E. L. Allgower and K. Georg, Introduction to numerical continuation methods, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), vol.45, 2003.
DOI : 10.1137/1.9780898719154

P. Berkmann and H. J. Pesch, Abort landing in windshear: Optimal control problem with third-order state constraint and varied switching structure, Journal of Optimization Theory and Applications, vol.2, issue.No. 2, 1995.
DOI : 10.1007/BF02192298

J. T. Betts, Practical Methods for Optimal Control using Nonlinear Programming, Applied Mechanics Reviews, vol.55, issue.4, 2001.
DOI : 10.1115/1.1483351

J. F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire
DOI : 10.1016/j.anihpc.2007.12.002

URL : https://hal.archives-ouvertes.fr/hal-00778357

J. F. Bonnans and A. Hermant, Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods, ESAIM: Control, Optimisation and Calculus of Variations, vol.14, issue.4, 2008016.
DOI : 10.1051/cocv:2008016

J. F. Bonnans and A. Hermant, Well-Posedness of the Shooting Algorithm for State Constrained Optimal Control Problems with a Single Constraint and Control, SIAM Journal on Control and Optimization, vol.46, issue.4, pp.1398-1430, 2007.
DOI : 10.1137/06065756X

URL : https://hal.archives-ouvertes.fr/inria-00071379

J. F. Bonnans and G. Launay, Large scale direct optimal control applied to a re-entry problem, AIAA J. of Guidance, Control and Dynamics, vol.21, pp.996-1000, 1998.

B. Bonnard, L. Faubourg, G. Launay, and E. Trélat, Optimal control with state constraints and the space shuttle re-entry problem, Journal of Dynamical and Control Systems, vol.9, issue.2, pp.155-199, 2003.
DOI : 10.1023/A:1023289721398

URL : https://hal.archives-ouvertes.fr/hal-00086315

B. Bonnard, L. Faubourg, and E. Trelat, OPTIMAL CONTROL OF THE ATMOSPHERIC ARC OF A SPACE SHUTTLE AND NUMERICAL SIMULATIONS WITH MULTIPLE-SHOOTING METHOD, Mathematical Models and Methods in Applied Sciences, vol.15, issue.01, pp.109-140, 2005.
DOI : 10.1142/S0218202505003927

URL : https://hal.archives-ouvertes.fr/hal-00086338

B. Bonnard and E. Trélat, Une approche géométrique du contrôle optimal de l'arc atmosphérique de la navette spatiale. ESAIM: Control, Optimization and Calculus of Variations, pp.179-222, 2002.
DOI : 10.1051/cocv:2002008

URL : http://archive.numdam.org/article/COCV_2002__7__179_0.pdf

R. Bulirsch, F. Montrone, and H. J. Pesch, Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy, Journal of Optimization Theory and Applications, vol.36, issue.2, pp.223-254, 1991.
DOI : 10.1007/BF00940625

A. Hermant, Homotopy Algorithm for Optimal Control Problems with a Second-order State Constraint, Applied Mathematics and Optimization, vol.5, issue.2, 2008.
DOI : 10.1007/s00245-009-9076-y

URL : https://hal.archives-ouvertes.fr/inria-00316281

J. Laurent-varin, F. Bonnans, N. Bérend, M. Haddou, and C. Talbot, Interior-Point Approach to Trajectory Optimization, Journal of Guidance, Control, and Dynamics, vol.30, issue.5, pp.1228-1238, 2007.
DOI : 10.2514/1.18196

URL : https://hal.archives-ouvertes.fr/inria-00070395

K. Malanowski and H. Maurer, Sensitivity analysis for optimal control problems subject to higher order state constraints, Annals of Operations Research, vol.101, issue.1/4, pp.43-73, 2001.
DOI : 10.1023/A:1010956104457

H. J. Pesch, A practical guide to the solution of real-life optimal control problems, Control and Cybernetics, vol.23, pp.7-60, 1994.

H. J. Pesch, Real-time computation of feedback controls for constrained optimal control problems. part 2: A correction method based on multiple shooting, Optimal Control Applications and Methods, vol.35, issue.2, pp.147-171, 1989.
DOI : 10.1002/oca.4660100206