Distributing labels on infinite trees

Nicolas Gast 1, * Bruno Gaujal 1
* Auteur correspondant
1 MESCAL - Middleware efficiently scalable
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : Sturmian words are infinite binary words with many equivalent definitions: They have a minimal factor complexity among all aperiodic sequences; they are balanced sequences (the labels 0 and 1 are as evenly istributed as possible) and they can be constructed using a mechanical definition. All this properties make them good candidates for being extremal points in scheduling problems over two processors. In this paper, we consider the problem of generalizing Sturmian words to trees. The problem is to evenly distribute labels 0 and 1 over infinite trees. We show that (strongly) balanced trees exist and can also be constructed using a mechanical process as long as the tree is irrational. Such trees also have a minimal factor complexity. Therefore they bring the hope that extremal scheduling properties of Sturmian words can be extended to such trees, as least partially. Such possible extensions are illustrated by one such example.
Type de document :
Rapport
[Research Report] RR-6630, INRIA. 2009
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00318872
Contributeur : Bruno Gaujal <>
Soumis le : mardi 26 mai 2009 - 10:32:37
Dernière modification le : jeudi 11 janvier 2018 - 06:21:39
Document(s) archivé(s) le : samedi 26 novembre 2016 - 09:18:57

Fichier

squelette-rr.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00318872, version 2

Collections

Citation

Nicolas Gast, Bruno Gaujal. Distributing labels on infinite trees. [Research Report] RR-6630, INRIA. 2009. 〈inria-00318872v2〉

Partager

Métriques

Consultations de la notice

263

Téléchargements de fichiers

115