
interface

bdf = bds; on b� : (13)

INRIA



A partitioned Newton method for the interaction of a �uid and a 3D shell 9

Inside b
 f , the �uid domain displacement bdf can be de�ned as an arbitrary
(suitable) extension of bds over the domain b
 f , namely,

bdf = Ext( bdsj b� ) (14)

(see Remark 1 below).

ˆ A kinematic condition enforcing the continuity of the velocities at the
interface

u =
@bds

@t
� bA � 1

t ; on �( t): (15)

ˆ And a kinetic condition imposing the stress continuity at the interface

bT bn s = � bJf
\� (u ; p) bF � T

f bn ; on b� : (16)

To summarize, the �uid-structure system involving an incompressible viscous
�uid and a hyperelastic structure is described in terms of the unknowns(u ; p; bdf ; bds)
satisfying the coupled problem (11)-(16).

Remark 1 In practice, we can choose as operator Ext a harmonic extension
operator, by solving a Laplace equation

8
>><

>>:

� div ( � r bdf ) = 0 ; on b
 f ;

bdf = bds; on b� ;

bdf = 0; on b� f ;

(17)

where � > 0 is a given �di�usion� coe�cient, that can depend on bds. Other
alternative extension approaches can be found, for instance, in [3, 46].

Remark 2 The combination of (13) and (15) enforces u = w on �( t). This
requirement is not strictly necessary but simpli�es the construction of the ALE

map. In general we could replace(14) by
@bds

@t
� bA � 1

t � n = w � n on �( t).

Remark 3 For simplicity, we have only prescribed Neumann boundary condi-
tions in (11). In practice we may use Dirichlet conditions on some part of the
boundary.

2.2 Weak formulation

Problem (11)-(16) can be reformulated in a weak variational form using appro-
priate test functions, performing integrations by parts and taking into account
the boundary and interface conditions.

In what follows, we will make explicit the dependence of
 f (t) and �( t) on
bdf by introducing the notations


 f ( bdf ) def= 
 f (t); �( bdf ) def= �( t):
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10 M.A. Fernández, J.-F. Gerbeau, A. Gloria, M. Vidrascu

Let (cv f ; bq) 2 [H 1( b
 f )]3 � L 2( b
 f ), multiplying the �uid problem (11) by
(v f ; q) = ( cv f � bA � 1

t ; bq � bA � 1
t ) integrating over 
 f ( bdf ) and after integrations by

parts we get

d
dt

Z


 f ( cd f )
� f u � v f dx +

Z


 f ( cd f )
div

h
� f u 


�
u � w

� cdf
� �i

� v f dx

+
Z


 f ( cd f )
� (u ; p) : r v f dx �

Z

�( cd f )
� (u ; p) � v f � n

da �
Z

� in � out

g � v f da �
Z


 f ( cd f )
qdiv u dx = 0 ;

where

w
� cdf

�
=

@cdf

@t
� bA � 1

t :

For the structure, multiplying (12) by bvs 2 [H 1
� D

( b
 s)]3, integrating by parts

over b
 s, one gets

Z

b
 s

� 0
@2cds

@t2
� bvs dx̂ +

Z

b
 s

@W
@F

(I+ r cds) : r bvs dx̂ �
Z

b�

@W
@F

(I+ r cds) bn s � bvs dâ = 0 ;

where � 0 = bJs � s. Therefore, taking into account the coupling condition (16), it
follows that

d
dt

Z


 f ( cd f )
� f u � v f dx +

Z


 f ( cd f )
div

h
� f u 


�
u � w

� cdf
� �i

� v f dx

+
Z


 f ( cd f )
� (u ; p) : r v f dx �

Z

� in � out

g � v f da �
Z


 f ( cd f )
qdiv u dx

+
Z

b
 s

� 0
@2cds

@t2
� bvs dx̂ +

Z

b
 s

@W
@F

(I + r cds) : r bvs dx̂ = 0 ; (18)

for all (cv f ; bq) 2 [H 1( b
 f )]3 � L 2( b
 f ) and bvs 2 [H 1
� D

( b
 s)]3 with cv f = bvs on b� .
The weak form of the geometry coupling conditions (13) and (14) are rewritten
in terms of the interface displacement 2 [H

1
2 ( b�)] 3 as

Z

b
 f

�
cdf � Ext ( )

�
� b� dx̂ +

Z

b�
(cds �  ) � b� dâ = 0 ; (19)

for all b� 2 [L 2( b
 f )]3 and b� 2 [L 2( b�)] 3. Finally, the continuity of the velocities
at the interface (15) is reformulated as

Z

b�

�
bu � bw(cdf )

�
� b� dâ = 0 ; (20)

for all b� 2 [L 2( b�)] 3.
Therefore, after summation of (18)-(20) we obtain the following global weak

formulation of problem (11)-(16): Find bu : b
 f � R+ ! R3, bp : b
 f � R+ ! R,

INRIA
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bdf : b
 f � R+ ! R3, bds : b
 s � R+ ! R3 and  : b� � R+ ! R3 such that

d
dt

Z


 f ( cd f )
� f u � v f dx +

Z


 f ( cd f )
div

h
� f u 


�
u � w

� cdf
� �i

� v f dx

+
Z


 f ( cd f )
� (u ; p) : r v f dx �

Z

� in � out

g � v f da �
Z


 f ( cd f )
qdiv u dx

+
Z

b
 s

� 0
@2cds

@t2
� bvs dx̂ +

Z

b
 s

@W
@F

(I + r cds) : r bvs dx̂ +
Z

b
 f

�
cdf � Ext ( )

�
� b� dx̂

+
Z

b�
(cds �  ) � b� dâ +

Z

b�

�
bu � bw(cdf )

�
� b� dâ = 0 ; (21)

with u(�; t) = bu(�; t) � bA � 1
t , p(�; t) = bp(�; t) � bA � 1

t , and for all (cv f ; bq) 2 [H 1( b
 f )]3 �
L 2( b
 f ), vs 2 [H 1

� D
( b
 s)]3 with cv f = bvs on b� , b� 2 [L 2( b
 f )]3, b� 2 [L 2( b�)] 3 and

b� 2 [L 2( b�)] 3.

3 Constitutive laws for artery walls

3.1 Three dimensional constitutive laws

In an extensive survey article [29], Holzapfelet al. have analyzed and compared
existing constitutive models for arterial walls. They have also introduced a new
framework to take into account anisotropy and various mechanical e�ects such
as in�ation and torsion. Their model is based on a thick-walled nonlinearly
elastic tube consisting of two layers. Another model has been introduced by
van Oijen in his PhD thesis [40]. More microscopically based, it uses the mixing
theory to take into account the �bers in the layers. Even more precise at the
microscopic level, Caillerieet al. have introduced a nonlinear homogenization
approach to �ber-reinforcement in soft tissues ([7]).

These three models have two common features: they are three-dimensional
and anisotropic. Previous approaches, such as the Fung model in [25], are based
on geometrical simpli�cations, such as membrane, and more generally on thin
shell. However, as pointed out in [29], such simpli�cations are not suitable for
the analysis of the through-thickness stress distribution in an artery or for the
treatment of shearing deformations. In addition, the combination of in�ation
and torsion e�ects cannot be reproduced by such simpli�ed models. This may
explain why three-dimensional constitutive laws are needed to correctly handle
the passive mechanical behavior of artery walls.

From a physiological point of view, the arterial wall is made of three lay-
ers (the intima, the media and the adventitia). For a healthy artery, only the
media and the adventitia have a signi�cant mechanical role. In addition, their
mechanical behavior is highly anisotropic due to the presence of �bers (collage-
nous components). In [29], Holzapfelet al. propose a model based on two
layers modeling the media and the adventitia. For both layers, the material
is supposed to be three-dimensional, thin, hyperelastic, in �nite deformation,
incompressible, anisotropic (in the �ber directions) and pre-stressed.

The elastic assumption is well satis�ed in some vessels, as the aorta, the
iliac and carotid arteries. For other arteries, including the femoral, celiac and
cerebral arteries, viscoelastic models are needed.
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As a consequence of the above assumptions, the free energy of a layer can
be written as

W ( bFs) = 	 iso(I 1; I 2; J ) + 	 �b (I 4; I 5); (22)

where bFs is the deformation gradient, I 1, I 2 and J its three principal invariants
and I 4 and I 5 its pseudo-invariants related to the reinforcement direction. The
�rst part of the energy 	 iso is isotropic, typically a neo-Hookean, Mooney-Rivlin
or Ciarlet-Geymonat type of energy. The second part	 �b is anisotropic and
involves an exponential term in order to reproduce the strong sti�ening e�ect
of each layer at high pressure.

From a computational point of view, the above combination of mechanical
properties gives rise to two major di�culties: the treatment of incompressibility
in �nite deformation and the treatment of bad aspect ratios for thin three-dimen-
sional structures. Both phenomena lead to locking problems ([9],[12]) if not cor-
rectly treated. Incompressibility issues are classically dealt with using a mixed
�nite element method, whereas locking phenomena in thin three-dimensional
structures are treated using re-interpolation techniques [10, 12, 11] as presented
in the following subsection.

3.2 3D shell elements

A general structural model of the blood �ow with complex and realistic geome-
tries has to be three-dimensional and handle large displacements.

Since the wall of the blood vessels is thin, it is convenient to use shell ele-
ments; they accurately describe its geometry. All �nite elements adopted in our
simulations are general shell elements. Previously, Gerbeauet al. have used the
MITC4 elements [26, 27] with a 3D constitutive law for which the transversal
stress is null and a kinematic constraint is needed to make the model compatible
with a Reissner-Mindlin shell model. This restricts the choice of the energy.

We consider here 3D-shell elements [10, 12, 11]. These elements appear as
standard three-dimensional elements. Thus it is very easy to couple them to
other three-dimensional formulations through the nodes on the faces. The ele-
ment considered here, called MI3D, uses standard 3DQ2 shape functions. The
advantage of a quadratic approximation in the shell's thickness is that it is
possible to deal with standard 3D energies, such as generalized Hook or any hy-
perelastic stored energy, de�ned by using the Cauchy-Green tensor's invariants,
such as the one de�ned in (22).

In order to be able to apply MITC techniques to stabilize the formulation, it
is necessary to compute the �rst and second derivatives of the stored energy with
respect to the Green-Lagrange tensor, de�ned hereafter, in local coordinates
(r; s; z), as it is usually done in shell element (see Figure 2):

eij ( ~U) def=
1
2

(~gi � ~U;j + ~gj � ~U;i + ~U;i � ~U;j ); (23)

where~gi is a covariant basis.

INRIA
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r

z

s

Figure 2: 3D shell element

The �rst and second order in�nitesimal variations are given by

�e ij =
1
2

(~gi � � ~U;j + ~gj � � ~U;i + ~U;i � � ~U;j + ~U;j � � ~U;i );

d�e ij =
1
2

(d~U;i � � ~U;j + d~U;j � � ~U;i ):

At each time level of the Newmark time-discretization, a nonlinear problem
has to be solved. The bilinear form appearing in this algorithm is the following:

A = AL + ANL ;

with

AL (d~U; � ~U) def=
Z




@2W
@eij @ekl

dekl �e ij dV; (24)

ANL (d~U; � ~U) def=
Z




@W
@eij

d�e ij dV; (25)

and the corresponding nonlinear right-hand side

F NL (� ~U) def=
Z




@W
@eij

�e ij dV: (26)

In practice, the values of the deformation are not directly computed by (23),
but are re-interpolated at the tying points de�ned by MITC methods. The �rst
and second order in�nitesimal variations in (24)�(26) have to be re-interpolated
using the same rules in order to obtain a consistent tangent problem.

Both the MITC4 and the MI3D elements can be employed in actual com-
putations. The MITC4 with 4 nodes and 5 degrees of freedom per node has
20 degrees of freedom per element, the MI3D with 27 nodes and 3 degrees of
freedom per node has 81 degrees of freedom per element. The MI3D is indeed
more expensive than the MITC4 but it is more convenient for realistic models
of the arteries, as recalled at the beginning of this section.

In Section 6, we present some numerical tests using MI3D elements with a
neo-Hookean constitutive law in �nite deformation, thus tackling the two ma-
jor numerical di�culties for the implementation of the thick-walled nonlinearly
elastic bilayer constitutive laws introduced in [29]. This example provides us
with a case of interest for which the numerical method developed in Section 5
may be competitive.
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4 Semi-discretized weak formulation

In this section, the weak coupled formulation (21) is semi-discretized in time
using an implicit coupling-scheme. The resulting nonlinear problem will be
turned into an abstract form. This will allow us to introduce in the next section
general nonlinear iterative solution methods.

4.1 Implicit coupling scheme

We use an implicit Euler scheme for the ALE Navier-Stokes equations, with
a semi-implicit treatment of the nonlinear convective term. Furthermore we
use a mid-point rule for the structural equation. Thus, given a time step �t >
0, for n = 0 ; 1; : : :, the time semi-discretized coupled problem writes: Given�

bu n ; bpn ; cdf
n
; cds

n
;  n

�
, �nd

�
bu n +1 ; bpn +1 ; cdf

n +1
; cds

n +1
;  n +1

�
2 [H 1( b
 f )]3 � L 2( b
 f ) � [H 1( b
 f )]3

� [H 1( b
 s)]3 � [H
1
2 ( b�)] 3;

such that

1
�t

Z


 f ( bd n +1
f )

� f u n +1 � v f dx �
1
�t

Z


 f ( bd n
f )

� f u n � v f dx

+
Z


 f ( bd n +1
f )

� (u n +1 ; pn +1 ) : r v f dx

+
Z


 f ( bd n +1
f )

div
h
� f u n +1 


�
u n � w

�
cdf

n +1 ��i
� v f dx

�
Z

� in � out

gn +1 �v f da�
Z


 f ( bd n +1
f )

qdiv u n +1 dx +
Z

b
 f

�
bdn +1

f � Ext
�
 n +1 � �

� b� dx̂

+
Z

b�

�
bu n +1 � bw

�
bdn +1

f

��
� b� dâ +

2
�t 2

Z

b
 s

� 0
bdn +1

s � bvs dx̂

�
2

�t 2

Z

b
 s

� 0

�
bdn

s + � t _bdn
s

�
� bvs dx̂ +

Z

b
 s

@W
@F

�
I +

1
2

r ( bdn
s + bdn +1

s )
�

: r bvs dx̂

+
Z

b�

�
bdn +1

s �  n +1
�

� b� dâ = 0 ; (27)

for all (cv f ; bq; b� ; b� ; b� ; bvs) 2 [H 1( b
 f )]3 � L 2( b
 f ) � [L 2( b�)] 3 � [L 2( b
 f )]3 � [L 2( b�)] 3 �

[H 1
� D

( b
 s)]3 such that cv f = bvs on b� , and with u n = bu n � (I + cdf
n
) � 1 (analogously

for pn ) and _bdn +1
s =

2
�t

�
bdn +1

s � bdn
s

�
� _bdn

s .

4.2 Abstract formulations

Problem (27) can be rewritten in a more compact form in terms of the �uid,
solid and interface state operators. This is the aim of the following paragraphs.
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Based on the discrete weak formulation (27) we introduce the �uid operator

F : [H 1( b
 f )]3 � L 2( b
 f ) � [H 1( b
 f )]3 � [H
1
2 ( b�)] 3

�!
�

[H 1
b�

( b
 f )]3 � L 2( b
 f ) � [L 2( b�)] 3 � [L 2( b
 f )]3
� 0

;

de�ned by
D

F
�

bu ; bp; bdf ; 
�

;
�

cv f ; bq; b� ; b�
�E

=
1

� t

Z


 f ( bd f )
� f u � v f dx

�
1

� t

Z


 f ( bd n
f )

� f u n � v f dx

+
Z


 f ( bd f )
div

h
� f u 


�
u n � w

�
bdf

��i
� v f dx

+
Z


 F ( bd f )
� (u ; p) : r v f dx �

Z

� in � out ( bd f )
gn +1 � v f da

�
Z


 f ( bd f )
qdiv u dx +

Z

b�

�
bu � bw

�
bdf

��
� b� dâ

+
Z

b
 f

�
bdf � Ext ( )

�
� b� dx̂ ;

(28)

for all (cv f ; bq; b� ; b� ) 2 [H 1( b
 f )]3 � L 2( b
 f ) � [L 2( b�)] 3 � [L 2( b
 f )]3.
Analogously, from (27), the solid operator

S : [H 1( b
 s)]3 � [H
1
2 ( b�)] 3 �! ([H 1

� D [ b�
( b
 s)]3 � [L 2( b�)] 3)0;

is given by
D

S( bds;  ); ( bvs; b� )
E

=
2

�t 2

Z

b
 s

� 0
bds � vs dx̂ �

2
�t 2

Z

b
 s

� 0

�
bdn

s + �t _bdn
s

�
� vs dx̂

+
Z

b
 s

@W
@F

�
I +

1
2

r
�

bdn
s + bds

� �
: r bvs dx̂ +

Z

b�
( bds �  ) � b� dâ;

(29)

for all ( bvs; b� ) 2 [H 1
� D

( b
 s)]3 � [L 2( b�)] 3.
Finally, let

L f : [H
1
2 ( b�)] 3 ! [H 1

� in � out
( b
 f )]3

and
L s : [H

1
2 ( b�)] 3 ! [H 1

@b
 s nb�
( b
 s)]3

be two given continuous linear lift operators. The interface operator

I : [H 1( b
 f )]3 � L 2( b
 f ) � [H 1( b
 f )]3 � [H 1( b
 s)]3 �! [H � 1
2 ( b�)] 3;

is then de�ned by
D

I
�

bu ; bp; bdf ; bds

�
; �

E
=

D
F

�
bu ; bp; bdf ; 

�
; (L f � ; 0; 0; 0)

E
+

D
S

� bds; 
�
; (L s � ; 0)

E
;

(30)
for all � 2 [H

1
2 ( b�)] 3.
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Remark 4 The interface operator does not depend on since, due to the choice
of the test functions, the terms involving vanish in the right-hand side of (30).

According to the above de�nitions, problem (27) is equivalent to

Formulation (I):

8
>>>><

>>>>:

F
�

bu n +1 ; bpn +1 ; bdn +1
f ;  n +1

�
= 0 ;

S
�

bdn +1
s ;  n +1

�
= 0 ;

I
�

bu n +1 ; bpn +1 ; bdn +1
f ; bdn +1

s

�
= 0 :

(31)

4.3 Steklov-Poincaré operators

In order to describe partitioned methods for the numerical solution of (27), we
now introduce the nonlinear �uid and solid Steklov-Poincaré operators.

The nonlinear �uid Steklov-Poincaré operator

Sf : [H
1
2 ( b�)] 3 �! [H � 1

2 ( b�)] 3;

is de�ned by
hSf ( ); � i =

D
I

�
bu( ); bp( ); bdf ( ); 0

�
; �

E
;

for all  ; � 2 [H
1
2 (�̂)] 3, where( bu( ); bp( ); bdf ( )

�
is the solution of the Dirichlet

�uid problem:
F

�
bu( ); bp( ); cdf ( ); 

�
= 0 :

In an analogous way, we introduce the nonlinear solid Steklov-Poincaré operator

Ss : [H
1
2 (�̂)] 3 �! [H � 1

2 (�̂)] 3;

given by


Ss( ); �

�
=

D
I

�
0; 0; 0; bds( )

�
; �

E
;

for all  ; � 2 [H
1
2 (�̂)] 3 and where cds( ) is the solution of the Dirichlet solid

problem:
S

�
bds( ); 

�
= 0 :

From the above de�nitions, it follows that problem (27) (or (31)) is equivalent
to

Formulation (II): Sf ( ) + Ss( ) = 0 : (32)

The composition of (32) with the inverse operatorsS� 1
s gives rise to the Dirichlet-

to-Neumann formulation, namely

Formulation (III): S� 1
s

�
� Sf ( )

�
�  = 0 : (33)

We could also consider the Neumann-to-Dirichlet formulation

S� 1
f

�
� Ss( )

�
�  = 0

by composing (32) with S� 1
f . Nevertheless it is rarely used in practice and it is

known to lead to poor algorithms in some cases, as pointed out in [8].
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5 A partitioned Newton method

In what follows, we skip the upper script n since the time step is �xed. The
method presented here consists in solving (31) by a Newton method: given an

initial guess ( bu 0; bp0; cdf
0
; cds

0
;  0), the algorithm reads

1. Evaluate the nonlinear residual of problem (31).

2. Solve the tangent problem (see (37) below) by a domain decomposition
method.

3. Update solution:
�

bu ; bp; bdf ; bds; 
�

 
�

bu ; bp; bdf ; bds; 
�

+
�

� bu ; � bp; � bdf ; � bds; � 
�

:

4. repeat until convergence.

Compared to the known �uid-structure algorithms presented in Section 1.3, this
partitioned Newton method amounts to switching the domain decomposition
and the linearization in the resolution of the coupled problem. We provide the
tangent problem in the following sections, as well as details for the domain
decomposition resolution.

5.1 Weak state operators derivatives

In this section, we present the di�erentiation of the �uid, structure and interface
operators of Section 4.2 with respect to their arguments. This derivation uses
shape derivative calculus for the di�erentiation of integral terms with respect
to their supports. We refer the reader to [23] where this issue is addressed (see
also [16, 4]).

The linearized �uid operator at state ( bu ; bp; bdf ;  ) 2 [H 1( b
 f )]3 � L 2( b
 f ) �
[H 1( b
 f )]3 � [H

1
2 ( b�)] 3 is denoted by

D F ( bu ; bp; bdf ;  ) : [H 1( b
 f )]3 � L 2( b
 f ) � [H 1( b
 f )]3 � [H
1
2 ( b�)] 3 �!

�
[H 1

b�
( b
 f )]3 � L 2( b
 f ) � [L 2( b�)] 3 � [L 2( b
 f )]3

� 0
;
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and is given by

hD F ( bu ; bp; bdf ;  ) � (� bu ; � bp; � cdf ; �  ); (cv f ; bq; b� ; b� )i

=
Z


 F ( cd f )
div

h
� f � u 
 (u n � w (cdf ))

i
� v f dx

+
Z


 F ( cd f )
� (� u ; �p ) : r v f dx

�
Z


 F ( cd f )
qdiv � u dx +

1
� t

Z


 F ( cd f )
(div � cdf )� f u � v f dx

+
Z


 F ( cd f )
div

n
� f u 
 (u n � w (cdf ))

h
I div � cdf � (r � cdf )T

io
� v f dx

�
1

� t

Z


 F ( cd f )
div( � f u 
 � cdf ) � v f dx

+
Z


 F ( cd f )
� (u ; p)

h
I div � cdf � (r � cdf )T

i
: r v f dx

�
Z


 F ( cd f )
�

h
r u r � cdf + ( r � cdf )T (r u )T

i
: r v f dx

�
Z


 F ( cd f )
qdiv

n
u

h
I div � cdf � (r � cdf )T

io
dx +

Z

b�

 

� bu �
� cdf

� t

!

� b� dâ

+
�

� t

Z


 F ( cd f )
� u � v f dx +

Z

b
 F

(� cdf � Ext (�  )) � b� dx̂

(34)

for all (cv f ; bq; b� ; b� ) 2 [H 1( b
 f )]3 � L 2( b
 f ) � [L 2( b�)] 3 � [L 2( b
 f )]3.
The linearized solid operator at state ( bds;  ) 2 [H 1

� D
( b
 s)]3 � [L 2( b�)] 3

D S( bds;  ) : [H 1
� D

( b
 s)]3 � [H
1
2 ( b�)] 3 �! ([H 1

� D [ b�
( b
 s)]3 � [L 2( b�)] 3)0;

is given by

hD S( bds;  ) � (� cds; �  ); ( bvs; b� )i =
2

(� t)2

Z

b
 S

� 0� cds � vs dx̂

+
1
2

Z

b
 S

r � cds :
�

@2W
@F2

(I + r cds)
�

: r vs dx̂ +
Z

b�
(� cds � �  ) � b� dâ; (35)

for all ( bvs; b� ) 2 [H 1
� D

( b
 s)]3 � [L 2( b�)] 3.

We �nally introduce the linearized interface operator at state ( bu ; bp; bdf ; bds)

D I ( bu ; bp; bdf ; bds) : [H 1( b
 f )]3 � L 2( b
 f ) � [H 1( b
 f )]3 � [H 1( b
 s)]3 �! [H � 1
2 ( b�)] 3;

de�ned by

D
D I ( bu ; bp; bdf ; bds) �

�
� bu ; � bp; � bdf ; � bds

�
; �

E

=
D

D F
�

bu ; bp; bdf ; 0
�

�
�

� bu ; � bp; � bdf ; 0
�

; (L f � ; 0; 0; 0)
E

+
D

D S
�

bds; 0
� �

� bds; 0
�

; (L s � ; 0)
E

; (36)
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for all � 2 [H
1
2 ( b�)] 3.

In terms of the operators de�ned above, the tangent problem associated with
(31) reads

8
>>>><

>>>>:

D F
�

bu ; bp; bdf ; 
�

�
�

� bu ; � bp; � bdf ; � 
�

= �F
�

bu ; bp; bdf ; 
�

;

D S
�

bds; 
�

�
�

� bds; � 
�

= �S
�

bds; 
�

;

D I
�

bu ; bp; bdf ; bds

�
�
�

� bu ; � bp; � bdf ; � bds

�
= �I

�
bu ; bp; bdf ; bds

�
:

(37)

Once the linear �uid, solid and interface operators D F , D S and D I are
de�ned, we can introduce the linear Steklov-Poincaré operatorsSF;l and SS;l

using the formula of Section 4.3 with the linearized operators instead of the
nonlinear operators. It may be noticed that the linear Steklov-Poincaré oper-
ators are di�erent from the linearization of the nonlinear Steklov operators of
Section 4.3.

5.2 Implementation issues

In this subsection, we brie�y describe the general domain decomposition al-
gorithm used to solve the linear problems introduced above, namely both the
Dirichlet-Neumann and the Neumann-Neumann algorithms (in Table 1).

General algorithm.

Following the practical implementation, we decompose the algorithm according
to three distinct solvers: the master (which, roughly speaking, solves the third
equation of (37) by a GMRES method), the �uid solver (which solves the �rst
equation of (37)) and the solid solver (which solves the second equation of (37)).

The iterative algorithm is as follows:

1. Evaluate the Newton residual (right-hand sides of (37)).

2. Initialization of the Domain Decomposition method:

(a) Lifting of the external load and boundary conditions, that is solve
the �rst and second equations of (37) with �  = 0 .

(b) Computation of the right-hand side of the Schur complement by the
master, insert the residuals received from the �uid and from the solid
into (36) and the third equation of (37). This step evaluates how far
the solution with zero on the interface is from the true solution of
the coupled problem (37).

(c) Preconditioning the right-hand side of the Schur complement.

3. Iteration until convergence of the GMRES algorithm on the Schur com-
plement by the master, which updates the displacement�  , sends it to
the �uid and solid solvers in order to

(a) Evaluate the new residual

(b) Preconditioning the residual
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4. End of the domain decomposition algorithm.

The detailed description of these steps for both the Dirichlet-Neumann and
Neumann-Neumann algorithms is given in Table 1, which is commented in the
following two paragraphs. Note that the steps (2a) and (4) do not depend on
the preconditioner.

Dirichlet-Neumann preconditioner

The Dirichlet-Neumann preconditioner amounts to preconditioning the Schur
complement using the solid problem only, namely the exact tangent problem
of the solid (second equation of (37)) with Neumann boundary conditions. It
is worth noticing that the preconditioning step is not performed in parallel
since only the structure problem is used to precondition the residual. For each
iteration (3) of the GMRES algorithm on the Schur complement, the master
sends�  in Step (3a) to the �uid solver only, which performs the instructions
of Table 1 and returns a residual to the master. In Step (3b), the master sends
this residual to the solid solver, which applies the preconditioner according to
Table 1 and returns a displacement� ~ . The master then sums the displacements
1
2 (�  + � ~ ) and computes a new displacement using the update formula of the
GMRES algorithm. At convergence, the �nal value of �  is known and the
solutions in the �uid and in the solid are computed as indicated in Table 1.

Let us point out that the Dirichlet-Neumann algorithm described above is a
purely sequential algorithm.

Neumann-Neumann preconditioner

The Neumann-Neumann preconditioner uses both the tangent �uid problem and
the tangent solid problem (�rst and second equations of (37)) with Neumann
boundary conditions. This algorithm is fully parallel since both the precon-
ditioning steps (2c) and (3b) and residual evaluation steps (3a) can be done
simultaneously by the �uid and solid solvers. Although for the tangent solid
problem, considering Neumann boundary conditions is standard, for the tan-
gent �uid problem this is not the case. In particular, shape derivative terms
(that depend on the lifting w(� bdf ) of the �uid domain displacement, and thus
on the solution � bdf itself on the interface) enter the sti�ness matrix of (34) when
Neumann boundary conditions are considered. Yet, the lifting matrix of (17)
is never constructed and neither is the �uid tangent matrix. Therefore, each
iteration of the GMRES algorithm to solve the tangent �uid problem requires
the full solution of (17) by a GMRES algorithm. In practical implementation,
it is easier and less expensive to neglect the shape derivatives terms in (34).
Doing so, we slightly modify the classical Neumann-Neumann preconditioner.

Some remarks on the stopping criteria

In the above described algorithms, a Newton method is combined with a lin-
ear solver (which uses the domain decomposition methods). There are thus at
least two parameters to be �xed: the stopping criterium for the Newton algo-
rithm and the stopping criterium for the linear solvers using iterative algorithms
(such as GMRES). Based on the principle that the overall stopping criterium

INRIA



A
partitioned

N
ew

ton
m

ethod
for

the
interaction

of
a

�uid
and

a
3D

shell
21

Steps Dirichlet-Neumann Neumann-Neumann
Solid Fluid Solid Fluid

(2a), (4) Receive�  Receive�  Receive�  Receive� 
Matrix construction c Computation of Matrix construction c Computation of
Matrix factorization c (Dirichlet) a preconditionnerc Matrix factorization c (Dirichlet) a preconditionnerc

(in the �uid subdomain) (in the �uid subdomain)
Forward backward substitution GMRES Forward backward substitution GMRES
(with external BC a and (with external BC a and (with external BC a and (with external BC a and
displacement on the interface) velocityb on the interface) displacement on the interface) velocityb on the interface)
Send linear residual Send linear residual Send linear residual Send linear residual

(2c),(3b) Receive residual Receive residual Receive residual
Matrix factorization d (Neumann) Matrix factorization d (Neumann) Computation of

a preconditionerd

(in the �uid subdomain)
Forward backward substitution Forward backward substitution GMRES
Send linear displacement Send linear displacement Send linear displacement

(3a) Receive displacement Receive displacement Receive displacement
GMRES Forward backward substitution GMRES
Send linear residual Send linear residual Send linear residual
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will be driven by the Newton algorithm, it is not necessary to �over-solve� the
linear problems (especially the tangent �uid problem). Thus there is a non triv-
ial interplay between the tolerance of the Newton algorithm and the tolerance
of the GMRES algorithm, that may change signi�cantly the e�ciency of the
algorithms.

5.3 Complexity analysis

Let us make a formal complexity analysis to have a rough hint on the cost
of the Steklov type, Dirichlet to Neumann formulation based, and partitioned
Newton type methods. We make the following assumptions: the �uid to be
solved at each time step is linear (e.g. semi-implicit Euler scheme for Navier-
Stokes equations), the structure problem is solved by a Newton algorithm and
the linearized structure problems by direct methods. We only take into account
the factorization for the resolution of the structure sub-problem and consider the
matrices as already factorized when dealing with linear domain decomposition
methods.

In the following analysis we assume that the number of Newton iterations,
N̂eF SI , for the global problem in formulations (II) and (III) is the same. Let
NeF SI the number of Newton iterations for the formulation (I). We denote by
Nes the number of iterations for a Newton algorithm in the structure problem.
The number of GMRES iterations G is assumed not to depend on the algorithm
if optimal preconditioners (let say Dirichlet-Neumann) are used. In the sequel
Cr and Fa denote respectively the cost of the construction and factorization a
matrix in the solid, F l1 the resolution cost per time step of the �uid problem,
and F l2 the resolution cost for a tangent �uid problem. The estimations of costs
for the three types of methods are gathered in Table 2 both for a sequential and
a parallel implementation when possible. For the parallel implementation, we
have assumed thatFa + Cr � F l and F l � Fa.

Method (I) NtoD preconditioned (II) NtoD preconditioned (III) Newton on
partitioned Newton Newton on Steklov DtoN-formulation

Sequential NeF SI [2Fa + Cr N̂eF SI [(Nes + 1)( Fa + Cr ) N̂eF SI [(Nes + 1)( Fa + Cr )
+ GF l2 + F l1] + Fa + GF l2 + F l1] + F l1 + GF l2]

Parallel NeF SI [2Fa + Cr NeF SI [(Nes + 1)( Fa + Cr ) -
+ GF l2] + Fa + GF l2]

Table 2: Estimation of the computational cost

Let us comment on Table 2. For the sequential implementation the estima-
tions for the method (II) and (III) only di�er by the factorization cost of a solid
tangent matrix, which is rather small with respect to the whole cost. This is
in agreement with the tests performed in [14] where method (II) is shown to

be roughly equivalent to method (III) in terms of cost. If NeF SI � N̂eF SI ,
method (I) should be at least as e�cient as the �rst two, especially if the struc-
ture is nonlinear and expensive. On the contrary, if F l � Fa + Cr then the
parallel implementations of methods (I) and (II) seem to be completely equiv-
alent in terms of cost, which is only determined by the �uid. For the parallel
implementation, the cost reduction strongly depends on the number of GMRES
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iterations, and the method (I) still seems to compete with method (II). Note

that, if NeF SI > N̂eF SI , method (I) may loss e�ciency with respect to methods
(II) and (III).

The condition Fa+ Cr � F l is almost never satis�ed if classical shell elements
are used. However, this condition may be satis�ed when 3D shell elements are
used to model more realistic constitutive laws for the structure (see Section 3).
Let consider for instance a mesh with 38000 nodes in the �uid (let say 150000
degrees of freedom). For MITC4 shell elements, we then have 3300 nodes and
16500 degrees of freedom. Numerical tests show that in this case, with the same
computer, F l ' 45s, Fa ' 0:7s and Cr ' 1:7s. Let now consider 3D shell
elements (hexahedra, 27 nodes per element) on the same mesh. The number of
nodes for the structure increases from 3300 to 22100, and the number of degrees
of freedom from 16500 to 66300. The costs for the solid are nowFa ' 13s and
Cr ' 50s. We are thus in the situation Cr + Fa � F l and F l � Fa.

6 Numerical tests

In this section we illustrate the behavior of the linear Domain Decomposition
method (I), with a Dirichlet-Neumann preconditioner, by performing some nu-
merical simulations. As regards e�ciency, we make some comparisons with the
nonlinear Domain Decomposition method (III), reported in [23].

In all the computations the structure is modeled by 3D-shell elements, as
reported in Ÿ3.2, with a neo-Hookean constitutive law in �nite deformation. For
the space discretization we use aQ2-�nite element (27 nodes) combined with
a MITC interpolation rule in the thin direction of the hexaedra. This allow
us to deal with three dimensional constitutive laws while keeping a reasonable
cost (only one layer of elements is necessary). A mid-point rule is used for
the time discretization. For the �uid, we consider the Navier-Stokes equation
with an ALE formulation (11). The �uid equations are discretized in space
using P1=P1-SUPG-stabilized �nite elements, and in time by a semi-implicit
backward-Euler scheme.

6.1 Flow in a compliant straight vessel

We consider here the benchmark reported in [24]. The �uid computational
domain is a cylinder of radius R0 = 0 :5cm and of length L = 5 cm. The
vessel wall has a thickness ofh = 0 :1cm and the rest of physical parameters
are E = 3 � 106 dynes=cm2, � = 0 :3 and � s = 1 :2g=cm3. For the �uid we have
� = 0 :035poise and � f = 1 g=cm2. The numerical computations are performed
using a �uid mesh with 38400 tetrahedra and a solid mesh with 160 hexahedra,
the time step size is� t = 10 � 4 s.

Initially, the �uid is at rest and an over pressure of 1:3332� 104 dynes=cm2

(10mmHg ) is been imposed at the inlet boundary during0:005s. As expected, a
pressure wave propagation is observed, see Figure 3. This results are comparable
with those obtained with more standard shell elements (seee.g. [26, 19] with
the MITC4 shell element).

The same numerical computation have been carried out using method (III).
A comparison of the e�ciency of both methods is reported on Table 3. We
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Figure 3: Deformation of the structure (left), magni�ed by 5, and �uid pressure
at time 4, 8 and 13ms. Note that the structure is made of one layer of 3D-shell
elements.
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observe that method (III) is slightly faster than method (I), mainly due to the
reduced number of Newton iterations.

Method (I) (III)
CPU time

(dimensionless)
1 0.7

Average number of 7 10
GMRES iterations
Average number of 5 2
Newton iterations

Table 3: E�ciency over 10 time steps

6.2 Flow in a compliant vessel with an aneurysm

We consider now the FSI numerical results reported in [43] usingin vitro
aneurysm geometries. The �uid computational domain is the idealized ab-
dominal aortic aneurysm given in Figure 4. The geometry models a middle-
size aneurysm with a dilatation ratio D=d = 2 :4 (maximum diameter to inlet
diameter ratio) and aspect ratio L=d = 3 :9 (length to inlet diameter ratio),
with d = 1 :7cm (we refer to [43, 44] for the details). The vessel wall has a
uniform thickness of h = 0 :17cm and the physical parameters are given by
E = 6 � 106 dynes=cm2, � = 0 :3 and � s = 1 :2g=cm3. For the �uid we have
� = 0 :035poise and � f = 1 g=cm2. The �uid and solid meshes are made
of 165888 tetrahedra and 640 hexahedra, respectively. The time step size is
� t = 1 :68� 10� 3 s.
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Figure 4: Aneurysm geometry (left) and in-�ow rate data (right)

Initially, the �uid is at rest. The in-�ow rate corresponding to a cardiac cycle,
see Figure 4(right), is imposed on the inlet boundary. A resistive-like boundary
condition is prescribed on the outlet boundary, the value of the resistance being
R = 3 � 103 dyne=cm3. In Figure 5 we have reported some snapshots of the wall
deformation and the �uid velocity �eld at di�erent time instants. This results
are in agreement with those obtained with the MITC4 shell element in [43].

As in the previous experiment, the same numerical simulation have been
performed using method (III). A comparison of the e�ciency is reported on
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